Should Unconventional Monetary Policies Become Conventional?

Dominic Quint
Deutsche Bundesbank

Pau Rabanal
International Monetary Fund
Disclaimer

The views expressed are those of the authors do not necessarily represent those of the Deutsche Bundesbank or the International Monetary Fund.
Motivation

“In pre-crisis days, policymakers assumed that tweaking short-term interest rates was enough to influence all important financial decision-making. This was wishful thinking, based on a couple of decades of atypical US experience. Other economies still needed extra policy instruments, as has the US since the crisis.”

Adam Posen, Financial Times, August 23, 2016
Motivation

▶ literature usually focuses on unconventional monetary policies (UMP) employed during crisis periods (e.g. Del Negro et al. 2011; Chen et al. 2011)
 ▶ zero lower bound is binding
 ▶ economy hit by large financial shocks
▶ we evaluate the usefulness of LSAPs in normal times
▶ possible trade-off of UMP:
 ▶ avoid “Greenspan conundrum”
 ▶ potential distortions
 ▶ diminishing returns to UMP (QE1 vs. QE2, QE3)
 ▶ smaller revenues for fiscal authority
Our Contribution

- extend Gertler and Karadi (2013) with long-term debt
- estimate the model over the Great Moderation period
- counterfactual exercises with UMP in place
Main Results

- under an estimated Taylor rule, welfare gains from using UMP policies can be up to 1.45 percent of steady-state consumption
- UMP is useful to address financial shocks but does not help with “normal business cycle” (supply and demand) shocks
- direct credit to firms or purchases of government bonds deliver similar results
Summary of the Model

- households: workers and bankers
- producers:
 - retail goods.
 - final goods
 - intermediate goods
 - capital goods
- financial intermediaries
- central bank
- fiscal policy
Key Frictions

- “standard” DSGE model frictions:
 (Smets and Wouters, 2003; Justiniano et al., 2013)
 - Sticky prices and wages
 - habit formation, adjustment costs to investment
- financial frictions: agency problem by bankers
 (Gertler and Karadi, 2011)
- lumpy investment decisions
 (Sveen and Weinke, 2002; Andreasen et al., 2013)
Intermediate Goods Producers

Lumpy investment decisions

- every period a fraction θ_K of intermediate goods producers adjust its capital stock K_t

- these firms purchase capital financed by a credit obtained from financial intermediaries at a constant rate \bar{r}_t^L over the contract period
Financial Intermediaries

- **bank balance sheet:**

 \[len_t^p + b_t^p = n_t + d_t \]

- **real lending and revenues to the private sector:**

 \[len_t = (1 - \theta_k) \frac{\mathcal{P}_t^K K_t}{P_t} + \theta_k \frac{P_{t-1}}{P_t} len_{t-1} \]

 \[rev_t = (1 - \theta_k) \frac{\mathcal{P}_t^L \mathcal{K}_t}{R_t} + \theta_k \frac{P_{t-1}}{P_t} rev_{t-1} \]

- **average return:**

 \[R_t^L = \frac{rev_t}{len_t} \]
Financial Intermediaries

Agency problem as in Gertler and Karadi (2011)

- The value of a bank V_t must exceed the amount a banker can divert:
 \[V_t \geq \lambda_t \left(len_P^t + \Delta_t b^P_t \right) \]

- With a binding participation constraint:
 \[\left(R_L^t - R_t \right) > 0 \]

- And:
 \[\left(R_G^t - R_t \right) = \Delta_t \left(R_L^t - R_t \right) \]
Introducing UMP

Purchases of corporate bonds

aggregate lending is given by:

$$len_t = len^P_t + len^{cb}_t,$$

central bank lending reduces corporate spreads, increases investment and employment

Purchases of government bonds

the central bank reduces government bonds spreads, which in turn reduces corporate spreads.
GMM Estimation

- seven variables (from JPT, 2013):
 - real GDP, consumption, investment per capita growth
 - GDP deflator and the federal funds rate
 - hours
 - nominal wage growth
- Two additional variables:
 - corporate BAA-FFR spread
 - 10Y-FFR spread
- GMM estimation for the 1964q2-2009q4 period (same as JPT, 2013)
GMM Estimation

- estimation by taking a **2nd order approximation** to the equilibrium conditions (Andreasen et al., 2016)
- matching 63 moments in the data:

\[
M_t \equiv \begin{bmatrix}
data_t
vech(data_t data_t')
diag(data_t data_t' - 1)
\end{bmatrix}
\]

- counterpart in the model: \(\mathbb{E}[M(\Theta)] \)
- GMM estimator:

\[
\hat{\Theta}_{GMM} = \arg \min \left(\frac{1}{T} \sum_{t=1}^{T} M_t - \mathbb{E}[M(\Theta)] \right) \cdot W \left(\frac{1}{T} \sum_{t=1}^{T} M_t - \mathbb{E}[M(\Theta)] \right)
\]
Effects of UMP

Policy Simulations
Optimal UMP Policy

we take a 2nd order approximation to the utility function and maximize over the coefficients of the rule:

\[
\text{len}_t^{cb} = \rho \Psi \text{len}_{t-1}^{cb} + \gamma \Psi (\frac{R_t^L}{R_t} - \frac{R^L}{R})
\]

\[
b_t^{cb} = \rho \Psi b_{t-1}^{cb} + \gamma \Psi (\frac{R_t^L}{R_t} - \frac{R^L}{R})
\]

<table>
<thead>
<tr>
<th>Policy</th>
<th>$\rho \Psi$</th>
<th>$\gamma \Psi$</th>
<th>W_t</th>
<th>C.E. (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corp., $\overline{R}_t^L - R_t$</td>
<td>0.972</td>
<td>3142.9</td>
<td>-577.72</td>
<td>1.41</td>
</tr>
<tr>
<td>Corp., $R_t^L - R_t$</td>
<td>0.636</td>
<td>37992.7</td>
<td>-577.56</td>
<td>1.45</td>
</tr>
<tr>
<td>Gov., $\overline{R}_t^L - R_t$</td>
<td>0.786</td>
<td>56688.6</td>
<td>-577.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Gov., $R_t^L - R_t$</td>
<td>0.767</td>
<td>65934.6</td>
<td>-577.56</td>
<td>1.45</td>
</tr>
<tr>
<td>Gov., $\overline{R}_t^B - R_t$</td>
<td>0.767</td>
<td>65934.6</td>
<td>-577.56</td>
<td>1.45</td>
</tr>
<tr>
<td>Gov., $R_t^B - R_t$</td>
<td>0.953</td>
<td>37985.4</td>
<td>-577.66</td>
<td>1.43</td>
</tr>
</tbody>
</table>
Optimal UMP Policy, Conditional

<table>
<thead>
<tr>
<th>Demand shocks</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>ρ_ψ</td>
<td>γ_ψ</td>
<td>W_t</td>
<td>C.E. (in %)</td>
</tr>
<tr>
<td>Gov., $R_t^B - R_t$</td>
<td>0.05</td>
<td>14067.2</td>
<td>-575.05</td>
<td>0.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply Shocks</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>ρ_ψ</td>
<td>γ_ψ</td>
<td>W_t</td>
<td>C.E. (in %)</td>
</tr>
<tr>
<td>Gov., $R_t^B - R_t$</td>
<td>0.11</td>
<td>1136.9</td>
<td>-577.12</td>
<td>0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financial Shocks</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>ρ_ψ</td>
<td>γ_ψ</td>
<td>W_t</td>
<td>C.E.</td>
</tr>
<tr>
<td>Gov., $R_t^L - R_t$</td>
<td>0.971</td>
<td>9292.1</td>
<td>-575.74</td>
<td>1.34</td>
</tr>
</tbody>
</table>
IRF to a Bank Capital Shock

- Output Y_t
- Consumption C_t
- Labor L_t
- Investment I_t
- Inflation π_t
- Short-Term Rate R_t
- Spread R^f_t / R_t
- Spread R^{ll}_t / R_t
- Net Worth N_t
- Total Lending l_{en_t}
- Bank Lending to Firms
- Central Bank Stock of Assets / GDP

Policy Simulations
IRF to a Government Debt Supply Shock
IRF to a TFP Shock

- Output Y_t
- Consumption C_t
- Labor L_t
- Investment I_t
- Inflation π_t
- Short-Term Rate R_t
- Spread R^f_t/R_t
- Spread R^d_t/R_t
- Net Worth N_t
- Total Lending len_t
- Bank Lending to Firms
- Central Bank Stock of Assets / GDP

Graphs showing the response of various economic indicators to a TFP shock over a 12-period horizon.
Some Robustness

- we repeat the same exercise under a strict inflation targeting rule:

<table>
<thead>
<tr>
<th>Shocks</th>
<th>Policy</th>
<th>(\rho_\Psi)</th>
<th>(\gamma_\Psi)</th>
<th>(W_t)</th>
<th>C.E. (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Corp., (\bar{R}_t^L - R_t)</td>
<td>0.14</td>
<td>9.62</td>
<td>-553.83</td>
<td>1.45</td>
</tr>
<tr>
<td>Demand</td>
<td>Gov., (R_t^B - R_t)</td>
<td>0.84</td>
<td>1000000</td>
<td>-576.16</td>
<td>0.31</td>
</tr>
<tr>
<td>Supply</td>
<td>All</td>
<td>0</td>
<td>0</td>
<td>-553.67</td>
<td>0</td>
</tr>
<tr>
<td>Financial</td>
<td>Gov., (\bar{R}_t^L - R_t)</td>
<td>0.97</td>
<td>9163.7</td>
<td>-575.74</td>
<td>1.18</td>
</tr>
</tbody>
</table>

- gains are lower under an optimized rule that targets price and wage inflation
Conclusion

- we have examined if the Fed should keep UMP policies in place once interest rates normalize
- we have found that for financial shocks, the answer is yes, because the benefits are sizable
- under more normal business cycle shocks such as demand or supply shocks, UMP is likely not needed
- in normal times, large asset purchases with corporate or government bonds have similar effects
- caveat(?): we have not quantify any costs of implementing UMP policy
Households

- A fraction f of household members are bankers and a fraction $1 - f$ are workers.
- Workers supply labor and bring wage income to the household.
- Bankers manage financial intermediaries and bring profits to the household.
- The household can save in deposits, but at financial intermediaries not owned by the household.
- In a given period, a banker stays in her job with probability θ_B.
- Every period a mass $(1 - \theta_B)f$ of bankers become workers (and a similar mass of workers become bankers).
Households

Their utility function is given by

\[E_0 \sum_{t=0}^{\infty} \beta^t \xi_t \left\{ \log (C_t - hC_{t-1}) - \psi_t \frac{L_{jt}^{1+\varphi}}{1 + \varphi} \right\} \]

and their budget constraint reads

\[C_t + \frac{D_t}{P_t} = W_{jt}L_{jt} - AC_t^w + R_{t-1} \frac{D_{t-1}}{P_t} + \Pi_t \]
Households

Wages setting subject to Rotemberg (1982) quadratic costs

\[AC^w_t = \frac{\theta_w}{2} \left(\frac{W_{jt}}{W_{jt-1}} \frac{P_t}{P_{t-1}} - \exp (\Lambda_{t-1})^{\chi_w} \exp (\Lambda)^{1-\chi_w} \pi_{t-1}^{\chi_w} \pi^{1-\chi_w} \right)^2 Y_t \]

subject to a downward sloping demand for their type of labor \(j \)

\[L_{jt} = \left(\frac{W_{jt}}{W_t} \right)^{-\varepsilon_{L,t}} L_{t}^{D} \]

from labor packers that sell aggregate labor to intermediate goods producers
Intermediate Goods Producers

Cobb-Douglas technology to produce a homogeneous good

\[Y_t^m = A_t^{(1-\alpha)} Z_t (K_{t-1})^\alpha (L_t^D)^{(1-\alpha)} \]

where

\[\Delta \log (A_t) = (1 - \rho_A) \Lambda + \rho_A \Delta \log (A_{t-1}) + \epsilon_{A,t} \]
\[\log (Z_t) = \rho_Z \log (Z_{t-1}) + \epsilon_{Z,t} \]
Intermediate Goods Producers

FOCs

\[\mathcal{P}_t^M (1 - \alpha) \frac{Y_t^M}{L_t^D} = W_t \]

and

\[
E_t \sum_{j=1}^{\infty} (\theta_K)^{j-1} \beta^{\Xi_t+j} \mathcal{P}_t^M \alpha^{\Xi_t+j} \frac{Y_t^M}{K_t} \\
= E_t \sum_{j=1}^{\infty} (\theta_K)^{j-1} \beta^{\Xi_t+j} \left(\prod_{i=1}^{j} \frac{P_{t+i}}{P_{t+i-1}} \right)^{-1} \left(\bar{r}_t^L + \omega \right) \mathcal{P}_t^K
\]
Final Goods Producers

Aggregate the differentiated retail goods $Y_t^R (h)$ they buy from retailers according to the following CES function

$$Y_t = \left[\int_0^1 Y_t^R (h) \frac{\varepsilon Y, t - 1}{\varepsilon Y, t} \, dh \right]^{\varepsilon Y, t / \varepsilon Y, t - 1}$$

demand function for retail goods

$$Y_t^R (h) = \left[\frac{P_t (h)}{P_t} \right]^{\varepsilon Y, t} Y_t$$

where P_t is the price index for final goods

$$P_t = \left\{ \int_0^1 [P_t (h)]^{1 - \varepsilon Y, t} \, dh \right\}^{1 / (1 - \varepsilon Y, t)}$$
Retailers

Purchase homogenous goods from intermediate goods producers, and differentiate them into retail goods $Y_t^R(h)$. Operate under monopolistic competition and set prices with Rotemberg adjustment costs

$$\max_{P_t(h)} E_t \sum_{\tau=0}^{\infty} (\beta)^{\tau} \frac{\Xi_{t+\tau}}{\Xi_t} \left\{ \left[\frac{P_{t+\tau}(h)}{P_{t+\tau}} - P^M_{t+\tau} \right] Y_{t+\tau}^R(h) - AC_{t+\tau}^p \right\}$$

subject to

$$Y_{t+\tau}^R(h) = \left[\frac{P_{t+\tau}(h)}{P_{t+\tau}} \right]^{-\varepsilon_{Y,t+\tau}} Y_{t+\tau}$$

and

$$AC_t^p = \frac{\theta_p}{2} \left(\frac{P_t(h)}{P_{t-1}(h)} - \pi_t^p \pi_t^{1-\chi_p} \right)^2 Y_t$$
Capital Goods Producers

Sell capital to intermediate goods producers, with an agreement to repurchase at the original price. Provide a service for maintenance of the capital stock for which they charge a fee.

\[
\max E_t \sum_{j=0}^{\infty} \beta^j \Xi_{t+j} \left(\frac{V_{t+j}}{P_{t+j}} - I_{t+j} \right)
\]

where

\[
V_t = \left(1 - \theta_K\right) \sum_{j=0}^{\infty} (\theta_K)^j \frac{P_{t-j}^K}{P_t} K_{t-j}
\]

demand for capital

\[
K_t = (1 - \theta_K) K_t + \theta_K K_{t-1}
\]

demand for capital
Financial Intermediaries

Real lending and revenues to the public sector

\[B_t = (1 - \theta_g) \bar{B}_t + \theta_g \frac{P_{t-1}}{P_t} B_{t-1} \]

\[\text{rev}_t^G = (1 - \theta_g) \bar{R}_t^G \bar{B}_t + \theta_g \frac{P_{t-1}}{P_t} \text{rev}_{t-1}^G \]

average return

\[R_t^G = \frac{\text{rev}_t^G}{B_t} \]
Financial Intermediaries

Agency problem as in Gertler and Karadi (2011)

\[\mathcal{V}_t \geq \lambda_t (\text{len}_t + \Delta_t B_t) \]

value of a bank

\[\mathcal{V}_t = (1 - \tau_B) E_t \sum_{j=0}^{\infty} (1 - \theta_B) \theta_B^j \beta^{j+1} \frac{\Xi_{t+1+j}^{\infty}}{\Xi_t} \beta^{j+1} n_{t+j+1} \]

net worth evolves as

\[n_t = (1 - \tau_B) [R_{t-1}^L \frac{P_{t-1}}{P_t} \text{len}_{t-1} + R_{t-1}^G \frac{P_{t-1}}{P_t} B_{t-1} - R_{t-1} \frac{P_{t-1}}{P_t} d_{t-1}] \]
Financial Intermediaries

Optimality conditions lead to the following equations

\[(1 - \tau_B)E_t\beta\frac{\Xi_{t+1}}{\Xi_t}\Omega_{t+1} \left(R^L_t - R_t \right) \frac{P_t}{P_{t+1}} = \lambda_t \frac{\Theta_t}{1 + \Theta_t} \]

where \(\Theta_t\) is the Lagrange multiplier associated with the participation constraint.

With a binding constraint, \((R^L_t - R_t) \geq 0\) and

\[\left(R^G_t - R_t \right) = \Delta_t \left(R^L_t - R_t \right) \]

where \(\Delta_t\) is an AR(1) process.
Monetary and Fiscal Policy

Taylor rule

\[\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma_R} \left(\frac{\pi_t}{\pi} \right)^{\gamma_n(1-\gamma_R)} \left[\frac{Y_t/Y_{t-1}}{\exp(\Lambda)} \right]^{\gamma_y(1-\gamma_R)} \exp(\epsilon_{m,t}) \]

government spending to GDP follows a stationary AR(2) process

\[G_t = g_t Y_t \]

\[\log g_t = (1 - \rho_{g1} - \rho_{g2}) \log(\bar{g}) + \rho_{g1} \log g_{t-1} + \rho_{g2} \log g_{t-2} + \epsilon_{g,t} \]

government debt is an AR(1) process

\[\frac{B_t}{Y_t} = (1 - \rho_b) \frac{\bar{B}}{Y} + \rho_b \frac{B_{t-1}}{Y_{t-1}} + \epsilon_{b,t} \]
Closing the Model

Market clearing

\[C_t + I_t + G_t + AC_t^p + AC_t^w = Y_t \]

\[L_t^D = L_t \]

\[Y_t = Y_t^M \]
GMM Estimation

A Few Comments

- Parameter estimates are reasonable and similar to others in the literature (but no priors!)
- Model specification J-test: p-value is 0.71
- Model fit to means, variances, correlations and autocorrelations is very good, sometimes better than similar models estimated with Bayesian methods
- TFP and preference shocks main drivers of fluctuations, financial (bank capital) shocks somewhat important: 15.8 of GDP growth, 28.4 of investment growth, and 18.2 of hours.
GMM Estimation

Table 1: Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_L</td>
<td>Elasticity of Substitution between Labor</td>
<td>5</td>
</tr>
<tr>
<td>ε_Y</td>
<td>Elasticity of Substitution between Goods</td>
<td>10</td>
</tr>
<tr>
<td>α</td>
<td>Capital share of output</td>
<td>0.33</td>
</tr>
<tr>
<td>δ</td>
<td>Depreciation rate</td>
<td>0.025</td>
</tr>
<tr>
<td>$1/(1 - \theta_k)$</td>
<td>Average duration between capital stock changes</td>
<td>12</td>
</tr>
<tr>
<td>$1/(1 - \theta_g)$</td>
<td>Average duration of government debt</td>
<td>40</td>
</tr>
<tr>
<td>g</td>
<td>Government spending/output ratio</td>
<td>0.2</td>
</tr>
<tr>
<td>ρ_{g_1}</td>
<td>AR(1) coefficient for G/Y ratio</td>
<td>1.288</td>
</tr>
<tr>
<td>ρ_{g_2}</td>
<td>AR(2) coefficient for G/Y ratio</td>
<td>-0.299</td>
</tr>
<tr>
<td>σ_g</td>
<td>Standard deviation innovation G/Y Ratio</td>
<td>1.07%</td>
</tr>
<tr>
<td>B/Y</td>
<td>Debt to GDP ratio</td>
<td>0.45</td>
</tr>
<tr>
<td>L</td>
<td>Steady-state hours</td>
<td>1</td>
</tr>
</tbody>
</table>
GMM Estimation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>0.742</td>
<td>0.026</td>
</tr>
<tr>
<td>φ</td>
<td>0.847</td>
<td>0.077</td>
</tr>
<tr>
<td>$1/\beta - 1$</td>
<td>0.241</td>
<td>0.025</td>
</tr>
<tr>
<td>$\log(R^L - R)$</td>
<td>0.388</td>
<td>0.011</td>
</tr>
<tr>
<td>$\log(R^B - R)$</td>
<td>0.144</td>
<td>0.006</td>
</tr>
<tr>
<td>Λ</td>
<td>0.425</td>
<td>0.015</td>
</tr>
<tr>
<td>η_i</td>
<td>8.43</td>
<td>0.85</td>
</tr>
<tr>
<td>θ_w</td>
<td>175.33</td>
<td>17.78</td>
</tr>
<tr>
<td>χ_w</td>
<td>0.707</td>
<td>0.041</td>
</tr>
<tr>
<td>θ_p</td>
<td>62.76</td>
<td>4.61</td>
</tr>
<tr>
<td>χ_p</td>
<td>0.421</td>
<td>0.044</td>
</tr>
</tbody>
</table>
GMM Estimation

Table 2: Estimated Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω Capital Goods Producer Fees</td>
<td>0.0248</td>
<td>0.0009</td>
</tr>
<tr>
<td>θ_b Probability of banker survival</td>
<td>0.919</td>
<td>0.044</td>
</tr>
<tr>
<td>ϕ Steady-state Leverage ratio</td>
<td>15.96</td>
<td>1.35</td>
</tr>
<tr>
<td>γ_{t1} Taylor rule coefficient: Inflation</td>
<td>1.255</td>
<td>0.071</td>
</tr>
<tr>
<td>γ_R Interest Rate Smoothing</td>
<td>0.606</td>
<td>0.036</td>
</tr>
<tr>
<td>γ_y Taylor rule coefficient: Output Growth</td>
<td>0.12</td>
<td>0.007</td>
</tr>
<tr>
<td>π Inflation Target</td>
<td>0.972</td>
<td>0.097</td>
</tr>
</tbody>
</table>
Model Fit

Table 4: Model Fit

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
<th></th>
<th></th>
<th>Model</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev.</td>
<td>Autocorr</td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Autocorr</td>
</tr>
<tr>
<td>GDP Growth</td>
<td>0.40</td>
<td>0.86</td>
<td>0.32</td>
<td>0.42</td>
<td>0.85</td>
<td>0.38</td>
</tr>
<tr>
<td>Consumption Growth</td>
<td>0.50</td>
<td>0.52</td>
<td>0.47</td>
<td>0.42</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>Investment Growth</td>
<td>0.26</td>
<td>3.32</td>
<td>0.30</td>
<td>0.42</td>
<td>3.33</td>
<td>0.26</td>
</tr>
<tr>
<td>Wage Growth</td>
<td>1.35</td>
<td>0.73</td>
<td>0.46</td>
<td>1.33</td>
<td>0.71</td>
<td>0.68</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.95</td>
<td>0.60</td>
<td>0.87</td>
<td>0.91</td>
<td>0.62</td>
<td>0.89</td>
</tr>
<tr>
<td>Federal Funds Rate</td>
<td>1.54</td>
<td>0.84</td>
<td>0.95</td>
<td>1.56</td>
<td>0.76</td>
<td>0.87</td>
</tr>
<tr>
<td>Hours</td>
<td>0.00</td>
<td>3.74</td>
<td>0.98</td>
<td>0.16</td>
<td>3.75</td>
<td>0.95</td>
</tr>
<tr>
<td>Spread BAA-FFR</td>
<td>0.71</td>
<td>0.53</td>
<td>0.90</td>
<td>0.61</td>
<td>0.69</td>
<td>0.85</td>
</tr>
<tr>
<td>Spread 10Y Bond-FFR</td>
<td>0.22</td>
<td>0.43</td>
<td>0.88</td>
<td>0.23</td>
<td>0.26</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Model Fit

Table 5: Model Fit

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Data</th>
<th>Model</th>
<th>Correlation</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GDP,C)</td>
<td>0.57</td>
<td>0.62</td>
<td>(INV,H)</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>(GDP, INV)</td>
<td>0.88</td>
<td>0.85</td>
<td>(INV,BAA-FFR)</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>(GDP, W)</td>
<td>-0.13</td>
<td>-0.13</td>
<td>(INV,10Y-FFR)</td>
<td>0.21</td>
<td>0.01</td>
</tr>
<tr>
<td>(GDP, INFL)</td>
<td>-0.24</td>
<td>-0.38</td>
<td>(W, INFL)</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>(GDP, FFR)</td>
<td>-0.14</td>
<td>-0.23</td>
<td>(W, FFR)</td>
<td>0.46</td>
<td>0.52</td>
</tr>
<tr>
<td>(GDP, H)</td>
<td>0.12</td>
<td>0.10</td>
<td>(W, H)</td>
<td>-0.18</td>
<td>-0.24</td>
</tr>
<tr>
<td>(GDP, BAA-FFR)</td>
<td>0.05</td>
<td>0.06</td>
<td>(W, BAA-FFR)</td>
<td>-0.42</td>
<td>-0.03</td>
</tr>
<tr>
<td>(GDP, 10Y-FFR)</td>
<td>0.22</td>
<td>0.06</td>
<td>(W,10Y-FFR)</td>
<td>-0.43</td>
<td>-0.03</td>
</tr>
</tbody>
</table>
Model Fit

Table 5: Model Fit

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Data</th>
<th>Model</th>
<th>Correlation</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C, INV)</td>
<td>0.34</td>
<td>0.28</td>
<td>(INFL, FFR)</td>
<td>0.65</td>
<td>0.76</td>
</tr>
<tr>
<td>(C, W)</td>
<td>-0.11</td>
<td>-0.06</td>
<td>(INFL, H)</td>
<td>-0.38</td>
<td>-0.31</td>
</tr>
<tr>
<td>(C, INFL)</td>
<td>-0.33</td>
<td>-0.45</td>
<td>(INFL, BAA-FFR)</td>
<td>-0.49</td>
<td>-0.07</td>
</tr>
<tr>
<td>(C, FFR)</td>
<td>-0.10</td>
<td>-0.33</td>
<td>(INFL, 10YFFR)</td>
<td>-0.52</td>
<td>-0.07</td>
</tr>
<tr>
<td>(C, H)</td>
<td>0.20</td>
<td>0.13</td>
<td>(FFR, H)</td>
<td>-0.38</td>
<td>-0.42</td>
</tr>
<tr>
<td>(C, BAA-FFR)</td>
<td>0.00</td>
<td>0.11</td>
<td>(FFR, BAA-FFR)</td>
<td>-0.49</td>
<td>-0.24</td>
</tr>
<tr>
<td>(C, 10Y-FFR)</td>
<td>0.17</td>
<td>0.11</td>
<td>(FFR, 10YFFR)</td>
<td>-0.52</td>
<td>-0.24</td>
</tr>
<tr>
<td>(INV, W)</td>
<td>-0.05</td>
<td>-0.13</td>
<td>(H, BAA-FFR)</td>
<td>-0.33</td>
<td>-0.26</td>
</tr>
<tr>
<td>(INV, INFL)</td>
<td>-0.11</td>
<td>-0.24</td>
<td>(H, 10Y-FFR)</td>
<td>-0.24</td>
<td>-0.26</td>
</tr>
<tr>
<td>(INV, FFR)</td>
<td>-0.10</td>
<td>-0.11</td>
<td>(BAA-FFR, 10Y-FFR)</td>
<td>0.94</td>
<td>0.997</td>
</tr>
</tbody>
</table>
Shock Decomposition

Table 6: Shock Decomposition

<table>
<thead>
<tr>
<th>Variable</th>
<th>TFP</th>
<th>Inv</th>
<th>Pref</th>
<th>Fin</th>
<th>Mark-ups</th>
<th>Govt</th>
<th>Mon</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP Growth</td>
<td>40.7</td>
<td>9.7</td>
<td>19.0</td>
<td>15.8</td>
<td>2.6</td>
<td>3.8</td>
<td>8.6</td>
</tr>
<tr>
<td>Consumption Growth</td>
<td>47.9</td>
<td>1.6</td>
<td>39.4</td>
<td>0.9</td>
<td>1.6</td>
<td>4.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Investment Growth</td>
<td>21.2</td>
<td>14.5</td>
<td>25.2</td>
<td>28.4</td>
<td>2.0</td>
<td>0.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Wage Growth</td>
<td>28.7</td>
<td>6.8</td>
<td>56.9</td>
<td>3.2</td>
<td>2.2</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Inflation</td>
<td>39.3</td>
<td>3.9</td>
<td>46.1</td>
<td>3.3</td>
<td>4.2</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Federal Funds Rate</td>
<td>24.1</td>
<td>4.1</td>
<td>41.4</td>
<td>3.5</td>
<td>2.5</td>
<td>1.9</td>
<td>22.6</td>
</tr>
<tr>
<td>Hours</td>
<td>9.1</td>
<td>8.3</td>
<td>50.3</td>
<td>18.2</td>
<td>2.9</td>
<td>9.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Spread BAA-FFR</td>
<td>2.5</td>
<td>0.2</td>
<td>1.5</td>
<td>85.5</td>
<td>0.4</td>
<td>0.1</td>
<td>9.9</td>
</tr>
<tr>
<td>Spread 10Y Bond-FFR</td>
<td>2.5</td>
<td>0.2</td>
<td>1.4</td>
<td>85.6</td>
<td>0.4</td>
<td>0.1</td>
<td>9.8</td>
</tr>
</tbody>
</table>