Designing QE in a fiscally sound monetary union

by Tilman Bletzinger and Leopold von Thadden

Discussion by Dominik Thaler (Bank of Spain)

Banque de France, November 9th 2018
What they do

- Set up a 2 country model of a monetary union
- With the portfolio balance channel

- They show that for small enough shocks that drive the economy to the ZLB QE can restore the un(ZLB)constrained allocation up to a first order
 - in a one country model
 - in a symmetric two country model, even with asymmetric shocks: with symmetric QE
 - in an asymmetric two country model: with asymmetric QE
The model (2 sym. countries = 1 country)

- Firms as in the 3 equation NKM

- Households hold bank deposits and money (money in the utility function)

- Competitive banks hold long and short term debt

- RDL \approx BLB + BSRL + BSBL + BSDS

 - average return on assets

- Banks face adjustment costs for deviating from a certain maturity structure (portfolio balance channel)

- RL1 period return on L T asset \approx RS + \nu (BLB + BS - \bar{BLB} + \bar{BS})

 - cost of deviation from optimal structure

- Conventional monetary policy controls RS \geq 1

- Unconventional monetary policy can affect RL due to the portfolio balance channel
The model (2 sym. countries = 1 country)

- Firms as in the 3 equation NKM
- Households hold bank deposits and money (money in the utility function)
The model (2 sym. countries = 1 country)

- Firms as in the 3 equation NKM
- Households hold bank deposits and money (money in the utility function)
- Competitive banks holds long and short term debt

\[R_D \approx \frac{B_L}{B_L + B_S} R_L + \frac{B_S}{B_L + B_S} R_S \]

- Deposit rate
- Average return on assets

- Banks face adjustment costs for deviating from a certain maturity structure (portfolio balance channel)

- Conventional monetary policy controls
- Unconventional monetary policy can affect due to the portfolio balance channel
The model (2 sym. countries = 1 country)

- Firms as in the 3 equation NKM
- Households hold bank deposits and money (money in the utility function)
- Competitive banks holds long and short term debt

 $R_D \approx \frac{B_L}{B_L + B_S} R_L + \frac{B_S}{B_L + B_S} R_S$

- Banks face adjustment costs for deviating from a certain maturity structure (portfolio balance channel)

 $R_L \approx R_S + \nu \left(\frac{B_L}{B_L + B_S} - \frac{\bar{B}_L}{\bar{B}_L + \bar{B}_S} \right)$

- Conventional monetary policy controls $R_S \geq 1$
- Unconventional monetary policy can affect R_L due to the portfolio balance channel
The model (2 sym. countries = 1 country)

- Firms as in the 3 equation NKM
- Households hold bank deposits and money (money in the utility function)
- Competitive banks holds long and short term debt
 \[R_D \approx \frac{B_L}{B_L + B_S} R_L + \frac{B_S}{B_L + B_S} R_S \]
 - deposit rate
 - average return on assets
- Banks face adjustment costs for deviating from a certain maturity structure (portfolio balance channel)
 \[R_L \approx R_S + \nu \left(\frac{B_L}{B_L + B_S} - \frac{\bar{B}_L}{\bar{B}_L + \bar{B}_S} \right) \]
 - 1 period return on LT asset
 - short term rate
 - cost of deviation from optimal structure
- Conventional monetary policy controls \(R_S \geq 1 \)
The model (2 sym. countries = 1 country)

- Firms as in the 3 equation NKM
- Households hold bank deposits and money (money in the utility function)
- Competitive banks holds long and short term debt

 \[R_D \approx \frac{B_L}{B_L + B_S} R_L + \frac{B_S}{B_L + B_S} R_S \]

- Banks face adjustment costs for deviating from a certain maturity structure (portfolio balance channel)

 \[R_L \approx R_S + \nu \left(\frac{B_L}{B_L + B_S} - \frac{\bar{B}_L}{\bar{B}_L + \bar{B}_S} \right) \]

- Conventional monetary policy controls \(R_S \geq 1 \)
- Unconventional monetary policy can affect \(R_L \) due to the portfolio balance channel
Main result

- Proposition 1: In a symmetric economy, as long as the 1 period return on deposit exceeds 1 ($R_D > 1$) the ZLB does not constrain the central bank if it engages in appropriate asset purchases.
Main result

- Proposition 1: In a symmetric economy, as long as the 1 period return on deposit exceeds 1 ($R_D > 1$) the ZLB does not constrain the central bank if it engages in appropriate asset purchases.

- Proposition 2: The same holds in an asymmetric monetary union (with asymmetric purchases).
Proposition 1: In a symmetric economy, as long as the 1 period return on deposit exceeds 1 ($R_D > 1$) the ZLB does not constrain the central bank if it engages in appropriate asset purchases.

Proposition 2: The same holds in an asymmetric monetary union (with asymmetric purchases).

"The central bank can reduce long term rates via appropriate purchases of long term debt as long as the yield curve is not entirely flat"
Comment 1: Interpretation of the main result
Comment 1: Interpretation of the main result

“The central bank can reduce long term rates via appropriate purchases of long term debt as long as the yield curve is not entirely flat”
Comment 1: Interpretation of the main result

- "The central bank can reduce long term rates via appropriate purchases of long term debt as long as the yield curve is not entirely flat"

- At the ZLB, i.e. when $R_S = 1$

\[
R_D = \frac{B_L}{B_L + B_S} \ R_L \ + \ \frac{B_S}{B_L + B_S} \ R_S > 1
\]

requires $R_L > 1$
Comment 1: Interpretation of the main result

“*The central bank can reduce long term rates via appropriate purchases of long term debt as long as the yield curve is not entirely flat*”

At the ZLB, i.e. when \(R_S = 1 \)

\[
R_D = \frac{B_L}{B_L + B_S} R_L + \frac{B_S}{B_L + B_S} R_S > 1
\]

requires \(R_L > 1 \)

However \(R_L \) is the **1 period return on long term bonds**, not the **long term bond rate**! Hence \(R_L - R_S \) is not the **slope of the yield curve** but the **term premium** (\(YTM_L - R_S \) is)
Comment 1: Interpretation of the main result

- “The central bank can reduce long term rates via appropriate purchases of long term debt as long as the yield curve is not entirely flat”
- At the ZLB, i.e. when $R_S = 1$
 \[
 R_D = \frac{B_L}{B_L + B_S} R_L + \frac{B_S}{B_L + B_S} R_S > 1
 \]
 requires $R_L > 1$
- However R_L is the 1 period return on long term bonds, not the long term bond rate! Hence $R_L - R_S$ is not the slope of the yield curve but the term premium ($YTM_L - R_S$ is)
- $R_L > 1$ is a much weaker requirement then the yield curve being flat
- The range of shocks for which the propositions apply is smaller than the statement indicates
Comment 2: Conventional policy

<table>
<thead>
<tr>
<th>Households</th>
<th>Private banks</th>
<th>Central bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Dep. D</td>
<td>ST Bonds B_S</td>
<td>ST Bonds B_{SC}</td>
</tr>
<tr>
<td>Wealth</td>
<td>D Dep.</td>
<td>M Cash</td>
</tr>
<tr>
<td>Cash M</td>
<td>LT Bonds B_L</td>
<td>LT Bonds B_{LC}</td>
</tr>
</tbody>
</table>

- The CB implements monetary policy by choosing an adequate amount of money supply and ST bond holdings.
Comment 2: Conventional policy

- The CB implements monetary policy by choosing an adequate amount of money supply and ST bond holdings.
- Conventional expansionary policy ($R_S \downarrow$) requires an expansion of the money supply ($M \uparrow$) due to money in the utility function.
Comment 2: Conventional policy

<table>
<thead>
<tr>
<th></th>
<th>Households</th>
<th>Private banks</th>
<th>Central bank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>L</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Dep. D</td>
<td>wealth</td>
<td>ST Bonds B_S</td>
</tr>
<tr>
<td></td>
<td>Cash M</td>
<td></td>
<td>LT Bonds B_L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The CB implements monetary policy by choosing an adequate amount of money supply and ST bond holdings
- Conventional expansionary policy ($R_S \downarrow$) requires an expansion of the money supply ($M \uparrow$) due to money in the utility function
- Hence $B_{SC} \uparrow$ and $B_S \downarrow$
Comment 2: Conventional policy

<table>
<thead>
<tr>
<th>Households</th>
<th>Private banks</th>
<th>Central bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Dep. D</td>
<td>wealth</td>
<td>ST Bonds B_S</td>
</tr>
<tr>
<td>Cash M</td>
<td></td>
<td>LT Bonds B_L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The CB implements monetary policy by choosing an adequate amount of money supply and ST bond holdings.
- Conventional expansionary policy ($R_S \downarrow$) requires an expansion of the money supply ($M \uparrow$) due to money in the utility function.
- Hence $B_{SC} \uparrow$ and $B_S \downarrow$.
- We hence get $\frac{B_S}{B_L+B_S} \downarrow$ and $\frac{B_L}{B_L+B_S} \uparrow$.
Comment 2: Conventional policy

<table>
<thead>
<tr>
<th>Households</th>
<th>Private banks</th>
<th>Central bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td>A</td>
</tr>
<tr>
<td>Dep. D</td>
<td>wealth</td>
<td>ST Bonds B_S</td>
</tr>
<tr>
<td>Cash M</td>
<td></td>
<td>LT Bonds B_L</td>
</tr>
</tbody>
</table>

- The CB implements monetary policy by choosing an adequate amount of money supply and ST bond holdings.
- Conventional expansionary policy ($R_S \downarrow$) requires an expansion of the money supply ($M \uparrow$) due to money in the utility function.
- Hence $B_{SC} \uparrow$ and $B_S \downarrow$.
- We hence get $\frac{B_S}{B_L+B_S} \downarrow$ and $\frac{B_L}{B_L+B_S} \uparrow$.
- Hence even normal monetary policy “inadvertently” affects the term premium $R_L - R_S$, and through that the whole yield curve.
Comment 2: Conventional policy

<table>
<thead>
<tr>
<th>Households</th>
<th>Private banks</th>
<th>Central bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Dep. D</td>
<td>ST Bonds B_S</td>
<td>ST Bonds B_{SC}</td>
</tr>
<tr>
<td>Cash M</td>
<td>LT Bonds B_L</td>
<td>LT Bonds B_{LC}</td>
</tr>
<tr>
<td>wealth</td>
<td>D Dep.</td>
<td>M Cash</td>
</tr>
<tr>
<td></td>
<td>Reserves M</td>
<td>M Reserves</td>
</tr>
</tbody>
</table>

- **One possible solution:**
 - Consider cashless limit and have banks hold interest bearing reserves.
 - Make reserves and short term bonds perfect substitutes as regards the portfolio preferences.

Arce, Nuno, Thaler, Thomas (2018) show that even if the term premium is not affected such money creation can affect interbank liquidity and hence rates.
Comment 2: Conventional policy

<table>
<thead>
<tr>
<th>Households</th>
<th>Private banks</th>
<th>Central bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Dep. D</td>
<td>wealth</td>
<td></td>
</tr>
<tr>
<td>Cash M</td>
<td>ST Bonds B_S</td>
<td>ST Bonds B_{SC}</td>
</tr>
<tr>
<td></td>
<td>LT Bonds B_L</td>
<td>LT Bonds B_{LC}</td>
</tr>
<tr>
<td></td>
<td>Reserves M</td>
<td>M Cash</td>
</tr>
</tbody>
</table>

One possible solution:
- Consider cashless limit and have banks hold interest bearing reserves.
- Make reserves and short term bonds perfect substitutes as regards the portfolio preferences.
- This way, conventional money creation has no effect on the term premium or anything else. Only LT bond purchases do.
Comment 2: Conventional policy

<table>
<thead>
<tr>
<th>Households</th>
<th>Private banks</th>
<th>Central bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Dep. D</td>
<td>ST Bonds B_S</td>
<td>ST Bonds B_{SC}</td>
</tr>
<tr>
<td>Cash M</td>
<td>LT Bonds B_L</td>
<td>LT Bonds B_{LC}</td>
</tr>
<tr>
<td>wealth</td>
<td>D Dep.</td>
<td>Reserves M</td>
</tr>
</tbody>
</table>

- One possible solution:
 - Consider cashless limit and have banks hold interest bearing reserves.
 - Make reserves and short term bonds perfect substitutes as regards the portfolio preferences.
 - This way, conventional money creation has no effect on the term premium or anything else. Only LT bond purchases do.
 - Arce, Nuno, Thaler, Thomas (2018) show that even if the term premium is not affected such money creation can affect interbank liquidity and hence rates.
Comment 3: Linearization
The main equivalence result of the paper holds only for a 1st order approximation of the model.
Comment 3: Linearization

- The main equivalence result of the paper holds only for a 1st order approximation of the model.
- If agents have preferences for certain maturities (adjustment costs) then using QE has costs.
 - They are of 2nd order and hence ignored.
 - Can we ignore them in case of a large shock that brings the economy to the ZLB?
Comment 3: Linearization

- The main equivalence result of the paper holds only for a 1st order approximation of the model.
- If agents have preferences for certain maturities (adjustment costs) then using QE has costs.
 - They are of 2nd order and hence ignored.
 - Can we ignore them in case of a large shock that brings the economy to the ZLB?
- The way the nonlinear model is set up the ZLB does not exist, because for $R_D = 1$ households would demand infinite amounts of money.
 - Solution: Change the utility function (or assume that the ZLB is positive as in Harrison, 2012).
Conclusion

- A great, easily readable paper
- The extension of the main result to the multi country setting provide a surprising insight that is useful when designing QE (the use of the capital key)