Financing Efficiency of Securities-Based Crowdfunding

David C. Brown - University of Arizona
Shaun William Davies - University of Colorado, Boulder

Digital Finance, Market Disruption, and Financial Stability 2018 Conference

Banque de France & Toulouse School of Economics
And for start-ups and small businesses, this bill [JOBS Act] is a potential game changer. Right now, you can only turn to a limited group of investors – including banks and wealthy individuals – to get funding. Laws that are nearly eight decades old make it impossible for others to invest. But a lot has changed in 80 years, and it’s time our laws did as well. Because of this bill, start-ups and small business will now have access to a big, new pool of potential investors – namely, the American people. For the first time, ordinary Americans will be able to go online and invest in entrepreneurs that they believe in.

—President Barack Obama, April 5, 2012

Signing the JOBS Act
Private Value versus Common Value Goods

- **Securities-based** crowdfunding is a new form of venture financing
Private Value versus Common Value Goods

- Securities-based crowdfunding is a new form of venture financing
- Appeal founded on the success of rewards-based crowdfunding which has harnessed the wisdom of the crowd
Private Value versus Common Value Goods

- **Securities-based** crowdfunding is a new form of venture financing

 Appeal founded on the success of **rewards-based** crowdfunding which has harnessed the **wisdom of the crowd**

 - **All-or-nothing** financing thresholds imply only the popular, and likely profitable, products receive sufficient financing
Private Value versus Common Value Goods

- **Securities-based** crowdfunding is a new form of venture financing
- Appeal founded on the success of **rewards-based** crowdfunding which has harnessed the **wisdom of the crowd**
 - **All-or-nothing** financing thresholds imply only the popular, and likely profitable, products receive sufficient financing
 - Participation signals consumer demand and gives valuable information to the entrepreneur (see Chemla and Tinn, 2018)
Private Value versus Common Value Goods

- **Securities-based** crowdfunding is a new form of venture financing
- Appeal founded on the success of **rewards-based** crowdfunding which has harnessed the **wisdom of the crowd**
 - **All-or-nothing** financing thresholds imply only the popular, and likely profitable, products receive sufficient financing
 - Participation signals consumer demand and gives valuable information to the entrepreneur (see Chemla and Tinn, 2018)
- Reward-based crowdfunding relies on **private value** goods
Private Value versus Common Value Goods

- **Securities-based** crowdfunding is a new form of venture financing
- Appeal founded on the success of **rewards-based** crowdfunding which has harnessed the **wisdom of the crowd**
 - **All-or-nothing** financing thresholds imply only the popular, and likely profitable, products receive sufficient financing
 - Participation signals consumer demand and gives valuable information to the entrepreneur (see Chemla and Tinn, 2018)
- **Reward-based** crowdfunding relies on **private value** goods
 - Value can be different for each individual
Private Value versus Common Value Goods

- **Securities-based** crowdfunding is a new form of venture financing.

 - Appeal founded on the success of **rewards-based** crowdfunding which has harnessed the *wisdom of the crowd*.
 - **All-or-nothing** financing thresholds imply only the popular, and likely profitable, products receive sufficient financing.
 - Participation signals consumer demand and gives valuable information to the entrepreneur (see Chemla and Tinn, 2018).

- Reward-based crowdfunding relies on **private value** goods.
 - Value can be different for each individual.

- Securities-based crowdfunding relies on **common value** goods.
Private Value versus Common Value Goods

- **Securities-based** crowdfunding is a new form of venture financing
- Appeal founded on the success of **rewards-based** crowdfunding which has harnessed the wisdom of the crowd
 - **All-or-nothing** financing thresholds imply only the popular, and likely profitable, products receive sufficient financing
 - Participation signals consumer demand and gives valuable information to the entrepreneur (see Chemla and Tinn, 2018)
- Reward-based crowdfunding relies on **private value** goods
 - Value can be different for each individual
- Securities-based crowdfunding relies on **common value** goods
 - Value is the same for everyone
Private Value versus Common Value Goods

- **Securities-based** crowdfunding is a new form of venture financing
- Appeal founded on the success of **rewards-based** crowdfunding which has harnessed the *wisdom of the crowd*
 - **All-or-nothing** financing thresholds imply only the popular, and likely profitable, products receive sufficient financing
 - Participation signals consumer demand and gives valuable information to the entrepreneur (see Chemla and Tinn, 2018)
- Reward-based crowdfunding relies on **private value** goods
 - Value can be different for each individual
- Securities-based crowdfunding relies on **common value** goods
 - Value is the same for everyone

Research Question: Can securities-based crowdfunding be as successful as rewards-based crowdfunding?
Main Findings

- We consider an entrepreneur’s optimal crowdfunding offering
Main Findings

- We consider an entrepreneur’s optimal crowdfunding offering.
- The problem is characterized by the key features of the crowdfunding environment.
Main Findings

- We consider an entrepreneur’s optimal crowdfunding offering.
- The problem is characterized by the key features of the crowdfunding environment:

 (i) Dispersed, privately-informed investors are required to finance a new venture,
Main Findings

- We consider an entrepreneur’s optimal crowdfunding offering.
- The problem is characterized by the key features of the crowdfunding environment:
 1. Dispersed, privately-informed investors are required to finance a new venture,
 2. Investors communicate by contributing or by abstaining,
Main Findings

- We consider an entrepreneur’s optimal crowdfunding offering.
- The problem is characterized by the key features of the crowdfunding environment:
 1. Dispersed, privately-informed investors are required to finance a new venture,
 2. Investors communicate by contributing or by abstaining,
 3. The entrepreneur uses the information conveyed by aggregate contributions to either pursue the risky venture or to cancel it.
Main Findings

- We consider an entrepreneur’s optimal crowdfunding offering.
- The problem is characterized by the key features of the crowdfunding environment:
 1. Dispersed, privately-informed investors are required to finance a new venture,
 2. Investors communicate by contributing or by abstaining,
 3. The entrepreneur uses the information conveyed by aggregate contributions to either pursue the risky venture or to cancel it.
- Our main finding is that the entrepreneur’s optimal offering cannot aggregate the wisdom of the crowd.
Main Findings

We consider an entrepreneur’s optimal crowdfunding offering.

The problem is characterized by the key features of the crowdfunding environment:

(i) Dispersed, privately-informed investors are required to finance a new venture,
(ii) Investors communicate by contributing or by abstaining,
(iii) The entrepreneur uses the information conveyed by aggregate contributions to either pursue the risky venture or to cancel it.

Our main finding is that the entrepreneur’s optimal offering cannot aggregate the wisdom of the crowd.

Ex post decision-making by the entrepreneur gives rise to a loser’s blessing which erodes investors’ incentives to contribute based on their private information in a truthful manner.
The Loser’s Blessing

To understand the loser’s blessing, consider this simple example
The Loser’s Blessing

To understand the loser’s blessing, consider this simple example:

Suppose there is a continuum of investors (i.e., representative of lots and lots of investors)
The Loser’s Blessing

- To understand the loser’s blessing, consider this simple example
- Suppose there is a continuum of investors (i.e., representative of lots and lots of investors)
- Investors’ total collective capital is $1MM
The Loser’s Blessing

- To understand the loser’s blessing, consider this simple example
- Suppose there is a continuum of investors (i.e., representative of lots and lots of investors)
- Investors’ total collective capital is $1MM
- A project is raising $500K (all-or-nothing threshold)
The Loser’s Blessing

To understand the loser’s blessing, consider this simple example

Suppose there is a continuum of investors (i.e., representative of lots and lots of investors)

Investors’ total collective capital is $1MM

A project is raising $500K (all-or-nothing threshold)

Investors receive noisy binary signals about the project’s quality
The Loser’s Blessing

To understand the loser’s blessing, consider this simple example:

Suppose there is a continuum of investors (i.e., representative of lots and lots of investors)

Investors’ total collective capital is $1MM

A project is raising $500K (all-or-nothing threshold)

Investors receive noisy binary signals about the project’s quality

Project can be **good** (gross return $\Delta > 1$) or **bad** (gross return of 0)
The Loser’s Blessing

- To understand the loser’s blessing, consider this simple example
- Suppose there is a continuum of investors (i.e., representative of lots and lots of investors)
- Investors’ total collective capital is $1MM
- A project is raising $500K (all-or-nothing threshold)
- Investors receive noisy binary signals about the project’s quality
 - Project can be good (gross return $\Delta > 1$) or bad (gross return of 0)
 - Signals are accurate with 75% probability
The Loser’s Blessing

To understand the loser’s blessing, consider this simple example

Suppose there is a continuum of investors (i.e., representative of lots and lots of investors)

Investors’ total collective capital is $1MM

A project is raising $500K (all-or-nothing threshold)

Investors receive noisy binary signals about the project’s quality

- Project can be good (gross return $\Delta > 1$) or bad (gross return of 0)
- Signals are accurate with 75% probability

By the (strong) law of large numbers, 75% of investors receive a good signal if the project is good,
To understand the loser’s blessing, consider this simple example

Suppose there is a continuum of investors (i.e., representative of lots and lots of investors)

Investors’ total collective capital is $1MM

A project is raising $500K (all-or-nothing threshold)

Investors receive noisy binary signals about the project’s quality

- Project can be **good** (gross return \(\Delta > 1 \)) or **bad** (gross return of 0)
- Signals are accurate with 75% probability

By the (strong) law of large numbers, 75% of investors receive a good signal if the project is good,

or, 25% of investors receive a good signal if the project is bad
Investment Breakdown

Consider a candidate equilibrium in which investors contribute according to their signals.
Investment Breakdown

- Consider a candidate equilibrium in which investors contribute according to their signals.
- Good project raises $750K \Rightarrow project is financed.
Investment Breakdown

- Consider a candidate equilibrium in which investors contribute according to their signals
- Good project raises $750K ⇒ project is financed
 - Contributing investors earn gross return of $\Delta > 1$
Investment Breakdown

- Consider a candidate equilibrium in which investors contribute according to their signals.
- Good project raises $750K ⇒ project is financed
 - Contributing investors earn gross return of $\Delta > 1$
- Bad project raises $250K ⇒ project is canceled
Investment Breakdown

Consider a candidate equilibrium in which investors contribute according to their signals

- Good project raises $750K ⇒ project is financed
 - Contributing investors earn gross return of $\Delta > 1$
- Bad project raises $250K ⇒ project is canceled
 - Contributing receive capital back (gross return of 1)
Investment Breakdown

- Consider a candidate equilibrium in which investors contribute according to their signals
- Good project raises $750K ⇒ project is financed
 - Contributing investors earn gross return of $\Delta > 1$
- Bad project raises $250K ⇒ project is canceled
 - Contributing receive capital back (gross return of 1)
- This cannot be an equilibrium!
Investment Breakdown

- Consider a candidate equilibrium in which investors contribute according to their signals
- Good project raises $750K ⇒ project is financed
 - Contributing investors earn gross return of $\Delta > 1$
- Bad project raises $250K ⇒ project is canceled
 - Contributing receive capital back (gross return of 1)
- This cannot be an equilibrium!
 - An abstaining investor should deviate and contribute (despite receiving the bad signal)
Consider a candidate equilibrium in which investors contribute according to their signals

- Good project raises $750K ⇒ project is financed
 - Contributing investors earn gross return of $\Delta > 1$
- Bad project raises $250K ⇒ project is canceled
 - Contributing receive capital back (gross return of 1)

This cannot be an equilibrium!
- An abstaining investor should deviate and contribute (despite receiving the bad signal)
- If his signal is correct ⇒ No risk
Consider a candidate equilibrium in which investors contribute according to their signals

- Good project raises $750K ⇒ project is financed
 - Contributing investors earn gross return of $\Delta > 1$
- Bad project raises $250K ⇒ project is canceled
 - Contributing receive capital back (gross return of 1)

This cannot be an equilibrium!

- An abstaining investor should deviate and contribute (despite receiving the bad signal)
 - If his signal is correct ⇒ No risk
 - If his signal is incorrect ⇒ Owns a share in a good project
Investment Breakdown

Consider a candidate equilibrium in which investors contribute according to their signals

- Good project raises $750K ⇒ project is financed
 - Contributing investors earn gross return of $\Delta > 1$

- Bad project raises $250K ⇒ project is canceled
 - Contributing receive capital back (gross return of 1)

This cannot be an equilibrium!

- An abstaining investor should deviate and contribute (despite receiving the bad signal)
 - If his signal is correct ⇒ No risk
 - If his signal is incorrect ⇒ Owns a share in a good project

No incentive-compatible, truth-telling equilibria exist.
Base Model Setup

- Entrepreneur has a risky project with investment capacity \(\overline{K} > 0 \)
Base Model Setup

- Entrepreneur has a risky project with investment capacity $\overline{K} > 0$
- Chooses offering quantity (investment size κ)
Base Model Setup

- Entrepreneur has a risky project with investment capacity $\bar{K} > 0$
- Chooses offering quantity (investment size κ)
 - Allow entrepreneur to also choose price as an extension
Base Model Setup

- Entrepreneur has a risky project with investment capacity $\overline{K} > 0$
- Chooses offering quantity (investment size κ)
 - Allow entrepreneur to also choose price as an extension
- Project is either type G or type B (equal probability)
Base Model Setup

- Entrepreneur has a risky project with investment capacity $\bar{K} > 0$
- Chooses offering quantity (investment size κ)
 - Allow entrepreneur to also choose price as an extension
- Project is either type G or type B (equal probability)
- Chooses how to deploy raised investor capital (K) (r or s)

$$V(K, F|r) = \begin{cases} \Delta 1_G K - K & K \leq \bar{K} \\ \Delta 1_G \bar{K} - \bar{K} & K > \bar{K}, \end{cases}$$

$$V(K, F|s) = 0 \ \forall K$$
Base Model Setup

Entrepreneur has a risky project with investment capacity $\bar{K} > 0$

- Chooses offering quantity (investment size κ)
 - Allow entrepreneur to also choose price as an extension

Project is either type G or type B (equal probability)

- Chooses how to deploy raised investor capital (K) (r or s)

\[
V(K, F|r) = \begin{cases}
\Delta \mathbb{1}_G K - K & K \leq \bar{K} \\
\Delta \mathbb{1}_G \bar{K} - \bar{K} & K > \bar{K},
\end{cases}
\]

\[
V(K, F|s) = 0 \quad \forall K
\]

- $N \geq 2$ ex ante identical investors
 - Each investor receives free signal $\hat{F} \in \{\hat{G}, \hat{B}\}$
 \[
 \Pr(F = G|\hat{G}) = \Pr(F = B|\hat{B}) = \alpha > \frac{1}{2}
 \]
Securities-Based Crowdfunding

The Model

Base Model Setup

Entrepreneur has a risky project with investment capacity $\bar{K} > 0$

Chooses offering quantity (investment size κ)

- Allow entrepreneur to also choose price as an extension

Project is either type G or type B (equal probability)

Chooses how to deploy raised investor capital (K) (r or s)

$$V(K, F|r) = \begin{cases} \Delta \mathbb{1}_G K - K & K \leq \bar{K} \\
\Delta \mathbb{1}_G \bar{K} - \bar{K} & K > \bar{K}, \end{cases}$$

$$V(K, F|s) = 0 \ \forall K$$

$N \geq 2$ ex ante identical investors

- Each investor receives free signal $\hat{F} \in \{\hat{G}, \hat{B}\}$
 $$\Pr(F = G|\hat{G}) = \Pr(F = B|\hat{B}) = \alpha > \frac{1}{2}$$

Investors contribute κ based on equilibrium strategies $g \in [0, 1]$ (for \hat{G}) and $b \in [0, 1]$ (for \hat{B})
Entrepreneur’s Learning

- Contributed investor capital tells entrepreneur how many investors contributed \(n = \frac{K}{\kappa} \)
Entrepreneur’s Learning

- Contributed investor capital tells entrepreneur how many investors contributed \(n = K / k \).

- Entrepreneur updates beliefs based on number of contributions and forms posterior \(\rho(n, \bar{\pi}) \) in which \(\bar{\pi} \) are investors’ equilibrium contribution strategies.

\[
\rho(n, \bar{\pi}) = \frac{\Pr(n \cap G)}{\Pr(n \cap G) + \Pr(n \cap B)}
\]
Entrepreneur’s Learning

- Contributed investor capital tells entrepreneur how many investors contributed \(n = K/K' \)

- Entrepreneur updates beliefs based on number of contributions and forms posterior \(\rho(n, \vec{\pi}) \) in which \(\vec{\pi} \) are investors’ equilibrium contribution strategies

\[
\rho(n, \vec{\pi}) = \frac{\Pr(n \cap G)}{\Pr(n \cap G) + \Pr(n \cap B)}
\]

- Entrepreneur chooses risky deployment \((r) \) if, and only if, \(\rho(n, \vec{\pi}) \Delta - 1 \geq 0 \)
Entrepreneur’s Learning

- Contributed investor capital tells entrepreneur how many investors contributed \((n = K/\kappa)\).

- Entrepreneur updates beliefs based on number of contributions and forms posterior \(\rho(n, \vec{\pi})\) in which \(\vec{\pi}\) are investors’ equilibrium contribution strategies:

\[
\rho(n, \vec{\pi}) = \frac{\Pr(n \cap G)}{\Pr(n \cap G) + \Pr(n \cap B)}
\]

- Entrepreneur chooses risky deployment \((r)\) if, and only if,

\[
\rho(n, \vec{\pi})\Delta - 1 \geq 0
\]

- There exists a threshold return \(\Delta(n)\) such that the entrepreneur invests iff \(\Delta \geq \Delta(n)\).
Entrepreneur’s Learning

- Contributed investor capital tells entrepreneur how many investors contributed \(n = K / \kappa \)

- Entrepreneur updates beliefs based on number of contributions and forms posterior \(\rho(n, \vec{\pi}) \) in which \(\vec{\pi} \) are investors’ equilibrium contribution strategies

\[
\rho(n, \vec{\pi}) = \frac{\Pr(n \cap G)}{\Pr(n \cap G) + \Pr(n \cap B)}
\]

- Entrepreneur chooses risky deployment \((r) \) if, and only if,

\[
\rho(n, \vec{\pi}) \Delta - 1 \geq 0
\]

- There exists a threshold return \(\Delta(n) \) such that the entrepreneur invests iff \(\Delta \geq \Delta(n) \)

- \(\Delta(n) \) maps to threshold number of contributing investors \(n \)
Entrepreneur’s Problem

\[
\begin{align*}
\max_{\kappa \in \mathbb{R}^+} & \quad E \left[V(K, F | d) \right] \\
\text{s.t.} \quad & g_i \in \arg \max_{\hat{g} \in [0,1]} \Pi(\hat{G}, \{\hat{g}, \hat{b}\} | \overline{\pi}_{-i}, \kappa, n), \\
& b_i \in \arg \max_{\hat{b} \in [0,1]} \Pi(\hat{B}, \{\hat{g}, \hat{b}\} | \overline{\pi}_{-i}, \kappa, n), \\
& \Pi(\hat{G}, \overline{\pi}_i | \overline{\pi}_{-i}, \kappa, n) \geq 0 \text{ and } \Pi(\hat{B}, \overline{\pi}_i | \overline{\pi}_{-i}, \kappa, n) \geq 0, \\
& d = \begin{cases}
 r & \text{if } n \geq n \\
 s & \text{otherwise,}
\end{cases}
\end{align*}
\]
Entrepreneur’s Problem

\[
\max_{\kappa \in \mathbb{R}^+} E \left[V(K, F | d) \right]
\]

s.t. \(g_i \in \arg \max_{\hat{g} \in [0,1]} \Pi(\hat{G}, \{\hat{g}, \hat{b}\} | \bar{\pi}_- i, \kappa, n) \),

\(b_i \in \arg \max_{\hat{b} \in [0,1]} \Pi(\hat{B}, \{\hat{g}, \hat{b}\} | \bar{\pi}_- i, \kappa, n) \),

\(\Pi(\hat{G}, \bar{\pi}_i | \bar{\pi}_- i, \kappa, n) \geq 0 \) and \(\Pi(\hat{B}, \bar{\pi}_i | \bar{\pi}_- i, \kappa, n) \geq 0 \),

\(d = \begin{cases}
 r & \text{if } n \geq n \\
 s & \text{otherwise},
\end{cases} \)

Definition: First-best financing efficiency is characterized by,

(i) \(K \geq \bar{K} \) if \(n \geq n \),

(ii) and truthful reporting by each investor,

\(g = 1 \) and \(b = 0 \).
Risky Deployment Regions

Figure: Risky deployment regions with $N = 4$.
Investor Incentive Compatibility

Invest based on signal \hat{G} (i.e., $g = 1$):

\[
\sum_{n=n-1}^{N-1} \left(\alpha \Pr(n|G, \pi, N - 1) \frac{(\Delta-1)n}{n+1} - (1 - \alpha) \Pr(n|B, \pi, N - 1) \frac{n}{n+1} \right) \geq 0,
\]

Abstain based on signal \hat{B} (i.e., $b = 0$):

\[
\sum_{n=n-1}^{N-1} \left((1 - \alpha) \Pr(n|G, \pi, N - 1) \frac{(\Delta-1)n}{n+1} - \alpha \Pr(n|B, \pi, N - 1) \frac{n}{n+1} \right) < 0.
\]
Invest based on signal \(\hat{G} \) (i.e., \(g = 1 \)):

\[
\sum_{n=n-1}^{N-1} \left(\alpha \Pr(n|G, \vec{\pi}, N-1) \frac{(\Delta-1)n}{n+1} - (1 - \alpha) \Pr(n|B, \vec{\pi}, N-1) \frac{n}{n+1} \right) \geq 0,
\]

Abstain based on signal \(\hat{B} \) (i.e., \(b = 0 \)):

\[
\sum_{n=n-1}^{N-1} \left((1 - \alpha) \Pr(n|G, \vec{\pi}, N-1) \frac{(\Delta-1)n}{n+1} - \alpha \Pr(n|B, \vec{\pi}, N-1) \frac{n}{n+1} \right) < 0.
\]

- \(g = 1 \) incentive compatible if \(\Delta \geq \Delta_{n,\hat{G}} \)
Investor Incentive Compatibility

Invest based on signal \(\hat{G} \) (i.e., \(g = 1 \)):
\[
\sum_{n=n-1}^{N-1} \left(\alpha \Pr(n|G, \bar{\pi}, N - 1) \frac{(\Delta - 1)n}{n+1} - (1 - \alpha) \Pr(n|B, \bar{\pi}, N - 1) \frac{n}{n+1} \right) \geq 0,
\]
Abstain based on signal \(\hat{B} \) (i.e., \(b = 0 \)):
\[
\sum_{n=n-1}^{N-1} \left((1 - \alpha) \Pr(n|G, \bar{\pi}, N - 1) \frac{(\Delta - 1)n}{n+1} - \alpha \Pr(n|B, \bar{\pi}, N - 1) \frac{n}{n+1} \right) < 0.
\]

- \(g = 1 \) incentive compatible if \(\Delta \geq \Delta_{n,\hat{G}} \)
- \(b = 0 \) incentive compatible if \(\Delta < \Delta_{n,\hat{B}} \)
Investor Incentive Compatibility

Invest based on signal \hat{G} (i.e., $g = 1$):

$$\sum_{n=1}^{N-1} \left(\alpha \Pr(n|G, \bar{\pi}, N - 1) \frac{(\Delta - 1)n}{n+1} - (1 - \alpha) \Pr(n|B, \bar{\pi}, N - 1) \frac{n}{n+1} \right) \geq 0,$$

Abstain based on signal \hat{B} (i.e., $b = 0$):

$$\sum_{n=1}^{N-1} \left((1 - \alpha) \Pr(n|G, \bar{\pi}, N - 1) \frac{(\Delta - 1)n}{n+1} - \alpha \Pr(n|B, \bar{\pi}, N - 1) \frac{n}{n+1} \right) < 0.$$

- $g = 1$ incentive compatible if $\Delta \geq \Delta_{n,\hat{G}}$
- $b = 0$ incentive compatible if $\Delta < \Delta_{n,\hat{B}}$
- $\Delta \in \left[\Delta_{n,\hat{B}}, \Delta_{n,\hat{G}} \right] \Rightarrow$ Incentive compatibility region
Incentive Compatibility Regions

Minimum Number of Investors Needed for Risky Deployment

Figure: Incentive Compatibility regions.
Overlap

Minimum Number of Investors Needed for Risky Deployment

Figure: First-best regions.
Discussion

There are many regions in which entrepreneur’s first-best deployment decision is not congruent with investors’ incentive compatibility constraints.
Discussion

- There are many regions in which entrepreneur’s first-best deployment decision is not congruent with investors’ incentive compatibility constraints.

- All first-best breakdowns are due to incentive compatibility constraint for investors observing \(\hat{B} \) not holding, i.e., \(\Delta \geq \Delta_{n,\hat{B}} \).
Discussion

- There are many regions in which entrepreneur’s first-best deployment decision is not congruent with investors’ incentive compatibility constraints.

- All first-best breakdowns are due to incentive compatibility constraint for investors observing \hat{B} not holding, i.e., $\Delta \geq \Delta_{n,\hat{B}}$.

- This is due to the loser’s blessing.
Discussion

There are many regions in which entrepreneur’s first-best deployment decision is not congruent with investors’ incentive compatibility constraints.

All first-best breakdowns are due to incentive compatibility constraint for investors observing \hat{B} not holding, i.e., $\Delta \geq \Delta_{n,\hat{B}}$.

This is due to the loser’s blessing:

- Ex post decision-making by entrepreneur implicitly hedges investors against bad projects.
Discussion

- There are many regions in which entrepreneur’s first-best deployment decision is not congruent with investors’ incentive compatibility constraints.

- All first-best breakdowns are due to incentive compatibility constraint for investors observing \hat{B} not holding, i.e., $\Delta \geq \Delta_{n,\hat{B}}$.

- This is due to the loser’s blessing:
 - Ex post decision-making by entrepreneur implicitly hedges investors against bad projects.
 - Investors internalize hedge and invest in projects despite bad signals.
Discussion

- There are many regions in which entrepreneur’s first-best deployment decision is **not** congruent with investors’ incentive compatibility constraints.

- All first-best breakdowns are due to incentive compatibility constraint for investors observing \hat{B} not holding, i.e., $\Delta \geq \Delta_{n,\hat{B}}$

- This is due to the **loser’s blessing**
 - Ex post decision-making by entrepreneur implicitly hedges investors against bad projects
 - Investors internalize hedge and invest in projects despite **bad signals**

- Financing Inefficiencies worsen as N increases
Discussion

- There are many regions in which entrepreneur’s first-best deployment decision is not congruent with investors’ incentive compatibility constraints.

- All first-best breakdowns are due to incentive compatibility constraint for investors observing \(\hat{B} \) not holding, i.e., \(\Delta \geq \Delta_{n,\hat{B}} \).

- This is due to the loser’s blessing:
 - Ex post decision-making by entrepreneur implicitly hedges investors against bad projects.
 - Investors internalize hedge and invest in projects despite bad signals.

- Financing Inefficiencies worsen as \(N \) increases:
 - Less likely that any individual investor is pivotal.
Discussion

Figure: Percentage of Δ that support first-best equilibria as a function of N for $\alpha \in \{\frac{3}{5}, \frac{2}{3}, \frac{3}{4}\}$.
Extension with Price Setting

- First-best breaks down because expected returns are too high
Extension with Price Setting

- First-best breaks down because expected returns are too high
- First-best efficiency may be restored by *punishing* investors with lower expected returns
Extension with Price Setting

- First-best breaks down because expected returns are too high.
- First-best efficiency may be restored by **punishing** investors with lower expected returns.
 - In contrast, many models of initial public offerings show that incentive compatible truth telling is achieved by **rewarding** investors with higher expected returns.
- See Rock (1986) and Benveniste and Spindt (1989).
Extension with Price Setting

- First-best breaks down because expected returns are too high
- First-best efficiency may be restored by **punishing** investors with lower expected returns
 - In contrast, many models of initial public offerings show that incentive compatible truth telling is achieved by **rewarding** investors with higher expected returns
 - See Rock (1986) and Benveniste and Spindt (1989)
- We show that first-best may be implemented by increasing the price of the offering (lowering expected returns)
Extension with Price Setting

- First-best breaks down because expected returns are too high
- First-best efficiency may be restored by **punishing** investors with lower expected returns
 - In contrast, many models of initial public offerings show that incentive compatible truth telling is achieved by **rewarding** investors with higher expected returns
 - See Rock (1986) and Benveniste and Spindt (1989)
- We show that first-best may be implemented by increasing the price of the offering (lowering expected returns)
 - First-best is **always** possible if signals are **free**
Extension with Price Setting

- First-best breaks down because expected returns are too high
- First-best efficiency may be restored by **punishing** investors with lower expected returns
 - In contrast, many models of initial public offerings show that incentive compatible truth telling is achieved by **rewarding** investors with higher expected returns
 - See Rock (1986) and Benveniste and Spindt (1989)
- We show that first-best may be implemented by increasing the price of the offering (lowering expected returns)
 - First-best is **always** possible if signals are **free**
- With costly information acquisition, entrepreneur faces a trade off
Extension with Price Setting

- First-best breaks down because expected returns are too high.
- First-best efficiency may be restored by punishing investors with lower expected returns.
 - In contrast, many models of initial public offerings show that incentive compatible truth telling is achieved by rewarding investors with higher expected returns.
 - See Rock (1986) and Benveniste and Spindt (1989).
- We show that first-best may be implemented by increasing the price of the offering (lowering expected returns).
 - First-best is always possible if signals are free.
- With costly information acquisition, entrepreneur faces a trade off:
 - Higher offering price \(\Rightarrow \) better incentive compatibility.
Extension with Price Setting

- First-best breaks down because expected returns are too high
- First-best efficiency may be restored by **punishing** investors with lower expected returns
 - In contrast, many models of initial public offerings show that incentive compatible truth telling is achieved by **rewarding** investors with higher expected returns
 - See Rock (1986) and Benveniste and Spindt (1989)
- We show that first-best may be implemented by increasing the price of the offering (lowering expected returns)
 - First-best is **always** possible if signals are **free**
- With costly information acquisition, entrepreneur faces a trade off
 - Higher offering price ⇒ better incentive compatibility
 - Higher offering price ⇒ fewer informed investors
Concluding Remarks

- We identify a novel economic tension coined the loss's blessing
Concluding Remarks

- We identify a novel economic tension coined the **loser’s blessing**

 - Unlike the winner’s curse which discourages participation despite good information, the loser’s blessing encourages participation despite bad information.
Concluding Remarks

- We identify a novel economic tension coined the *loser’s blessing*
 - Unlike the winner’s curse which discourages participation despite good information, the loser’s blessing encourages participation despite bad information
- We show that the loser’s blessing erodes financing efficiency
Concluding Remarks

- We identify a novel economic tension coined the **loser’s blessing**
 - Unlike the winner’s curse which discourages participation despite good information, the loser’s blessing encourages participation despite bad information
- We show that the loser’s blessing erodes financing efficiency
 - Rewards-based crowdfunding is efficient because investors buy benefits according to their private values
Concluding Remarks

- We identify a novel economic tension coined the **loser’s blessing**
 - Unlike the winner’s curse which discourages participation despite good information, the loser’s blessing encourages participation despite bad information

- We show that the loser’s blessing erodes financing efficiency
 - Rewards-based crowdfunding is efficient because investors buy benefits according to their private values
 - Securities-based crowdfunding is inefficient because investors buy securities with common values
Concluding Remarks

- We identify a novel economic tension coined the
 loser’s blessing

 Unlike the winner’s curse which discourages participation
despite good information, the loser’s blessing encourages
participation despite bad information

- We shows that the loser’s blessing erodes financing efficiency

 Rewards-based crowdfunding is efficient because investors
buy benefits according to their private values

 Securities-based crowdfunding is inefficient because
investors buy securities with common values

- Incorporating consumer-like investors may enhance efficiency
Concluding Remarks

- We identify a novel economic tension coined the **loser’s blessing**
 - Unlike the winner’s curse which discourages participation despite good information, the loser’s blessing encourages participation despite bad information

- We show that the loser’s blessing erodes financing efficiency
 - Rewards-based crowdfunding is efficient because investors buy benefits according to their private values
 - Securities-based crowdfunding is inefficient because investors buy securities with common values

- Incorporating consumer-like investors may enhance efficiency
 - A bundled good consisting of a financial security (common value) and a perk (private value)
Concluding Remarks

- We identify a novel economic tension coined the **loser’s blessing**
 - Unlike the winner’s curse which discourages participation despite good information, the loser’s blessing encourages participation despite bad information

- We show that the loser’s blessing erodes financing efficiency
 - Rewards-based crowdfunding is efficient because investors buy benefits according to their private values
 - Securities-based crowdfunding is inefficient because investors buy securities with common values

- Incorporating consumer-like investors may enhance efficiency
 - A bundled good consisting of a financial security (common value) and a perk (private value)
 - Example, purchasing equity in a local micro brewery