Externalities and Contagion in Banking Networks

Regina Martinez

Discussant: Jean-Edouard Colliard, HEC Paris

Banque de France, July 10, 2015
Contagion in Banking Networks

- Important policy topic, with a large academic literature in recent years.

 Two big challenges:
 - Complexity of network measures
 - Endogeneity of banking networks (Lucas critique)

 Two contributions:
 - Measure based on aggregate statistics only
 - Network formation game
Connectivity and defaults, two forces:
 - Risk-sharing
 - Contagion

Critical connectivity k^* such that:
 - $k < k^*$: defaults propagate over the network.
 - $k \geq k^*$: no second-round defaults.

With a symmetric network:

$$k^* = \frac{rf\Lambda}{(R - 1)\Lambda + (2 - R)}$$

with f interbank loans/assets, Λ assets/equity, r interbank rate, R return of external investment.
Pros and cons:

- closed-form measure, easily computed from aggregate data on the banking system.
- based on a symmetric network (all banks lend 1 unit to \(k \) other banks at the same rate \(r \)).

What should we do with this measure?

- Should we encourage banks to be even more connected, increase \(k \) above \(k^* \)? Probably rather differently connected.
- Does not identify key players.
- Can be useful to monitor the market as a whole over time.
Robustness

- Comparison with random networks:
 - Similar average of expected failures for Erdos-Renyi networks.
 - Much less so for Barabasi-Albert networks (e.g. 4 vs. 6.6 for $k = 5$).
 - Important dispersion in random networks.

- What about actual networks?
 - Some random networks may look like actual networks.
 - Actual networks may not be close to the “average” random network.
 - How would the measure perform compared to an actual network? Lower bound on contagion?
Strategic network formation

- Build a Cournot lending game played by the banks.
- Show that it satisfies the assumptions of Goyal and Joshi (2006): each player’s payoffs depend on his own links and the aggregate number of links only.
- Use Goyal and Joshi to solve for the equilibrium bank network.
- To be done: is contagion higher/lower than in typical random networks?
The Cournot game

\[\pi_i = pq_i - c_i(g)q_i \]

\[p = \theta - \sum q_j \]

\[c_i(g) = c_0 - \theta \sum g_{ij}q_j \]

Remarks:

- Unrelated to Part 1 ⇒ different paper?
- Microfoundation of the cost function? \(g_{ij} \) may reflect diversification, but why \(g_{ij}q_j \)?
Robustness

- Solve the Nash Equilibrium of the Cournot game for a given network g.
- One obtains $\pi^*_i(g)$ for all i.
- To apply Goyal and Joshi, one needs $\pi^*_i(g)$ to depend only on i’s links and the aggregate number of links in the network.
- Is that true? π^*_i depends on $g_{ij}q_j$ but q_j depends on all the g_{jk}...
- Seems unlikely, or at least it’s not direct!
Conclusion

- Two papers in one, a bit too ambitious.
- Contributions seem a bit technical at the moment.
- Need to better identify the knowledge gap in the literature and the economic contributions of the paper.
- Preliminary version, promising work.
Thank you!