Why are real interest rates so low?

M. Marx, B. Mojon*, F. Velde

The Future of Savings Axa-BdF Conference

4 November 2016
The decline of real rates
The stability of Return on K
(based on national accounts)
Determinants of r in model with demography

- Observable factors
 - Productivity of labor g_A
 - Aging
 - Growth of working age population g_L
 - Increase in the probability of survival s
 - Relative price of capital (developing apps in Palo Alto,...) g_I

- Not so easy to observe factors
 - Levels of debt constraints θ

- 3 periods in life, « young », « middle age », « old »
 $$u(c_{y,t}) + (1 - \delta)u(c_{m,t+1}) + (1 - \delta)^2 s_{t+1} u(c_{o,t+2})$$

- Constraint on debt
 $$b_{y,t+1} \leq \frac{\theta w_{t+1}}{1 + r_{t+1}}$$
Demand and supply => the real rate r

- **Loan demand**

$$L_{D,t} = \frac{\theta (1 + g_L)(1 + g_W)}{1 + r_{t+1}} w_t$$

- **Loan supply**

$$L_{S,t} = (1 - \theta) w_t - c_{m,t} - \frac{r_{K,t+1} k_{t+1}}{1 + r_{t+1}}$$

$$\frac{1}{2} (1 + g_L)(1 + e^y(1 + g_L))(1 + g_W) w_t$$

Où $g_W = 1 + g_A - \frac{g_I}{2}$
What determines r

$$r = \frac{\delta}{2} + g_A + g_L + e^y + \frac{1 - s}{2} - \frac{1}{2} g_I + \frac{3}{10} \theta$$
Impact of observable determinants (US) (pour un $\theta = 0,025$)

-1,7 %
Impact of observable determinants (EA) (pour un $\theta = 0,025$)
Decomposing the effects on r

<table>
<thead>
<tr>
<th></th>
<th>Productivity</th>
<th>Pop. Active</th>
<th>Longevity</th>
<th>Price of Inv.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995-2007</td>
<td>-0,5</td>
<td>0</td>
<td>-0,1</td>
<td>+0,2</td>
<td>-0,4</td>
</tr>
<tr>
<td>2007-2015</td>
<td>-0,6</td>
<td>-0,4</td>
<td>-0,1</td>
<td>-0,2</td>
<td>-1,3</td>
</tr>
<tr>
<td>ZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995-2007</td>
<td>-1,3</td>
<td>-0,2</td>
<td>-0,1</td>
<td>+0,2</td>
<td>-1,3</td>
</tr>
<tr>
<td>2007-2015</td>
<td>-0,3</td>
<td>-0,2</td>
<td>-0,1</td>
<td>-0,1</td>
<td>-0,7</td>
</tr>
</tbody>
</table>
Impact of changing the debt constraint (EA)

- How large should θ be?
 - Household debt is 50% of GDP in the EA, 100% in the US, i.e. 1 to 10% of 20 years of household disposable income
 - Cutting θ from 0.1 to 0.025 implies a 2% fall in r
Conclusion

• Real rates on “risk free” assets dropped by 4% in 20 years and return on capital is flat
• The productivity slowdown explains 1%
• Demography explains another 1 (to 2) %
• The missing (1 to) 2 % reflects either
 – an increase in risk aversion or
 – the perception that risk has increased