A TIME SERIES MODEL OF INTEREST RATES WITH THE EFFECTIVE LOWER BOUND

Benjamin K. Johannsen Elmar Mertens

Federal Reserve Board Bank for International Settlements
The views presented here do not necessarily represent
the views of the Federal Reserve System,
the Federal Open Market Committee,
the Bank for International Settlements,
or their respective staffs.

May 2018
NOMINAL INTEREST RATE
U.S. DATA
3m Tbill, quarterly avg., APR
When nominal interest rates are near zero . . .

- How to do time series with ELB constraint?
 - Forecasting / nowcasting
 - Trend-cycle decomposition: What is \bar{r}_t?
 - Impulse responses
 - . . .

- Conventional models not equipped to deal with ELB
When nominal interest rates are near zero . . .

- How to do time series with ELB constraint?
 - Forecasting / nowcasting
 - Trend-cycle decomposition: What is \bar{r}_t?
 - Impulse responses
 - . . .
- Conventional models not equipped to deal with ELB
When nominal interest rates are near zero . . .

- How to do time series with ELB constraint?
 - Forecasting / nowcasting
 - Trend-cycle decomposition: What is \bar{r}_t?
 - Impulse responses
 - . . .
- Conventional models not equipped to deal with ELB

Shadow rate model

- Hypothetical nominal rate, unconstrained by lower bound
- Our approach: time series w/o no-arbitrage
Shadow Rate s_t

Nominal interest rate that would prevail in the absence of lower bound constraint

Observed Rate i_t

$$i_t = \max (s_t, ELB)$$
Shadow Rate s_t

Nominal interest rate that would prevail in the absence of lower bound constraint

Observed Rate i_t

$$i_t = \max (s_t, ELB)$$

Key idea of our project:

Model s_t with typical time-series tools and handle \max operator
Term Structure Models

\[i_t = \max (s_t, ELB) \text{ is a payoff} \]

- Krippner, Wu & Xia, Bauer & Rudebusch, ...
- No-arbitrage conditions pin down dynamics of \(s_t \)
- Time-invariant, affine processes
- Difficult: time-varying dynamics, changes in parameters
Term Structure Models

\[i_t = \max (s_t, ELB) \text{ is a payoff} \]

- Krippner, Wu & Xia, Bauer & Rudebusch, …
- No-arbitrage conditions pin down dynamics of \(s_t \)
- Time-invariant, affine processes
- Difficult: time-varying dynamics, changes in parameters

Time Series

\[i_t = \max (s_t, ELB) \text{ is a censoring function} \]

- Agnostic about asset pricing
- Time-series projections pin down \(s_t \)
- Can do time-varying parameters, stochastic volatility, etc.
- Resurrects many time series models at ELB
• Identical to actual rate when above ELB
• Identical to actual rate when above ELB

• **Identified by historical co-movements**
 between actual rates and other variables
• Identical to actual rate when above ELB
• Identified by historical co-movements between actual rates and other variables
• **At ELB: a latent state variable** that characterizes the dynamics of actual rates and other variables
• Identical to actual rate when above ELB
• Identified by historical co-movements between actual rates and other variables
• At ELB: a latent state variable that characterizes the dynamics of actual rates and other variables
• **At ELB: Projected “lever” of monetary policy**, based on macro variables, longer-term yields *and* constrained level of actual rate
RELATED LITERATURE

Macro-Time Series at the ELB

Dynamic Term-Structure Models

Unobserved Component Models of the Macroeconomy

AGENDA

1. An Unobserved Components Model
2. Estimates of Shadow Rates, Trends and Cycles
3. Interest Rate Forecasts
4. Impulse Response Analysis
Let’s model the following variables:

- i_t: 3m Tbill Rate
- y_t: vector of 2-year, 5-year and 10-year Treasury yields
- π_t: PCE headline inflation
- \tilde{c}_t: output gap (CBO)

We then need to capture:

- Great Inflation, Great Moderation, Great Recession
- Time-varying volatility
- Drifting means in inflation, nominal yields . . .
- The effective lower bound on nominal rates
Beveridge-Nelson trend as unobserved component

Data: \[X_t = \bar{X}_t + \tilde{X}_t \]

Gap: \[\tilde{X}_t \sim I(0) \]

Trend: \[\bar{X}_t = E_t X_{t+\infty} \]
Beveridge-Nelson trend as unobserved component

Data: \[X_t = \bar{X}_t + \tilde{X}_t \]

Gap: \[\tilde{X}_t \sim I(0) \]

Trend: \[\bar{X}_t = E_t X_{t+\infty} = \bar{X}_{t-1} + \bar{\Sigma}_t^{1/2} \tilde{\epsilon}_t \]
Beveridge-Nelson trend as unobserved component

Data: \(X_t = \bar{X}_t + \tilde{X}_t \)

Gap: \(\tilde{X}_t \sim I(0) \)

Trend: \(\bar{X}_t = E_t X_{t+\infty} = \bar{X}_{t-1} + \sum_{t}^{1/2} \bar{\epsilon}_t \)

Stochastic volatility in trend shocks

- Data can be strongly trending or nearly stationary
- Time-varying persistence
<table>
<thead>
<tr>
<th>Potential output</th>
</tr>
</thead>
<tbody>
<tr>
<td>From CBO</td>
</tr>
</tbody>
</table>

Headline inflation

\[\pi_t = \bar{\pi}_t + \tilde{\pi}_t \]

Nominal (shadow) rates

\[s_t = \bar{s}_t + \tilde{s}_t \]

y_t

\[y_t = \bar{s}_t + \bar{p}_t + \tilde{y}_t \]

spreads:

\[y_t - s_t \sim I(0) \]

\[\bar{s}_t = \bar{\pi}_t + \bar{r}_t \]

Trend dynamics

\[\bar{\pi}_t = \bar{\pi}_t - 1 + \sigma_{\pi,t} \epsilon_{\pi,t} \] (Baseline)

\[\bar{r}_t = \bar{r}_t - 1 + \sigma_{r} \epsilon_{r,t} \]
Potential output

From CBO

Headline inflation

\[\pi_t = \bar{\pi}_t + \tilde{\pi}_t \]
TRENDS AND COINTEGRATION

Potential output
From CBO

Headline inflation

\[\pi_t = \bar{\pi}_t + \tilde{\pi}_t \]

Nominal (shadow) rates

\[s_t = \bar{s}_t + \tilde{s}_t \]
\[y_t = \bar{s}_t + \bar{p} + \tilde{y}_t \]

spreads: \[y_t - s_t \sim I(0) \]
TRENDS AND COINTEGRATION

Potential output

From CBO

Headline inflation

\[\pi_t = \bar{\pi}_t + \tilde{\pi}_t \]

Nominal (shadow) rates

\[s_t = \bar{s}_t + \tilde{s}_t \]
\[y_t = \bar{s}_t + \bar{p} + \tilde{y}_t \]
\[\bar{s}_t = \bar{\pi}_t + \bar{r}_t \]
\[\bar{\pi}_t \perp \bar{r}_t \]
Potential output

From CBO

Headline inflation

\[\pi_t = \bar{\pi}_t + \tilde{\pi}_t \]

Nominal (shadow) rates

\[s_t = \bar{s}_t + \tilde{s}_t \]
\[y_t = \bar{s}_t + \bar{p} + \tilde{y}_t \]
\[\bar{s}_t = \bar{\pi}_t + \bar{r}_t \]

Trend dynamics

\[\bar{\pi}_t = \bar{\pi}_{t-1} + \bar{\sigma}_{\pi,t} \bar{\varepsilon}_{\pi,t} \]
\[\bar{r}_t = \bar{r}_{t-1} + \bar{\sigma}_r \bar{\varepsilon}_{r,t} \]
<table>
<thead>
<tr>
<th>Potential output</th>
<th>From CBO</th>
</tr>
</thead>
</table>

Headline inflation

\[\pi_t = \bar{\pi}_t + \tilde{\pi}_t \]

Nominal (shadow) rates

\[s_t = \bar{s}_t + \tilde{s}_t \]
\[y_t = \bar{s}_t + \bar{p} + \tilde{y}_t \]
\[\bar{s}_t = \bar{\pi}_t + \bar{r}_t \]

Trend dynamics

\[\bar{\pi}_t = \bar{\pi}_{t-1} + \bar{\sigma}_{\pi,t} \tilde{\epsilon}_{\pi,t} \quad \text{(Baseline)} \]
\[\bar{r}_t = \bar{r}_{t-1} + \bar{\sigma}_r \tilde{\epsilon}_{r,t} \]
Trend vs. Natural Real Rate

Trend real rate \(\bar{r}_t = E_t r_{t+\infty} \)

- Forecast of real (shadow) rate in the very long-run
- Agnostic about “appropriate” level of current real rate
- Long-run restriction: applicable to many models
- Equal to median of actual real rate in long run if ELB binds only occasionally

Natural rate, a.k.a. neutral rate, a.k.a. \(r^*_t \)

- Benchmark for current policy
- Typically derived within context of specific structural assumptions to identify “policy-relevant” frictions

If frictions have no long-run effects:

\[
\bar{r}_t = E_t r^*_{t+\infty}
\]
Generic VAR w/SV

\[\tilde{X}_t = \begin{bmatrix} \tilde{\pi}_t & \tilde{c}_t & \tilde{s}_t & \tilde{y}^2_t & \tilde{y}^5_t & \tilde{y}^{10}_t \end{bmatrix} \]

\[A(L) \tilde{X}_t = B \tilde{\Sigma}_t^{1/2} \varepsilon_t \]

where \(B \) unit-lower-triangular and \(\tilde{\Sigma}_t = \text{diag} (\tilde{\sigma}_t^2) \)

SV in VAR residuals

\[\log (\tilde{\sigma}_t^2) = (I - \rho)\mu + \rho \log (\tilde{\sigma}_{t-1}^2) + \Phi^{1/2} \eta_t \]

\(\rho \) diagonal, \(\eta_t \sim N(0, I) \) and \(\Phi \) dense

(similar AR1 for trend SV)
State transition

\[\xi_t = [\bar{X}_t' \; \tilde{X}_t' \; \ldots]' = A_t \xi_{t-1} + B_t \varepsilon_t \]

Shadow-rate "measurement" equation

\[X_t = \begin{bmatrix} S_t \\ M_t \end{bmatrix} = C_t \xi_t \]

Actual-rate measurement equation

\[Z_t = \begin{bmatrix} Y_t \\ M_t \end{bmatrix} = \begin{bmatrix} \max (S_t, ELB) \\ M_t \end{bmatrix} \]
State transition
\[
\xi_t = \begin{bmatrix} \tilde{X}'_t & \tilde{X}'_t & \ldots \end{bmatrix}' = A_t \xi_{t-1} + B_t \varepsilon_t
\]

Shadow-rate “measurement” equation
\[
X_t = \begin{bmatrix} S_t \\ M_t \end{bmatrix} = C_t \xi_t
\]

Actual-rate measurement equation
\[
Z_t = \begin{bmatrix} Y_t \\ M_t \end{bmatrix} = \begin{bmatrix} \max (S_t, ELB) \\ M_t \end{bmatrix}
\]

Estimated with Bayesian MCMC sampler
AGENDA

1. An Unobserved Components Model

2. Estimates of Shadow Rates, Trends and Cycles
 - Shadow Rates
 - Trends and Cycles

3. Interest Rate Forecasts

4. Impulse Response Analysis
AGENDA

1. An Unobserved Components Model

2. Estimates of Shadow Rates, Trends and Cycles
 - Shadow Rates
 - Trends and Cycles

3. Interest Rate Forecasts

4. Impulse Response Analysis
Our model implies a reaction function . . .

\[s_t = \bar{r}_t + \bar{\pi}_t \]
\[+ \phi_c \tilde{C}_t + \phi_\pi (\pi_t - \bar{\pi}_t) + \phi_s (s_{t-1} - \bar{s}_{t-1}) \]
\[+ \ldots + \varepsilon^m_t \]
AGENDA

1. An Unobserved Components Model

2. Estimates of Shadow Rates, Trends and Cycles
 - Shadow Rates
 - Trends and Cycles

3. Interest Rate Forecasts

4. Impulse Response Analysis
LONG-RUN REAL RATE
Grey: median, 50%, 90% bands

[Graph showing a trend over time from 1960 to 2017 with smoothed median, 50%, and 90% bands for the long-run real rate.]
LONG-RUN REAL RATE
Grey: median, 50%, 90% bands. Red: $i_t - E_t \pi_{t+1}$
LONG-RUN REAL RATE
Grey: median, 50%, 90% bands. Red: Laubach-Williams
LONG-RUN REAL RATE
Grey: median, 50%, 90% bands. Red: Laubach-Williams
LONG-RUN REAL RATE
Our estimates indicate a much smaller decline than others . . .

1) Stochastic volatility in trends and gaps

SV allows our model to adjust the signal-to-noise ratio as amplitude of business cycle changes over the course of Great Inflation / Moderation / Recession

2) Shadow rate keeps moving throughout ELB period

Model sees ongoing cycle as opposed to “ELB = nominal trend”
1) Business cycle measure
Similar results w/ CBO unemployment rate gap

2) Ordering of variables in gap VAR

\[A(L) \tilde{X}_t = B \tilde{\Sigma}_t^{1/2} \varepsilon_t \]

- VAR-SV not invariant to ordering of variables
- Similar results with various orderings for \(\tilde{X}_t \)

3) SV in \(\bar{r}_t \)

\[\bar{r}_t = \bar{r}_{t-1} + \bar{\sigma}_{r,t} \bar{\eta}_{r,t} \quad \log \left(\bar{\sigma}_{r,t}^2 \right) \sim AR(1) \]

- MDD: harmonic mean and particle filter for \(p(Z|\theta) \)
- Bayes factors strongly prefer constant variance in \(\bar{r}_t \)
AGENDA

1. An Unobserved Components Model
2. Estimates of Shadow Rates, Trends and Cycles
3. Interest Rate Forecasts
4. Impulse Response Analysis
FORECAST COMPARISON

Quasi-real-time forecasts

- Compare to model of Wu and Xia (2016) and SPF
- Mean/median forecasts compared with RMSE and MAD
- Rel. RMSE > 1: our model performs better

Relative RMSE (post 2008):

<table>
<thead>
<tr>
<th>Forecast horizon h (quarters)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W-X$ (short rate)</td>
<td>0.68</td>
<td>0.94</td>
<td>1.01</td>
<td>1.10</td>
<td>1.44</td>
</tr>
<tr>
<td>SPF (short rate)</td>
<td>0.36</td>
<td>1.03</td>
<td>1.26</td>
<td>1.30</td>
<td>1.25</td>
</tr>
<tr>
<td>$W-X$ (long rate)</td>
<td>0.99</td>
<td>1.03</td>
<td>1.06</td>
<td>1.10*</td>
<td>1.12**</td>
</tr>
<tr>
<td>SPF (long rate)</td>
<td>0.67***</td>
<td>1.07</td>
<td>1.25**</td>
<td>1.35***</td>
<td>1.50***</td>
</tr>
</tbody>
</table>

Stars indicate Diebold-Mariano test significance levels
AGENDA

1. An Unobserved Components Model
2. Estimates of Shadow Rates, Trends and Cycles
3. Interest Rate Forecasts
4. Impulse Response Analysis
Comparable to SVAR literature:

- VAR(∞) representation for $X_t = [S'_t \ M'_t]'$
- Policy shock is linear combination of VAR residuals
- CEE-like Choleski scheme: MP shock is . . .
 - shadow-rate surprise
 - orthogonal to π_t and \tilde{c}_t
Comparable to SVAR literature:

- VAR(∞) representation for \(X_t = [S'_t \ M'_t]' \)
- Policy shock is linear combination of VAR residuals
- CEE-like Choleski scheme: MP shock is . . .
 - shadow-rate surprise
 - orthogonal to \(\pi_t \) and \(\tilde{c}_t \)

UCSV generates time-varying VAR
Comparable to SVAR literature:

- VAR(∞) representation for $X_t = \begin{bmatrix} S_t' & M_t' \end{bmatrix}'$
- Policy shock is linear combination of VAR residuals
- CEE-like Choleski scheme: MP shock is . . .
 - shadow-rate surprise
 - orthogonal to π_t and \tilde{c}_t
- Particle filter conditioned on Z_{t-1}: SV, s_t, . . .

UCSV generates time-varying VAR

Recall:

$$X_t = \begin{bmatrix} S_t \\ M_t \end{bmatrix} \quad Z_t = \begin{bmatrix} Y_t \\ M_t \end{bmatrix}$$
BASELINE FORECAST
Forecast for policy rate, $t = 2015:Q4$: $E(i_{t+h} \mid Z^{t-1})$
UPDATED FORECAST AFTER IMPULSE
After 1pp shadow-rate impulse at $t = 2015:Q4$: $E(i_{t+h} | Z^{t-1}, \varepsilon_t^M)$
POLICY RATE IRF
IRF as change from baseline after 1pp shadow-rate impulse at $t = 2015:Q4$
After 1pp decline in shadow rate, orthogonal to inflation and business cycle.
ACTUAL RATE RESPONSES
After 1pp decline in shadow rate, orthogonal to inflation and business cycle.
TAKE AWAYS

Shadow-rate MP shocks at ELB

- Less permanent effects on level of interest rates

 During recession, impulses considered largely cyclical
YIELD SPREAD (10Y ./. 2Y) RESPONSES
After 1pp decline in shadow rate, orthogonal to inflation and business cycle
TAKE AWAYS

<table>
<thead>
<tr>
<th>Shadow-rate MP shocks at ELB</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Less permanent effects on level of interest rates</td>
</tr>
<tr>
<td>During recession, impulses considered largely cyclical</td>
</tr>
<tr>
<td>• More pronounced effects on term premia</td>
</tr>
<tr>
<td>Picking up unconventional policy?</td>
</tr>
</tbody>
</table>
After 1pp decline in shadow rate, orthogonal to inflation and business cycle
TAKE AWAYS

Shadow-rate MP shocks at ELB

- Less permanent effects on level of interest rates

 During recession, impulses considered largely cyclical

- More pronounced effects on term premia

 Picking up unconventional policy?

- More stimulus of real activity

 Unconventional policy very effective?
INFLATION RESPONSES
After 1pp decline in shadow rate, orthogonal to inflation and business cycle.
INFLATION GAP RESPONSES
After 1pp decline in shadow rate, orthogonal to inflation and business cycle.
Shadow-rate MP shocks at ELB

- Less permanent effects on level of interest rates

 During recession, impulses considered largely cyclical

- More pronounced effects on term premia

 Picking up unconventional policy?

- More stimulus of real activity

 Unconventional policy very effective?

- **Smaller effects on inflation** (short- and long-run)

 Long-run Fisher effects dominates flattening Phillips Curve (conditional on MP shocks)
CONCLUSIONS

New method

• Shadow-rate sampling extends wide class of “standard” time-series tools to accommodate nominal rates at ELB
• Shadow rate is an unobserved state variable that affects model dynamics and forecasts

Model Results

• Real-rate trend estimates edged down recently, but not significantly so
• Shadow-rate relevant for forecasting nominal rates
• If interpreted as unobserved stance of monetary policy: interesting time-variation in IRFs near the ELB