Discussion of “A Model of Aggregate Demand, Idleness, and Unemployment”

Pascal Michaillat & Emmanuel Saez

Franck Portier

10th Journée of the Fondation Banque de France
June 4, 2014, Paris
- **Beautiful paper**
 - Adresses the core questions in Macroeconomics:
 - Is unemployment caused by high wages, low demand or frictions?
 - What does move employment? demand shocks, supply shocks?
 - **My discussion**
 - The main mechanism in a nutshell
 - because “repetition is the mother of pedagogy”
 - Some random thoughts/comments
Beautiful paper

Adresses the core questions in Macroeconomics:

- Is unemployment caused by high wages, low demand or frictions?
- What does move employment? demand shocks, supply shocks?

My discussion

- The main mechanism in a nutshell
- because “repetition is the mother of pedagogy”
- Some random thoughts/comments
- Beautiful paper
- Adresses the core questions in Macroeconomics:
 - Is unemployment caused by high wages, low demand or frictions?
 - What does move employment? demand shocks, supply shocks?
- My discussion
 - The main mechanism in a nutshell
 - because “repetition is the mother of pedagogy”
 - Some random thoughts/comments
Beautiful paper

Adresses the core questions in Macroeconomics:
- Is unemployment caused by high wages, low demand or frictions?
- What does move employment? demand shocks, supply shocks?

My discussion
- The main mechanism in a nutshell
- because “repetition is the mother of pedagogy”
- Some random thoughts/comments
▶ Beautiful paper
▶ Addresses the core questions in Macroeconomics:
 ✗ Is unemployment caused by high wages, low demand or frictions?
 ✗ What does move employment? demand shocks, supply shocks?
▶ My discussion
 ✗ The main mechanism in a nutshell
 ✗ because “repetition is the mother of pedagogy”
 ✗ Some random thoughts/comments
Beautiful paper

Addresses the core questions in Macroeconomics:
 ☒ Is unemployment caused by high wages, low demand or frictions?
 ☒ What does move employment? demand shocks, supply shocks?

My discussion
 ☒ The main mechanism in a nutshell
 ☒ because “repetition is the mother of pedagogy”
 ☒ Some random thoughts/comments
Beautiful paper

Adresses the core questions in Macroeconomics:
- Is unemployment caused by high wages, low demand or frictions?
- What does move employment? demand shocks, supply shocks?

My discussion
- The main mechanism in a nutshell
- because “repetition is the mother of pedagogy”
- Some random thoughts/comments
► Beautiful paper

► Adresses the core questions in Macroeconomics:
 × Is unemployment caused by high wages, low demand or frictions?
 × What does move employment? demand shocks, supply shocks?

► My discussion
 × The main mechanism in a nutshell
 × because “repetition is the mother of pedagogy”
 × Some random thoughts/comments
In a nutshell

Supply

- Measure 1 of workers that produce on demand and consume (but not their own good)
- Each is endowed with one unit of time that can be allocated to
 - production: \(z \) units of time \(\rightarrow \) \(z \) units of good sold at price \(p \)
 - idleness
- Search: consumers make visits \(v \) at cost \(\rho v \) units of goods \(\rightarrow \) number \(f(v) \) of matches (= probability)
- A match implies the production of 1 unit that is sold at price \(p \)
- \(\frac{f(v)}{v} \) = number of matches (purchases) per visit (= probability)
In a nutshell

Supply

- Measure 1 of workers that produce on demand and consume (but not their own good)
- Each is endowed with one unit of time that can be allocated to
 - production: z units of time $\sim z$ units of good sold at price p
 - idleness
- Search: consumers make visits v at cost ρv units of goods \sim number $f(v)$ of matches (= probability)
- A match implies the production of 1 unit that is sold at price p
- $\frac{f(v)}{v} = \text{number of matches (purchases) per visit (=probability)}$
In a nutshell

Supply

- Measure 1 of workers that produce on demand and consume (but not their own good)
- Each is endowed with one unit of time that can be allocated to
 × production: \(z \) units of time \(\sim \) \(z \) units of good sold at price \(p \)
 × idleness
- Search: consumers make visits \(v \) at cost \(\rho v \) units of goods \(\sim \) number \(f(v) \) of matches (= probability)
- A match implies the production of 1 unit that is sold at price \(p \)
- \(\frac{f(v)}{v} \) = number of matches (purchases) per visit (=probability)
In a nutshell

Supply

- Measure 1 of workers that produce on demand and consume (but not their own good)
- Each is endowed with one unit of time that can be allocated to
 - production: \(z \) units of time \(\rightsquigarrow \) \(z \) units of good sold at price \(p \)
 - idleness

- Search: consumers make visits \(v \) at cost \(\rho v \) units of goods \(\rightsquigarrow \) number \(f(v) \) of matches (= probability)
- A match implies the production of 1 unit that is sold at price \(p \)
- \(\frac{f(v)}{v} \) = number of matches (purchases) per visit (=probability)
In a nutshell

Supply

- Measure 1 of workers that produce on demand and consume (but not their own good)
- Each is endowed with one unit of time that can be allocated to
 - production: z units of time $\sim z$ units of good sold at price p
 - idleness
- Search: consumers make visits v at cost ρv units of goods $\sim\sim$ number $f(v)$ of matches ($=$ probability)
- A match implies the production of 1 unit that is sold at price p
- $\frac{f(v)}{v} = \text{number of matches (purchases) per visit ($=$ probability)}$
In a nutshell
Supply

- Measure 1 of workers that produce on demand and consume (but not their own good)
- Each is endowed with one unit of time that can be allocated to
 - production: z units of time $\leadsto z$ units of good sold at price p
 - idleness
- Search: consumers make visits v at cost ρv units of goods \leadsto number $f(v)$ of matches (= probability)
- A match implies the production of 1 unit that is sold at price p
 - $\frac{f(v)}{v} = \text{number of matches (purchases) per visit (=probability)}$
In a nutshell

Supply

- Measure 1 of workers that produce on demand and consume (but not their own good)
- Each is endowed with one unit of time that can be allocated to
 - production: z units of time $\rightarrow z$ units of good sold at price p
 - idleness
- Search: consumers make visits v at cost ρv units of goods \leadsto number $f(v)$ of matches (= probability)
- A match implies the production of 1 unit that is sold at price p
- $\frac{f(v)}{v}$ = number of matches (purchases) per visit (=probability)
In a nutshell

Supply

search effort

\[n \]

quantity
In a nutshell

Supply

search effort

capacity

quantity
In a nutshell
Supply

\[\text{tightness } \sigma = \frac{\nu}{k} = \psi \]

1

Capacity

\text{search effort } \nu
In a nutshell

Supply

Output: $y = f(n)$
In a nutshell

Supply

- Consumption: \(c = f(w) - pv \)
- Output: \(y = f(w) \)
- Capacity: \(y' = f'(w) \)

Diagram:

- Vertical axis: search effort (\(w \))
- Horizontal axis: quantity
- Graphs:
 - Blue line: consumption
 - Orange line: output
 - Red line: capacity
In a nutshell

Supply

- Search effort: \(\nu \)
- Consumption: \(c = f(\nu) - p \nu \)
- Output: \(y = f(\nu) \)
- Matching cost: \(p \nu \)
- Capacity

\[1 \text{ quantity} \]
In a nutshell

Supply

\[c = f(w) - pv \]
\[y = f(w) \]
\[p_v \]

Matching cost

\(r \)

Capacity

Quantity

Inefficiency
In a nutshell

Supply

consumption \(c = f(w) - p_v \)

output \(y = f(w) \)

matching cost \(p_v \)

employment

illness

capacity
In a nutshell

Supply

\[c(\bar{w}) = f(\bar{w}) - p_w \]

Output
\[y = f(\bar{w}) \]

Capacity

Search effort

Consumption

Matching cost

Employment

Happiness

\[\text{Supply} : c(\bar{w}) = f(\bar{w}) - p_w \]
In a nutshell

Demand

- Max \(u(c, m) \)
- \(m \) is an outside good (money?)
- BC: \(m + p \times c + p \times \frac{1}{f(v)} \rho \leq \mu + pf(v) \)
- Solution: \(c^d(v, p) \), decreasing in \(v \) and \(p \)
In a nutshell

Demand

- Max $u(c, m)$
- m is an outside good (money?)
- BC: $m + p \times c + p \times \frac{1}{f(v)} \rho \leq \mu + pf(v)$
- Solution: $c^d(v, p)$, decreasing in v and p
In a nutshell

Demand

- Max $u(c, m)$
- m is an outside good (money?)
- BC: $m + p \times c + p \times \frac{1}{f(v)} \rho \leq \mu + pf(v)$
- Solution: $c^d(v, p)$, decreasing in v and p
In a nutshell

Demand

- Max $u(c, m)$
- m is an outside good (money?)
- BC: $m + p \times c + p \times \frac{1}{f(v)} \rho \leq \mu + pf(v)$
- Solution: $c^d(v, p)$, decreasing in v and p
In a nutshell

\[C = f(n) - \rho v \]

Output
\[y = f(n) \]

Capacity

\[v \]

Consumption
Note that the slope of demand depends on p.
equilibrium is a triplet \((c, v, p)\) s.t.
\[
\begin{align*}
&c^e = c^s(v) \\
&c^e = c^d(v, p)
\end{align*}
\]
2 equations for 3 unknowns \(\iff\) pick up the price theory you want

- classic result in search models: \(p\) does not clear any market, put decides of the exposit sharing of the match surplus
- Note that this does not mean that fix price is one out of many possible choice for price setting
- Fix price means that a different mechanism is chosen every time the environment changes
In a nutshell

Equilibrium

- equilibrium is a triplet \((c, v, p)\) s.t.
 - \(c^e = c^s(v)\)
 - \(c^e = c^d(v, p)\)

- 2 equations for 3 unknowns \(\leadsto\) pick up the price theory you want
 - classic result in search models: \(p\) does not clear any market, put decides of the exposit sharing of the match surplus
 - Note that this does not mean that fix price is one out of many possible choice for price setting
 - Fix price means that a different mechanism is chosen every time the environment changes
In a nutshell

Equilibrium

- equilibrium is a triplet \((c, v, p)\) s.t.
 - \(c^e = c^s(v)\)
 - \(c^e = c^d(v, p)\)

- 2 equations for 3 unknowns \(\leadsto\) pick up the price theory you want
 - classic result in search models: \(p\) does not clear any market, put decides of the exposit sharing of the match surplus
 - Note that this does not mean that fix price is one out of many possible choice for price setting
 - Fix price means that a different mechanism is chosen every time the environment changes
In a nutshell

Equilibrium

- equilibrium is a triplet \((c, v, p)\) s.t.
 - \(c^e = c^s(v)\)
 - \(c^e = c^d(v, p)\)

- 2 equations for 3 unknowns \(\rightsquigarrow\) pick up the price theory you want
 - classic result in search models: \(p\) does not clear any market, put decides of the exposit sharing of the match surplus
 - Note that this does not mean that fix price is one out of many possible choice for price setting
 - Fix price means that a different mechanism is chosen every time the environment changes
In a nutshell

Equilibrium

- equilibrium is a triplet \((c, v, p)\) s.t.
 - \(c^e = c^s(v)\)
 - \(c^e = c^d(v, p)\)

- 2 equations for 3 unknowns \(\rightsquigarrow\) pick up the price theory you want
 - classic result in search models: \(p\) does not clear any market, put decides of the exposition sharing of the match surplus
 - Note that this does not mean that fix price is one out of many possible choice for price setting
 - Fix price means that a different mechanism is chosen every time the environment changes
In a nutshell

Equilibrium

- equilibrium is a triplet \((c, v, p)\) s.t.
 \[
 c^e = c^s(v) \\
 c^e = c^d(v, p)
 \]

- 2 equations for 3 unknowns \(\leadsto\) pick up the price theory you want
 - classic result in search models: \(p\) does not clear any market, put decides of the exposit sharing of the match surplus
 - Note that this does not mean that fix price is one out of many possible choice for price setting
 - Fix price means that a different mechanism is chosen every time the environment changes
In a nutshell
Equilibrium

- equilibrium is a triplet \((c, v, p)\) s.t.
 \[c^e = c_s(v) \]
 \[c^e = c_d(v, p) \]

- 2 equations for 3 unknowns \(\rightsquigarrow\) pick up the price theory you want
 - classic result in search models: \(p\) does not clear any market, put decides of the exposit sharing of the match surplus
 - Note that this does not mean that fix price is one out of many possible choice for price setting
 - Fix price means that a different mechanism is chosen every time the environment changes
In a nutshell

Equilibrium

[Graph showing supply, demand, and output curves with axes labeled 'search effort' and 'quantity']
In a nutshell

Equilibrium
In a nutshell

Equilibrium

\[
\text{Consumption: } c = f(w) - pr
\]

\[
\text{Output: } y = f(r)
\]

Efficient
In a nutshell

Equilibrium

\[\text{Consumption} \quad c = f(w) - p \nu \]

\[\text{Output} \quad y = f(w) \]

\[\text{Plaus} \]

\[\text{Efficient} \]

\[\text{Search effort} \quad \nu \]

Capacity

Quantity
In a nutshell

Equilibrium

\[c = f(w) - pw \]

Output
\[y = f(w) \]

Efficient

Search effort

Consumption

Capacity

\[D_z \]

Tight

Quantity

1
Comparative statics

Table 1: Comparative statics in the basic model (Section 3)

<table>
<thead>
<tr>
<th>Increase in:</th>
<th>Effect on:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output y</td>
<td>Tightness x</td>
<td>Labor utilization f(x)</td>
<td>Consumption c</td>
</tr>
<tr>
<td>A. Efficient pricing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate demand</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aggregate supply</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>C. Rigid pricing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate demand</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ (slack)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 (efficient)</td>
</tr>
<tr>
<td>Aggregate supply</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>
In a nutshell

Comparative statics

- From that comparative statics and from data on labor utilization, search effort (recruiting sector), output,
 one can measure
 - price rididity
 - the size of demand shocks
 - the size of supply shock

- This is done in an extended version of that model with frictions on both goods and labor market
In a nutshell

Comparative statics

- From that comparative statics and from data on labor utilization, search effort (recruiting sector), output,
- one can measure
 - price rididity
 - the size of demand shocks
 - the size of supply shock
- This is done in an extended version of that model with frictions on both goods and labor market
In a nutshell

Comparative statics

- From that comparative statics and from data on labor utilization, search effort (recruiting sector), output,
- one can measure
 - price rigidity
 - the size of demand shocks
 - the size of supply shock
- This is done in an extended version of that model with frictions on both goods and labor market
In a nutshell
Comparative statics

- From that comparative statics and from data on labor utilization, search effort (recruiting sector), output,
- one can measure
 - price rigidity
 - the size of demand shocks
 - the size of supply shock
- This is done in an extended version of that model with frictions on both goods and labor market
In a nutshell

Comparative statics

- From that comparative statics and from data on labor utilization, search effort (recruiting sector), output,
- one can measure
 - price rididity
 - the size of demand shocks
 - the size of supply shock

- This is done in an extended version of that model with frictions on both goods and labor market
From that comparative statics and from data on labor utilization, search effort (recruiting sector), output,

one can measure

- price rididity
- the size of demand shocks
- the size of supply shock

This is done in an extended version of that model with frictions on both goods and labor market
Random Thoughts/Comments
Aggregate demand shocks

- The theory cries for a theory of demand shocks
 - that would not be preference shocks
 - that would not be shocks on μ
Random Thoughts/Comments

Aggregate demand shocks

- The theory cries for a theory of demand shocks
 - that would not be preference shocks
 - that would not be shocks on μ
Random Thoughts/Comments
Aggregate demand shocks

- The theory cries for a theory of demand shocks
 - that would not be preference shocks
 - that would not be shocks on μ
Random Thoughts/Comments

Aggregate demand shocks: monetary shocks?

- If p is fixed, the model can be interpreted as a model with MIUF
- Then $p \times \mu$ is money supply
- The model looks pretty much like the good old fix price model
- In particular, there is an obvious monetary policy that can reach constrained efficient allocations at any time.
Random Thoughts/Comments
Aggregate demand shocks: monetary shocks?

- If p is fixed, the model can be interpreted as a model with MIUF
- Then $p \times \mu$ is money supply
- The model looks pretty much like the good old fix price model
- In particular, there is an obvious monetary policy that can reach constrained efficient allocations at any time.
Random Thoughts/Comments
Aggregate demand shocks: monetary shocks?

- If p is fixed, the model can be interpreted as a model with MIUF
- Then $p \times \mu$ is money supply
- The model looks pretty much like the good old fix price model
- In particular, there is an obvious monetary policy that can reach constrained efficient allocations at any time.
Random Thoughts/Comments
Aggregate demand shocks: monetary shocks?

- If p is fixed, the model can be interpreted as a model with MIUF
- Then $p \times \mu$ is money supply
- The model looks pretty much like the good old fix price model
- In particular, there is an obvious monetary policy that can reach constrained efficient allocations at any time.
Random Thoughts/Comments
Analogy with the 3-goods fix-price model

Different stories and microfoundations

- Is that such a different story?: not so much for business cycle analysis if p is fixed.
- Lambert (1988) (also Sneessens): fix-price + micro markets + CES aggregation: very close to a model with matching frictions
Random Thoughts/Comments

Analogy with the 3-goods fix-price model

- Different stories and microfoundations
- Is that such a different story?: not so much for business cycle analysis if p is fixed.
- Lambert (1988) (also Sneessens): fix-price + micro markets + CES aggregation: very close to a model with matching frictions
Random Thoughts/Comments

Analogy with the 3-goods fix-price model

Different stories and microfoundations

Is that such a different story?: not so much for business cycle analysis if p is fixed.

Lambert (1988) (also Sneessens): fix-price + micro markets + CES aggregation: very close to a model with matching frictions
Random Thoughts/Comments
What I don't find in the model

- Diamond (1982) coconut model is (to me) capturing the (Keynesian) essence of search models
- trade depends on actions that depend on trade expectations
 - multiple equilibria are possible
 - but even with determinacy, multipliers exist:
 - which means that fluctuations are suboptimal
 - and not a “constant wedge" model
- I have not found a clear way to see this in the model when prices are not sticky
- (Something we are trying to do with Beaudry and Galizia in “Reconciling Hayek’s and Keynes’ views of recessions”)
Random Thoughts/Comments
What I don't find in the model

- Diamond (1982) coconut model is (to me) capturing the (Keynesian) essence of search models
- trade depends on actions that depend on trade expectations
 - multiple equilibria are possible
 - but even with determinacy, multipliers exist:
 - which means that fluctuations are suboptimal
 - and not a “constant wedge ” model
- I have not found a clear way to see this in the model when prices are not sticky
- (Something we are trying to do with Beaudry and Galizia in “Reconciling Hayek’s and Keynes’ views of recessions”)
Diamond (1982) coconut model is (to me) capturing the (Keynesian) essence of search models

- trade depends on actions that depend on trade expectations
 - multiple equilibria are possible
 - but even with determinacy, multipliers exist:
 - which means that fluctuations are suboptimal
 - and not a “constant wedge” model

- I have not found a clear way to see this in the model when prices are not sticky

- (Something we are trying to do with Beaudry and Galizia in “Reconciling Hayek’s and Keynes’ views of recessions”)
Random Thoughts/Comments
What I don't find in the model

- Diamond (1982) coconut model is (to me) capturing the (Keynesian) essence of search models
- trade depends on actions that depend on trade expectations
 - multiple equilibria are possible
 - but even with determinacy, multipliers exist:
 - which means that fluctuations are suboptimal
 - and not a “constant wedge” model
- I have not found a clear way to see this in the model when prices are not sticky
- (Something we are trying to do with Beaudry and Galizia in “Reconciling Hayek’s and Keynes’ views of recessions”)
Random Thoughts/Comments
What I don't find in the model

- Diamond (1982) coconut model is (to me) capturing the (Keynesian) essence of search models
- trade depends on actions that depend on trade expectations
 - multiple equilibria are possible
 - but even with determinacy, multipliers exist:
 - which means that fluctuations are suboptimal
 - and not a “constant wedge” model
- I have not found a clear way to see this in the model when prices are not sticky
- (Something we are trying to do with Beaudry and Galizia in “Reconciling Hayek’s and Keynes’ views of recessions”)
Random Thoughts/Comments
What I don’t find in the model

- Diamond (1982) coconut model is (to me) capturing the (Keynesian) essence of search models
- trade depends on actions that depend on trade expectations
 - multiple equilibria are possible
 - but even with determinacy, multipliers exist:
 - which means that fluctuations are suboptimal
 - and not a “constant wedge” model
- I have not found a clear way to see this in the model when prices are not sticky
- (Something we are trying to do with Beaudry and Galizia in “Reconciling Hayek’s and Keynes’ views of recessions”)
Random Thoughts/Comments
What I don't find in the model

► Diamond (1982) coconut model is (to me) capturing the (Keynesian) essence of search models
► trade depends on actions that depend on trade expectations
 × multiple equilibria are possible
 × but even with determinacy, multipliers exist:
 × which means that fluctuations are suboptimal
 × and not a “constant wedge” model
► I have not found a clear way to see this in the model when prices are not sticky
► (Something we are trying to do with Beaudry and Galizia in “Reconciling Hayek’s and Keynes’ views of recessions”)
Random Thoughts/Comments
What I don't find in the model

- Diamond (1982) coconut model is (to me) capturing the (Keynesian) essence of search models
- trade depends on actions that depend on trade expectations
 - multiple equilibria are possible
 - but even with determinacy, multipliers exist:
 - which means that fluctuations are suboptimal
 - and not a “constant wedge ” model
- I have not found a clear way to see this in the model when prices are not sticky
- (Something we are trying to do with Beaudry and Galizia in “Reconciling Hayek’s and Keynes’ views of recessions”)
Talking about me

- We are all sometimes invited to dinners with non economists,

 (unfortunately)

- In France, it almost always means that I am the more pro-market person at the table

- My example for why the *invisible hand* has some bite is the French bread market
 - Important market
 - Would be a nightmare to plan
 - Seems to work pretty well (?)

- It seems that I must find another example market: any suggestions?
Random Thoughts/Comments

Talking about me

- We are all sometimes invited to diners with non economists,
- (unfortunately)
- In France, it almost always means that I am the more pro-market person at the table
- My example for why the *invisible hand* has some bite is the French bread market
 - Important market
 - would be a nightmare to plan
 - seems to work pretty well (?)
- It seems that I must find another example market: any suggestions?
Talking about me

- We are all sometimes invited to diners with non economists,
- (unfortunately)
- In France, it almost always means that I am the more pro-market person at the table
- My example for why the *invisible hand* has some bite is the French bread market
 - Important market
 - would be a nightmare to plan
 - seems to work pretty well (?)
- It seems that I must find another example market: any suggestions?
We are all sometimes invited to diners with non economists, (unfortunately) In France, it almost always means that I am the more pro-market person at the table

My example for why the *invisible hand* has some bite is the French bread market

- Important market
- would be a nightmare to plan
- seems to work pretty well (?)

It seems that I must find another example market: any suggestions?
Random Thoughts/Comments

Talking about me

- We are all sometimes invited to diners with non economists,
- (unfortunately)
- In France, it almost always means that I am the more pro-market person at the table
- My example for why the *invisible hand* has some bite is the French bread market
 - Important market
 - Would be a nightmare to plan
 - Seems to work pretty well (?)
- It seems that I must find another example market: any suggestions?
We are all sometimes invited to dinners with non economists, (unfortunately) In France, it almost always means that I am the more pro-market person at the table

My example for why the *invisible hand* has some bite is the French bread market

- Important market
- would be a nightmare to plan
- seems to work pretty well (?)

It seems that I must find another example market: any suggestions?
We are all sometimes invited to diners with non economists, (unfortunately) In France, it almost always means that I am the more pro-market person at the table My example for why the invisible hand has some bite is the French bread market
	× Important market
	× would be a nightmare to plan
	× seems to work pretty well (?) It seems that I must find another example market: any suggestions?
We are all sometimes invited to diners with non economists, (unfortunately)
In France, it almost always means that I am the more pro-market person at the table
My example for why the _invisible hand_ has some bite is the French bread market
- Important market
- would be a nightmare to plan
- seems to work pretty well (?)

It seems that I must find another example market: any suggestions?
To conclude

- Important paper
 - Should be read by any macroeconomist
 - Should be taught (the “Economical Business-Cycle Model” baby version)
To conclude

- Important paper
- Should be read by any macroeconomist
- Should be taught (the “Economical Business-Cycle Model” baby version)
To conclude

- Important paper
- Should be read by any macroeconomist
- Should be taught (the “Economical Business-Cycle Model” baby version)