When Losses Turn Into Loans: The Cost of Weak Banks

Laura Blattner 1 Luisa Farinha 2 Francisca Rebelo 3

1Stanford GSB
2Banco de Portugal
3Boston College

December 20th 2019

Any views expressed are only those of the authors and do not necessarily represent the views of the ECB, the Banco de Portugal or the Eurosystem.
Motivation

- Financial crises leave behind weak banks.
- Japan in 90s: Weak banks lending to ‘zombie’ firms contributed to lost decade?
- Europe today: Parallels to Japan.

Do weak banks contribute to slow recoveries?

This Paper: Yes, based on evidence from Europe after sovereign debt crisis.
This Paper: Main Results

Natural experiment = European Banking Authority increases capital requirements.

1. **Banks underreport loan losses.**
 - Develop algorithm to detect underreporting at firm-bank level.

2. **Banks cut lending** but also **reallocate credit to distressed, underreported firms.**
 - Diff-in-diff at firm-bank level.

3. **Negative effect on aggregate productivity growth.**
 - Partial equilibrium decomposition of aggregate TFP: Input reallocation due to credit reallocation can explain about 13% of observed productivity decline in 2012.
Data

- Universe of **loans** (> 50 EUR) at monthly frequency

- Quarterly **bank** financial information
 - Sample of 48 banks (over 90% of lending in Portugal).

- Annual **firm** financial data on universe of firms
 - Sample of 126,595 firms matched to the loan data (81% of sales and 72% of assets).
Identification Challenge

- Existing literature\(^1\)

 \[
 \text{credit growth}_{fbt} = \beta_1 (\text{undercap bank}_{bt} \times \text{poorly perf firm}_{ft}) + \text{controls} + \epsilon_{fbt}
 \]

- Interpret \(\beta_1 > 0\) = evidence for distorted lending.

- **Challenge 1**: Undercap bank may also be **bad bank**.

- **Challenge 2**: Undercap bank doesn’t lend to **all** poorly performing firms.

- **Challenge 3**: Poorly performing firms only in **temporary** distress.

\(^1\)Peek and Rosengren 2005; Acharya et al. 2017; Schivardi et al. 2017
European Banking Authority (EBA) raised capital ratios for some banks.

“The objective [...] is to create an exceptional and temporary capital buffer to address current market concerns over sovereign risk.”
Definition of Exposed Banks

- **Large banks:** \(\frac{\text{Core Tier 1—sovereign debt buffer}}{\text{RWA}} \geq 0.09. \)
- **Buffer:** Reflect decline in value of EEA sovereign debt.
- **Exposed:** Subject to EBA and sovereign buffer \(> \text{median}. \)
- **Non-exposed:**
 - Subject to EBA but sovereign buffer \(< \text{median}. \)
 - Not subject to EBA.
Solution to Challenge 2: Underreporting of Loan Losses

- Measure underreporting based on **discrepancies in monthly loan data**.
- **Mechanism**: Continue lending to avoid recognizing past (underreported) losses.
Identification Strategy

- **Diff-in-diff**

\[
\text{credit growth}_{fbt} = \beta_1 (\text{EBA bank}_b \times \text{underreported}_b \times \text{period}_\tau) + \text{interactions} + \theta_{ft} + \varphi_b + \epsilon_{fbt}
\]

- Interpret \(\beta_1 > 0 \) = evidence for distorted lending.

- **Solution 1**: EBA induces plausibly exogenous variation in capital adequacy.

- **Solution 2**: Underreporting picks out distressed firms subject to distorted lending.

- **Solution 3**: Firm×time FE control for firm-level credit demand.
Exposed banks cut credit but **shift loans to distressed, underreported firms** for duration of shock.

\[
\text{credit growth}_{fbt} = \beta_1 (\text{EBA bank}_b \times \text{underreported}_f \times \text{period}_\tau) \\
+ \beta_2 (\text{EBA bank}_b \times \text{period}_\tau) + \text{interactions} + \theta_{ft} + \varphi_b + \epsilon_{fbt}
\]
Detecting Loss Underreporting
Observe monthly data for each loan but collapse to the firm-bank level.
Consider Barclays lending to Sagres Inc.

<table>
<thead>
<tr>
<th>EUR m</th>
<th><30 days</th>
<th>Overdue 1 month</th>
<th>2 months</th>
<th>Performing credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>5</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>February</td>
<td>5</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>March</td>
<td>5</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>April</td>
<td>5</td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
Data: Firm-bank Loan Panel

Observe monthly data for each loan but collapse to the firm-bank level.

Consider Barclays lending to Sagres Inc.

<table>
<thead>
<tr>
<th>EUR m</th>
<th><30 days</th>
<th>Overdue 1 month</th>
<th>2 months</th>
<th>Performing credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>5</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>February</td>
<td>5</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>March</td>
<td>5 → 10</td>
<td>← 5</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>April</td>
<td>6</td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>May</td>
<td>6</td>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>
Description of Algorithm

<table>
<thead>
<tr>
<th>EUR m</th>
<th>Overdue</th>
<th>Overdue</th>
<th>Overdue</th>
<th>Excess mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><30 days</td>
<td>1 month</td>
<td>2 months</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>5 = B(t-1;k-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td>5 = B(t;k)</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

- Define excess mass as deviation from identity
 \[E(t; b) = B(t; k) - B(t - 1; k - 1) \]

- **Challenge 1**: Buckets \(k \) are coarse.
 - Auxiliary step: Cumulative excess mass
 \[\implies \text{recursively back out excess mass.} \]

- **Challenge 2**: Flows.
 - Measure in data + extensive robustness.
Description of Algorithm

<table>
<thead>
<tr>
<th>EUR m</th>
<th>Overdue 1 month</th>
<th>Overdue 2 months</th>
<th>Excess mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><30 days</td>
<td>1 month</td>
<td>2 months</td>
</tr>
<tr>
<td>February</td>
<td>0 = B(t-1;k-1)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>5 = B(t;k)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- **Define excess mass as deviation from identity**
 \[E(t; b) = B(t; k) - B(t - 1; k - 1) \]

- **Challenge 1**: Buckets \(k \) are coarse.
 - Auxiliary step: Cumulative excess mass \(\implies \) recursively back out excess mass.

- **Challenge 2**: Flows.
 - Measure in data + extensive robustness.
Exposed banks *underreport losses to boost capital*. Additional 4-20% capital during EBA.
Effects on Productivity
Effects on Productivity

Did the EBA-induced credit reallocation reduce aggregate productivity growth?

Results

1. Underreported firms (that obtain more credit) have lower capital and labor wedges pre-shock than other firms (that obtain less credit).

2. Credit reallocation passed through to firm-level input use and wedges.

Aggregate TFP Decomposition

- Aggregate TFP = technical efficiency and **allocative efficiency** (between and within sectors)

\[
\Delta \ln TFP \simeq \Delta TE + \Delta AE_{\text{within}} + \Delta AE_{\text{between}}.
\]

- Allocative efficiency is a function of **firm-level capital and labor wedges**.

\[
\Delta AE_{\text{within},s} = \frac{\alpha_s}{1 - \gamma_s \theta_s} \sum_i \left[(1 - \beta_s \theta_s) s_{i,t-1}^K + \beta_s \theta_s s_{i,t-1}^L - y_{i,t-1} \right] \frac{\Delta \tau_{it}^K}{1 + \tau_{i,t-1}^K} \\
+ \frac{\beta_s}{1 - \gamma_s \theta_s} \sum_i \left[\alpha_s \theta_s s_{i,t-1}^K + (1 - \alpha_s \theta_s) s_{i,t-1}^L - y_{i,t-1} \right] \frac{\Delta \tau_{it}^L}{1 + \tau_{i,t-1}^L}.
\]
Effect of EBA Intervention on Allocative Efficiency

Decomposition suggests negative effects of both overall EBA and EBA-induced credit reallocation.

<table>
<thead>
<tr>
<th></th>
<th>Δ Allocative efficiency</th>
<th>Capital</th>
<th>Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBA overall (%)</td>
<td>-5.78</td>
<td>-4.03</td>
<td>-1.74</td>
</tr>
<tr>
<td>Reallocation only (%)</td>
<td>-1.38</td>
<td>-0.78</td>
<td>-0.60</td>
</tr>
<tr>
<td>Portugal in 2012 (%)</td>
<td>-12.45</td>
<td>-5.41</td>
<td>-7.04</td>
</tr>
</tbody>
</table>
Conclusion

- Novel evidence that weak banks have contributed to slow recovery after the European sovereign debt crisis.

Policy implications

- Reported capital adequacy inflated due to underreporting of losses.
- Raising capital ratios can have unintended consequences.
- Importance of well-capitalized financial system.