Fiscal and Monetary Regimes: A Strategic Approach

Jean Barthélemy1 Guillaume Plantin2

1Banque de France

2Sciences Po

Views expressed are those of the authors and do not necessarily reflect those of the Banque de France or the Eurosystem.
Introduction

- Massive increase in the liabilities of many fiscal and monetary authorities since 2008
- Interdependence of fiscal and monetary policies back in the foreground

Sargent (1986): “Arithmetic makes the strategies of the monetary and fiscal authorities interdependent.”

- Since Wallace’s “game of chicken”, game-theoretic terminology (e.g., Sims 2013, Svensson 2017) to describe this interdependence but no formal game

This paper: A two-player game with legacy nominal public liabilities

⇒ Which assumptions yield an equilibrium which looks like what we see
1. Static game

2. Dynamic game
Simultaneous game, convex costs

- The fiscal authority F sets a real primary surplus $\tau \in \mathbb{R}$ and the monetary authority M a price level $p \in \mathbb{R}_+$
- F and M face a maturing nominal liability $b \geq 0$
- Move simultaneously; payoffs U_F and U_M

\[
U_F(\tau, p) = -g_F(|\tau - \tau_F|) - f_F\left(\left(\frac{b}{p} - \tau\right)^+\right),
\]

\[
U_M(\tau, p) = -g_M(|p - p_M|) - f_M\left(\left(\frac{b}{p} - \tau\right)^+\right),
\]

where $(f_X, g_X)_{X \in \{F; M\}}$ are increasing, strictly convex and differentiable, $\tau_F > 0$, $p_M > 0$, and $g'_X(0) = 0$
Simultaneous game, convex costs

Remark 1: Convex costs imply that accommodation is a strategic substitute - Game of chicken

Remark 2: includes the case in which F and M share the same objective

$$-g_F (|\tau - \tau_F|) - g_M (|p - p_M|) - f \left(\left(\frac{b}{p} - \tau \right)^+ \right)$$

but do not cooperate to maximize it

Remark 3: Fiscal and monetary regimes. The strategy profile $(\tau_F, b/\tau_F)$ is what macroeconomists deem the fiscal regime and $(b/p_M, p_M)$ is the monetary regime
Simultaneous game, convex costs

Pure-strategy equilibria

$b < \tau_M p_F$

Multiple default-free equilibria \((\tau, p)\) s.t. \(b = \tau p\)

$b > \tau_M p_F$

Unique equilibrium with default

\(b^3 = \tau p\)

\(b^2 = \tau p\)

\(b^1 = \tau p\)
Equilibrium multiplicity and game setting

Convex costs

- Many pure-strategy equilibria (when $b \leq \tau_M p_F$)
- In addition many mixed-strategy equilibria with default
- Adding uncertainty yields equilibrium uniqueness but with strictly positive probability of default (even when uncertainty tends to 0)

Non-convex costs

- Also many pure-strategy equilibria
- As with convex costs, adding small uncertainty yields equilibria with counterfactual small defaults (and does not even yield a unique equilibrium)

⇒ Simultaneous games considered here fail to make precise and reasonable predictions
Sequential game, non-convex costs

- Fixed default cost for simplicity:

\[
U_F(\tau, p) = -|\tau - \tau_F| - \alpha_F \mathbb{1}_{\{b > \tau p\}} \\
U_M(\tau, p) = -|p - p_M| - \alpha_M \mathbb{1}_{\{b > \tau p\}}
\]

⇒ Unique equilibrium
Sequential game

◊ Simple and appealing properties:
 ▶ unique equilibrium
 ▶ no sovereign default below a threshold

◊ But who moves first?

“The question is, Which authority moves first, the monetary authority or the fiscal authority? In other words, Who imposes discipline on whom?” (Sargent and Wallace, 1981)

⇒ Seek implications from assumptions about first mover with a dynamic game
1. Static game

2. Dynamic game
Dynamic game: \(t \in \mathbb{N} \)

Actions, payoffs, assumptions

- \(F \) can trade nominal bonds
- \(M \) can purchase bonds held by the private sector by issuing remunerated reserves

\[
V_t^F = - \sum_{s \geq 0} \beta^s \left| \tau_{t+s} \right| - \beta (1 + \beta) \alpha_F \Delta_t,
\]

\[
V_t^M = - \sum_{s \geq 0} \beta^s \left| p_{t+s} - p_M \right| - \beta (1 + \beta) \alpha_M \Delta_t,
\]

Assumption 1: Immediate cost of default. \(\Delta_t = 1 \) if a strategy profile implies default on government debt held by the private sector after date \(t \)

Assumption 2: Reserves are non-defaultable. The monetary authority \(M \) incurs an arbitrarily large disutility from defaulting on reserves.
Dynamic game

Initial exogenous liabilities $b_{-1,1} = b_{-1,2} = b$

Intertemporal budget constraint with eq. bond prices when no default:

$$\frac{\beta b}{p_1} + \frac{\beta^2 b}{p_2} \leq \sum_{k \geq 0} \beta^k \tau_k$$
M leads: Summary

- **Monetary regime**
 - Commitment
 - **Monetary regime**
 - Partial accommodation by M and F
 - F rolls over date-1 liability to force M to accommodate
 - \(\tau_0 = \beta (1 + \beta) \left(\frac{b}{p_M + \beta \alpha_M} - \beta^2 \alpha_F \right)^+ \)
 - \(\tau_1 = 0 \)
 - \(\tau_2 = \beta (1 + \beta) \alpha_F \)
 - No commitment
 - \(\beta^2 \alpha_F p_M \)

- **Maximum accommodation by F**
 - Partial accommodation by M
 - Maximum accommodation by F
 - M issues reserves to commit to high
 - \(p_1 = p_2 \)
 - \(\alpha_F (p_M + \beta \alpha_M) \)
 - \(\alpha_F (p_M + \alpha_M) \)

- **Default**

Barthélemy and Plantin

Wallace’s game of chicken

13 / 20
Implications from limited commitment

1. F can force M to partially accommodate early by extending the maturity of date-1 debt to date 2: F exploits its own time inconsistency

2. Once F is indifferent with default, M must use balance-sheet expansion to commit to high future price levels
Endogenous fiscal irresponsibility

Mechanism

- Time inconsistency: F has a stronger preference for default when accommodation is more imminent

- By raising no surplus until date 2 and rolling over the date-1 installment b, F maximizes the date-2 liability. At that time it is less willing to accommodate than earlier on

- This forces M to accommodate at date 2 to avoid default

- Anticipating this, M starts accommodating at date 1 because $p_1 = p_2$ is optimal
Balance-sheet expansion as a commitment device

Mechanism

- Suppose M has an exogenous real income with date-1 present-value ϵ
- Suppose M issues (nominal) claims to $r < b$ at dates 1 and 2 to buy back public debt
- If F defaults at date 1, M must set $p_1 = p_2 = p^d$ such that
 \[
 \frac{(1 + \beta)r}{p^d} \leq \epsilon
 \]
- This means that ex post M is indifferent between $p_1 = p_2 = p$ and default where
 \[
 (1 + \beta)(p - p_M) = \beta(1 + \beta)\alpha_M + (1 + \beta)(p^d - p_M)
 \]
 \[\rightarrow p = \beta\alpha_M + \frac{(1 + \beta)r}{\epsilon}\]
A novel rationale for quantitative easing

- Attempts at explaining why QE (swapping remunerated reserves and government bonds) might work in theory rely on assuming fundamental differences between these claims. Empirically unclear.

- Here M swaps bonds for remunerated reserves, and these are perfect substitutes on the equilibrium path.

- Still it has a real effect because it affects off-equilibrium payoffs:

- With a large balance-sheet, sovereign default comes with inflation anyway so M might as well accommodate.
Summary

Partial accommodation by F
- Fiscal consolidation at any time
- Maximum accommodation by M
- Inflation at date 1 then $p_1 = p_2$

<table>
<thead>
<tr>
<th>Commitment</th>
<th>Partial accommodation by F</th>
<th>Partial accommodation by F</th>
<th>Partial accommodation by F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial accommodation by F</td>
<td>Fiscal consolidation at any time</td>
<td>Fiscal consolidation at any time</td>
<td>Some fiscal consolidation at 0</td>
</tr>
<tr>
<td>Fiscal consolidation at any time</td>
<td>Partial accommodation by M</td>
<td>Partial accommodation by M</td>
<td>Maximum accommodation by M</td>
</tr>
<tr>
<td>Partial accommodation by M</td>
<td>Inflation postponed to date 2</td>
<td>Inflation postponed to date 2</td>
<td>Inflation postponed to date 2</td>
</tr>
<tr>
<td>Inflation postponed to date 2</td>
<td>M issues reserves</td>
<td>M issues reserves</td>
<td>M issues reserves</td>
</tr>
</tbody>
</table>

No commitment

\bar{b}

$\alpha_F(p_M + \alpha_M)$
So, who has the bargaining power since 2008?

- Since 2008,
 - Unprecedented balance-sheet expansion by the Federal Reserve
 - Not much fiscal consolidation to say the least (Hall, 2013)
 - Not much inflation

- We can rule out full commitment as balance-sheet expansion useless in this case

- Limited commitment:
 - Under monetary lead, balance-sheet expansion only comes with massive early (date 0) fiscal consolidation and early (date 1) inflation
 - Fiscal lead and limited commitment: balance-sheet expansion with fiscal consolidation and inflation postponed to the long run (date 2)
Conclusion

◊ Breakthrough: Wallace’s game of chicken is a game

◊ Interesting routes for future work:
 ▶ Micro-foundations and mechanism-design approach to optimal mandate
 ▶ Uncertainty, e.g., regarding future authorities’ types
 ▶ Multiple fiscal authorities and a unique monetary authority as in the euro area