Risk Incentives in an Interbank Network
by Miguel de Faria e Castro

Discussion by Falk Bräuning*

*VU University Amsterdam and Tinbergen Institute

Banque de France
July 9th, 2015
Summary of paper

- Endogenous formation of network of interbank exposures as response to fundamental maturity mismatch on balance sheet
- Risk-sharing vs. risk-shifting due to limited liability and network effects
- How do certain policies affect risk-sharing and risk-shifting?
 - Regulatory policy: leverage, risk weights, and reserve requirement
 - Intervention policy: CB’s lending facility, bailouts
Table of Contents

1. Comments on model

2. Comments on policy analysis
Modeling framework

- Two sources of liquidity: interbank lending (l_{ij}) and outside market (v_i) (networked markets)
Modeling framework

- Two sources of liquidity: interbank lending \((l_{ij})\) and outside market \((v_i)\) (networked markets)

Market \(i\) competitive with representative bank \(i\) and concave technology \(f_i(v_i)\) ⇒ decreasing marginal returns on investing (increasing for borrowing)
Two sources of liquidity: interbank lending (l_{ij}) and outside market (v_i) (networked markets)

Market i competitive with representative bank i and concave technology $f_i(v_i) \Rightarrow$ decreasing marginal returns on investing (increasing for borrowing)

Other banks ($j \neq i$) can participate in market i by lending to bank i and paying convex cost of lending $\kappa_{ji}(l_{ji})$ (at end of $t = 1$)
Modeling framework

- Two sources of liquidity: interbank lending \((l_{ij})\) and outside market \((v_i)\) (networked markets)

 ![Diagram of networked markets](image)

 Market \(i\) competitive with representative bank \(i\) and concave technology \(f_i(v_i)\) ⇒ decreasing marginal returns on investing (increasing for borrowing)

- Other banks \((j \neq i)\) can participate in market \(i\) by lending to bank \(i\) and paying convex cost of lending \(\kappa_{ji}(l_{ji})\) (at end of \(t = 1\))

- Assumption: one single price of interbank debt for each bank: \(r_{ij} = r_j = f'_j, \forall i\)

- Implications: \(r_i > r_j \Rightarrow l_{ij} = 0\), no reciprocal lending (hence no core-periphery structure), no borrower level price dispersion
Empirical interest rate dispersion

- Price dispersion at the borrower level in euro area unsecured overnight market (in basis points, left axis), Abbassi et al. (Buba WP, 2015)
Empirical interest rate dispersion

- Price dispersion at the borrower level in euro area unsecured overnight market (in basis points, left axis), Abbassi et al. (Buba WP, 2015)

- Bilateral Nash bargaining about interest rate, e.g. Bech and Klee (JME, 2011)
Table of Contents

1. Comments on model

2. Comments on policy analysis
Policies under consideration

- Capital adequacy ratio and liquidity requirements (bad)
Policies under consideration

- Capital adequacy ratio and liquidity requirements (bad)
- Expected bailouts and central bank lending facility (better)
- How does a mix of policies affect welfare/risk?
Policies under consideration

- Capital adequacy ratio and liquidity requirements (bad)
- Expected bailouts and central bank lending facility (better)
- How does a mix of policies affect welfare/risk?
- Why not extend central bank analysis to IOER policy? Any room for negative renumeration of excess reserves in model? → implications for risk-taking?
More information on cross-sectional distribution of asset allocation (including interbank exposures) could be interesting → analyze asymmetric effects of certain policies!
Numerical analysis

- More information on cross-sectional distribution of asset allocation (including interbank exposures) could be interesting → analyze asymmetric effects of certain policies!

- Show measure of variability in policy analysis (confidence bounds)?
Numerical analysis

- More information on cross-sectional distribution of asset allocation (including interbank exposures) could be interesting → analyze asymmetric effects of certain policies!

- Show measure of variability in policy analysis (confidence bounds)?

- Why not use larger network than $N = 20$ (framework mimics US banking sector)? How sensitive are comparative statics to parameter choices?
More information on cross-sectional distribution of asset allocation (including interbank exposures) could be interesting \(\rightarrow\) analyze asymmetric effects of certain policies!

Show measure of variability in policy analysis (confidence bounds)?

Why not use larger network than \(N = 20\) (framework mimics US banking sector)? How sensitive are comparative statics to parameter choices?

Estimation of parameters with SMM (Gofman, 2014) or indirect inference (Blasques et al., 2014)