Incentive constrained risk-sharing, endogenous segmentation and asset pricing

Bruno Biais (TSE), Johan Hombert (HEC) and Pierre Olivier Weill (UCLA)

Presentation prepared for the 12th Annual Central Bank Workshop on the Microstructure of Financial Markets

29 September 2016
Risk sharing and collateral

Financial markets: agents invest in/hold risky assets + share risk

Relatively risk tolerant agents insure more risk averse ones: sell CDS, puts, futures, etc.

If agent i sold insurance against state ω, must pay if ω occurs

If agent i had no resource in that state: counterparty default

To avoid this, agent i must hold assets generating payoff in state ω

These assets back the promise made by $i \rightarrow$ collateral
Endogenous collateral value

- Bank, holding portfolio of loans, sells CDS
 - portfolio of loans = collateral
 - collateral value depends on bank’s monitoring effort
- Venture capitalist issues claims to investors
 - cash flow from ventures = collateral
 - collateral value depends on venture capitalist’s effort
- Broker dealer holds securities, and sells puts
 - securities = collateral
 - deposited with custodian
 - collateral less valuable if custodian unreliable/fraud

No effort \rightarrow collateral less valuable for agent who bought insurance, but no cost of effort/private benefit from shirking for agent who sold insurance
Key economic mechanism

If agent i sold lots of insurance against ω

Tempted to shirk, divert value from collateral \rightarrow reduces collateral value for counterparty

\rightarrow Incentive compatibility condition: state ω contingent liability not too large, so that no incentive to divert/shirk

\rightarrow Limits risk sharing: market endogenously incomplete
Asset pricing implications

Endogenous segmentation
→ different assets held by different agents
→ different pricing kernels (≠ law of one price, but no arbitrage)
→ comovement among assets held by same class of agents

Equilibrium expected excess return \((E(R_j) - R_f) \) reflect two premia

1. risk premium: positive if \(R_j \) large when pricing kernel \(M \) low
 \((M \) does not mirror aggregate consumption, or even individual consumption, due to IC constraints)
2. divertibility premium: positive if \(R_j \) large when IC binds:
 inverse U shaped with \(\beta \) (SML flat at top)
Introduction Model Equilibrium Two agents’ types Conclusion

Literature (1): GE asset pricing with limited commitment

Similarity:
As in Kehoe Levine (1993), Alvarez Jermann (2000) full set of AD securities + possible strategic default on corresponding liabilities

Difference:
- Literature: non-tradeable asset (human capital) generates fully divertible payoff (labor income) while other assets tradeable, seizable, payoff can’t be diverted
- This paper: tradeable assets with partially divertible payoff → results different from literature: divertibility discount, segmentation

(Literature: cost of default = future exclusion ≠ here: cost of default: diversion partial & inefficient)
Literature (2): Corporate finance

At time 0 raise funds to buy asset \rightarrow output at time 1

The incentive problem on which we focus is: cash diversion, as in DeMarzo Fishman (2007), in line with Bolton Scharfstein (1990), and also Townsend (1979)

- \equiv ex-post moral hazard
- \equiv ex-ante moral hazard, Holmstrom Tirole (1997, 98, 2001)

\rightarrow only fraction of output can be credibly promised (pledgeable income, Holmstrom Tirole) \rightarrow IC constraint

Different focus:

- we study risk sharing in an endowment economy (Townsend 1979) \neq corporate finance models study production economy, often risk neutral
- asset pricing and asset allocation (which we can study since assets tradeable)
Assets, markets and agents

Two dates: 0 and 1. State ω realized at date 1, with proba $\pi(\omega)$

Assets (trees): $j \in [0, 1]$ with payoff (fruits): $d_j(\omega)$

- tree supply \tilde{N} positive measure on $[0, 1]$
 - can be discrete, continuous or both

I types, each in measure 1: type i, endowed with \bar{n}_i shares of market portfolio

Concave utility over date-1 consumption $U_i = \sum_\omega \pi(\omega)u_i(c_i(\omega))$

At date 0, can trade trees and complete set of state–ω contingent Arrow Debreu securities \rightarrow potential for risk–sharing
Investor i’s program

Agent i chooses tree holdings: N_i positive measure over $[0, 1]$ and Arrow securities holdings: $a_i(\omega)$, to max U_i s.t.,
t = 1 bc: consumption = fruits of trees + payoff AD security

\[c_i(\omega) = \int_j d_j(\omega) dN_{ij} + a_i(\omega) \]

t = 0 bc: initial endowment ≥ portfolio held (trees + AD)

\[\int_j p_j d\tilde{N}_{ij} \geq \int_j p_j dN_{ij} + \sum_\omega q(\omega) a_i(\omega) \]

→ intertemporal/consolidated bc:

\[\int_j p_j d\tilde{N}_{ij} + \sum_\omega q(\omega) \int_j d_j(\omega) dN_{ij} \geq \int_j p_j dN_{ij} + \sum_\omega q(\omega) c_i(\omega). \]

and IC !!
Incentive compatibility constraint

Instead of holding promises, agent can strategically default and abscond with fraction δ of trees’ payoff

IC: $c_i(\omega)$ if hold promises \geq if diversion-counterparty default

$$c_i(\omega) \geq \delta \int_j d_j(\omega) dN_{ij} \iff (1 - \delta) \int_j d_j(\omega) dN_{ij} \geq -a_i(\omega).$$

Pledgeable state-ω fruits \geq state ω–contingent liability

- If $a_i(\omega) \geq 0$: IC slack
- If $a_i(\omega) < 0$: debt overhang \rightarrow strategic default tempting
Interpreting IC in terms of collateral and pledgeable income

Assets held by agent = collateral for AD securities issued → not fully pledgeable ($\delta > 0$)

Payment promised by agent i in state $\omega \leq$ pledgeable income from i’s collateral

Not mandated by regulation, requested by market counterparties

Implemented by CCP (aggregate collateral requirement for entire portfolio // portfolio margining)
Equilibrium

Consumption plans $c_i(\omega)$ and tree holdings N_i

Prices for Arrow securities $q(\omega)$ and trees p_j

s.t.

Agent maximize given price and budget and IC constraint

Markets clear

$$\sum_{i \in l} c_i(\omega) = \sum_{i \in l} \int_j d_j(\omega) dN_{ij}$$

$$\sum_i a_i(\omega) = 0$$

$$\sum_i N_i = \bar{N}$$
Welfare theorem and existence

Constrained Pareto optimality:
 no price in IC \implies standard proof of welfare theorem

Existence: follows by variation of Negishi proof
 planner's solution, implementable without transfer

Uniqueness: obtains with two CRRA types with $\gamma \leq 1$
First order condition with respect to consumption

\[\pi(\omega) u'_i(c_i(\omega)) - \lambda_i q(\omega) + \mu_i(\omega) = 0, \text{ if } c_i(\omega) > 0 \]

where \(\lambda_i = \) multiplier of BC and \(\mu_i(\omega) = \) multiplier of IC

If IC slack, MRS equal across agents // pricing kernel \(M \)

\[\frac{u'_i(c_i(\omega_1))}{u'_i(c_i(\omega_2))} = \left(\frac{q(\omega_1)}{\pi(\omega_1)} \right) / \left(\frac{q(\omega_2)}{\pi(\omega_2)} \right) = \frac{M(\omega_1)}{M(\omega_2)} \]

If IC binds: \((\mu_i(\omega) > 0) \) wedge between agents MRS: imperfect risk–sharing due to IC constraint \(\rightarrow \) AD securities pricing kernel reflects agent’s marginal utility \(u'_i(c_i(\omega)) \) and shadow cost of IC

\[M(\omega) = \left[\frac{1}{\lambda_i} \frac{\partial u_i(c_i(\omega))}{\partial c_i(\omega)} + A_i(\omega) \right], \text{ if } c_i(\omega) > 0, \]

where \(A_i(\omega) = \frac{\mu_i(\omega)}{\lambda_i \pi(\omega)} \) is the shadow cost of IC
Imperfect risk-sharing

Agent 2 wants to buy insurance from Agent 1 against state ω

But constrained by IC ($\mu_1(\omega) > 0$): It is not IC to transfer too much consumption from Agent 1 to Agent 2

$\implies c_1(\omega)$ higher and $c_2(\omega)$ lower than under perfect risk-sharing

First order condition with respect to holdings of trees

If tree j held by agent i

$$p_j = E \left[M(\omega) d_j(\omega) - A_i(\omega) \delta d_j(\omega) \right]$$

1^{st} term: asset's cash flows, valued at pricing kernel $M(\omega)$

2^{nd} term: shadow cost of IC when buying asset $j // A_i(\omega)$

→ Divertibility discount: $p_j < E \left[M(\omega) d_j(\omega) \right]$
→ AD securities & trees priced by \neq pricing kernels
→ \neq trees held by \neq agents \rightarrow priced by \neq kernels

Not arb opportunity: Arb \rightarrow buy the asset \rightarrow hit IC constraint

Asset's payoff large when asset holder IC binds \rightarrow large discount
Discount versus premium

No contradiction, different benchmarks

Collateral premium: Asset price > value for agent if she consumed all its cash flows: \(E[u'_i(c_i(\omega))d_j(\omega)] \)

Divertibility discount: Asset price < price of replicating portfolio of AD securities \(E[M(\omega)d_j(\omega)] \)

Substituting FOC wrt consumption into FOC wrt holdings (which implied “divertibility discount”), we get “collateral premium”

\[
p_j = \frac{1}{\lambda_i} E \left[\frac{1}{\lambda_i} u'_i(c_i(\omega))d_j(\omega) + A_i(\omega)(1 - \delta)d_j(\omega) \right]
\]
Equilibrium holdings

Marginal valuation of agent i for asset j

$$v_{ij} = E [M(\omega)d_j(\omega) - A_i(\omega)\delta d_j(\omega)]$$

First term: $E [M(\omega)d_j(\omega)] = "common value"$

Second term: $-E [A_i(\omega)\delta d_j(\omega)] = "endogenous private value"$

$v_{ij} = p_j$ iff agent i holds tree j, $v_{ij} < p_j$ iff i does not hold j

Agents who hold asset are those who value it the most, because they have the lowest shadow price of holding it
Equilibrium expected excess returns

If agent i holds asset j, FOC wrt holdings

$$p_j = E \left[M(\omega)d_j(\omega) - A_i(\omega)\delta d_j(\omega) \right]$$

Define risky return: $R_j(\omega) = \frac{d_j(\omega)}{p_j}$, risk-free return: $R_f = \frac{1}{E[M(\omega)]}$

Equilibrium excess return

$$E \left[R_j(\omega) \right] - R_f = -R_f \text{Cov}(M(\omega), R_j(\omega)) + R_f E[A_i(\omega)\delta R_j(\omega)]$$

1st term: risk premium, positive if $R_j(\omega)$ large when $M(\omega)$ low

2nd term: divertibility premium, positive if divertible income $\delta R_j(\omega)$ large when IC binds (for agents holding the asset)
Interpreting risk premium

Equilibrium expected excess return

\[E[R_j(\omega)] - R_f = -R_f \text{Cov}(M(\omega), R_j(\omega)) + R_f E[A_i(\omega)\delta R_j(\omega)] \]

looks like standard risk-premium obtained in frictionless market

\[E[R_j(\omega)] - R_f = -R_f \text{Cov}(M(\omega), R_j(\omega)) \]

(see, e.g., Huang and Litzenberger (1988) equation 6.2.8)

Unlike frictionless CCAPM, \(M(\omega) \) does not mirror aggregate consumption (not even individual consumption):

IC prevents perfect risk-sharing \(\rightarrow \) endogenous incompleteness
Interpreting divertibility premium

2nd “factor” in equilibrium expected excess return, when \(n_{ij} > 0 \)

\[
E[R_j(\omega)] - R_f = -R_f \text{Cov}(M(\omega), R_j(\omega)) + R_f E[A_i(\omega)\delta R_j(\omega)]
\]

Varies across assets because \(\neq \) assets held by \(\neq \) agents:

Endogenous segmentation reflecting \(\neq \) risk-aversion, inducing \(\neq \) IC constraints

// “intermediary asset pricing”: pricing reflects characteristics of institution holding assets (// He, Kelly, Manela (2016) “financial intermediaries are marginal investors in many markets”)

But differences:

- \textit{endogenous} segmentation
- price \(\neq \) marginal utility of holder
- \(\neq \) assets held by \(\neq \) institutions \(\implies \) shocks to different institutions affect different assets differently
More explicit results in simpler case

So far: general model → economic intuitions, but pricing intertwined with allocation of assets
In general case, hard to characterize explicitly and simply

- 2 states: aggregate dividend larger in state ω_2 than in ω_1
- 2 agent’s types: Type-1 less risk averse than 2 (in any unconstrained Pareto optimum, consumption share of 2 decreasing with aggregate dividend, e.g., CRRA $\gamma_1 < \gamma_2$)

\Rightarrow In first best, type-1 would insure 2 against risk of bad state 1

\Rightarrow IC$_1$ binds in ω_1 ($A_1(\omega_1) > 0$), IC$_2$ in ω_2 ($A_2(\omega_2) > 0$)
Consumption beta

Continuum of trees indexed by \(j \in [0, 1] \)

If tree \(j \) such that \(d_j(\omega_2) \) large relative to \(d_j(\omega_1) \)

\[\rightarrow \text{payoff large in good state } \omega_2 \text{ relative to bad state } \omega_1 \]

\[\rightarrow \text{large consumption } \beta \]
Equilibrium segmentation

\[\exists B, \text{ s.t.} \]

- risk-tolerant type 1 hold high consumption β trees: \(\frac{d_j(\omega_2)}{d_j(\omega_1)} > B \)
- risk-averse type 2 hold low consumption β trees: \(\frac{d_j(\omega_2)}{d_j(\omega_1)} < B \)

First best:

- risk tolerant agent 1 insures agent 2 against bad state ω_1 → agent 2 consumes relatively more than 1 in bad state ω_1
- risk sharing can be engineered by asset holdings and by AD security trading → holdings indeterminate

With IC constraint:

- if risk tolerant agent 1 held assets paying a lot in bad state, tempted to divert
- to minimize diversion temptation, allocate assets with low consumption β to risk averse agent 2
Equilibrium asset prices in simple case

Asset $j > k$, held by risk-tolerant agent 1 → divertibility discount
reflects shadow price of agent 1’s IC (binds in bad state ω_1)

$$p_j = E \left[M(\omega) d_j(\omega) \right] - A_1(\omega_1) \delta d_j(\omega_1)$$

Asset $j < k$, held by risk-averse agent 2 → divertibility discount
reflects shadow price of agent 2’s (binds in good state ω_2)

$$p_j = E \left[M(\omega) d_j(\omega) \right] - A_2(\omega_2) \delta d_j(\omega_2)$$
Divertibility discount and beta

Consumption β increases as $d_j(\omega_2)$ increases & $d_j(\omega_1)$ decreases

Among assets held by more risk-tolerant agent 1 (which, to start with, tend to have high β)

large β (low dividend in state in which IC1 binds, $d_j(\omega_1)$) → low discount $A_1(\omega_1)\delta d_j(\omega_1)$

Similarly, among assets held by agent 2 (which, to start with, tend to have low β)

large β (high $d_j(\omega_2)$) → high discount $A_2(\omega_2)\delta d_j(\omega_2)$

→ divertibility discount inverse U-shaped with (consumption) β: smallest for very low β and very high β, largest for intermediary β
In terms of expected returns

In terms of prices: low divertibility discount for high β assets

→ In terms of expected returns: low divertibility *premium* for high β assets

→ SML flat at top (Black, 1972)

Also low divertibility premium for low β assets, divertibility premium inverse-U shaped with β

Consistent with Hong and Sraer (2016), Frazzini Pedersen (2010)
Suppose that, for asset j held by agent i, δ increased by ϵ:

Impact on segmentation and holdings: IC_i tightens \rightarrow set of assets held by i shrinks

Impact on pricing:

- j’s divertibility discount increases
- prices of other assets held by i decrease relative to prices of assets held by $-i$ (because i’s shadow cost of IC increases more than $-i$’s)

Shock to intermediaries i affects equilibrium prices (He, Kelly, Manela, 2016), especially those of assets held by i
Wealth effects

Consider what happens as agent 1’s initial endowment (\bar{N}_1) varies relative to that of agent 2.

If agent 1 endowed with all the wealth \rightarrow consumes everything both in unconstrained and constrained equilibrium.

By continuity FB still implementable when agent 1’s initial endowment large relative to agent 2’s.

Symmetrically, FB implementable when agent 2 very rich.

Incentive constraints bind in the middle, when agent 1 neither very poor nor very rich.

Divertibility discount inverse U shaped in agent 1’s initial wealth.

(Agent 1, who sells insurance, can be interpreted as financial intermediary.)
Conclusion

Simple one period general equilibrium asset pricing model + standard corporate finance friction (cash-diversion) →

- Endogenous market incompleteness
- Endogenous market segmentation → comovement
- Equilibrium expected excess returns $(E(R_j) - R_f)$ reflect two premia:
 - Risk premium: positive if R_j large when pricing kernel low (pricing kernel does not reflect aggregate consumption, or even individual consumption, due to IC constraints)
 - Divertibility premium: positive if divertible income δR_j large when IC binds
- Divertibility premium U shaped with β (SML flat at top)