Web Scraping Housing Prices in Real-time: the Covid-19 Crisis in the UK

Jean-Charles Bricongne¹, Baptiste Meunier² and Sylvain Pouget³

August 2021, WP #827

ABSTRACT

While official statistics provide lagged and aggregate information on the housing market, extensive information is available publicly on real-estate websites. By web scraping them for the UK on a daily basis, this paper extracts a large database from which we build timelier and highly granular indicators. One originality of the dataset is to provide the sellers’ perspective, allowing to compute innovative indicators of the housing market such as the number of new posted offers or how prices fluctuate over time for existing offers. Matching selling prices in our dataset with transacted prices from the notarial database using machine learning techniques allows us to measure the negotiation margin of buyers – an innovation to the literature. During the Covid-19 crisis, these indicators demonstrate the freezing of the market and the “wait-and-see” behaviour of sellers. They also show that prices have been increasing in rural regions after the lockdown but experienced a continued decline in London.

Keywords: Housing, Real-time, Big Data, Web Scraping, High Frequency, United Kingdom

JEL classification: E01, R30

¹ Banque de France, AMSE, LEO, LIEPP, jean-charles.bricongne@banque-france.fr
² Banque de France, AMSE, baptiste.meunier@banque-france.fr
³ ENSIMAG, pougetsylvain12@gmail.com

We are very grateful to Kieran McQuinn (discussant), Jean Clark, Nigel Henretty, Karim Abdalla, Françoise Drumetz, Olivier de Bandt, and Nicolas Chatelais for useful comments. We thank Jerome Coffinet and Etienne Kintzler for excellent assistance regarding the automatizing of the data acquisition process. The views expressed here are those of the authors and do not necessarily represent those of the Banque de France, LEO, LIEPP, AMSE or ENSIMAG.

Working Papers reflect the opinions of the authors and do not necessarily express the views of the Banque de France. This document is available on publications.banque-france.fr/en
NON-TECHNICAL SUMMARY

Official statistics on the residential housing market are generally available with a certain delay and most are provided at aggregate level while discrepancies between urban and rural areas have been well documented in the literature (e.g. Poon and Garratt, 2012 for the UK). Getting timely information might be even more critical during crisis episodes such as the Covid-19 pandemics as the publication delays of official statistics do not allow to grasp dramatic and sudden turning points in the economic activity. In the meantime, a lot of information is available publicly and in real-time on real-estate websites, particularly on the residential segment where 92% of real-estate firms post ads on the Internet. Using these alternative data would then make it possible to construct indicators more rapidly (real-time), at higher frequency (daily), and with high granularity (at the postcode level).

Our approach focuses on the UK – but could be seamlessly extended to other countries – and consists in web-scraping the five main real-estate websites in the UK. On average, we scrap around 1.5 million offers (for sale and to rent) per day with extensive information on price, location, area, number of rooms, description, type of offers, and type of dwelling. The originality of the web-scraped data lies in getting the sellers’ perspective through the offers that they (or the real-estate agencies they mandate) post on the Internet – while much of the literature and all official statistics rely on the transactions.

This dataset first allows for a monitoring of the housing market in real-time. The selling price can be tracked daily and at a highly granular level, offering an early and finer picture of the on-going developments in the market – therefore complementing official statistics. In the same vein, usual indicators of the housing market (e.g. rent-to-price ratio) can be issued in real-time. These indicators complement official statistics by giving insights on the point of view of sellers. This is where the originality of our web-scraped dataset lies, and this peculiar standpoint allows for innovative indicators. A first example of it is the number of new offers posted each week – indicating sellers’ willingness to put their properties on the market. A second one relates to the price changes for an existing offer: daily web scraping makes it possible to track one particular offer over time and observe how the seller adjust its price. Interestingly, this gives a very early signal of the dynamics in the housing market – as this happens before any transaction can even be registered in official statistics.

Using these indicators on a daily basis, we track the UK housing market during the Covid-19 crisis and document a clear 80% decline in the number of new offers during the first lockdown (see Figure 1) while showing that sellers refrained from moving their prices during this period, suggesting a “wait-and-see” approach. In the aftermath of the lockdown, mean selling prices started to increase at country-level. However, this hides large discrepancies across regions: while prices increased steadily in rural areas, they declined in London (with potential composition effects though) – the region that was most affected by the virus, and where evidence suggests that the housing market is the most tense.

This dataset also allows to match web-scraped data on posted ads with notarial data on transactions, making it possible to compute the difference between posted and transacted prices. This is a direct indication of the buyers’ negotiation margin in the vein of Galesi et al. (2020), which can be computed at a very granular level and tracked over time. In the particular case of the UK, this indicator shows large discrepancies across regions with buyers’ negotiation margin being lowest in London.
Données de prix immobiliers extraites d’Internet (web scraping) en temps réel : le cas de la crise de la Covid-19 au Royaume-Uni

RÉSUMÉ

Alors que les données officielles sont disponibles avec un décalage et à un niveau souvent agrégé, de nombreuses informations peuvent être extraites en temps réel et publiquement des sites d’annonces immobilières. Cet article construit ainsi une large base de données en récupérant les annonces immobilières sur Internet (web scraping). Cela permet de construire des indicateurs avancés et très granulaires du marché immobilier. L’originalité des données vient aussi de ce qu’elles donnent le point de vue des vendeurs – quand la plupart des statistiques et de la littérature se basent sur les transactions. En exploitant cette originalité, nous construisons des indicateurs innovants comme le nombre de nouvelles offres ou les ajustements de prix des offres déjà sur le marché. Cela permet également de comparer les prix demandés par les vendeurs – issus de notre base de données – avec les prix finaux de transaction – en utilisant la base de données des notaires : cela donne une mesure du pouvoir de négociation des acheteurs. Pendant la crise de la Covid-19, ces indicateurs documentent une baisse drastique de 80% de l’activité sur le marché immobilier et le comportement attentiste des vendeurs. Par la suite, ils montrent la légère hausse des prix en zone rurale et leur baisse dans la région de Londres.

Mots-clés : immobilier, temps réel, données haute fréquence, web scraping, big data

Les Documents de travail reflètent les idées personnelles de leurs auteurs et n’expriment pas nécessairement la position de la Banque de France. Ils sont disponibles sur publications.banque-france.fr
1 Introduction

Official statistics on the residential housing market are relatively scarce and available with a significant delay. In the UK – the reference market in this article – official transacted prices are published in the Land Registry only two months after the end of the corresponding month, or even later for transactions that may be registered with some delay, as shown in Figure 1. The earliest indicators (House Price index and new mortgage approvals) are available in the following month but are proxy statistics based on mortgage data. Hence, timelier information might complement these official statistics. In addition, most of these early statistics are provided at aggregate level while discrepancies between urban – most notably London – and rural areas have been documented in the literature (e.g. Poon and Garratt, 2012). In the meantime however, a lot of information is available publicly and in real-time on real-estate websites, particularly for the residential segment where 92% of real-estate firms post ads on the Internet. Getting timely information might be even more critical during crisis episodes such as the Covid-19 pandemics as the publication delays of official statistics do not allow to grasp immediately the dramatic and sudden turning points in economic activity.

Against this background, the purpose of this paper is to exploit such publicly available information online to build real-time and granular indicators for the housing market. Our approach builds on web-scraping the five main real-estate websites in the UK: Zoopla, Rightmove, and OnTheMarket – plus PropertyPal and S1Homes which focus on Northern Ireland and Scotland respectively. On average, we scrap around 1.5 million offers per day with extensive information on price, type of ads (for sale or to rent), location, area, number of rooms, type of good, and general description. Taking advantage

of this innovative dataset, we build real-time indicators of the housing market that can complement the official statistics.

The originality of the web-scraped data lies in getting the sellers’ perspective through the offers that they (or the real-estate agencies they mandate) post on the Internet, a peculiar point of view – in the literature on housing – which brings a twofold value-added. It first allows to monitoring the housing market in real-time notably through the selling price that can be tracked daily and at a highly granular level. But this original dataset also allows for innovative indicators. A first example is the number of new offers – indicating sellers’ willingness to put their properties on the market. A second one relates to the price changes for an existing offer: daily web-scraping makes it possible to track one offer over time and observe how sellers adjust their prices. Interestingly, this gives a very early signal of on-going developments in the housing market – as this happens before any transaction can even be registered in official statistics. On top on this real-time monitoring of the housing market, the second value brought by this dataset is the possibility to match data on posted ads with notarial data on transactions, allowing to compute the difference between posted and transacted prices – indicating the negotiation margin of buyers.

Using these indicators in a conjectural fashion, we track the UK housing market during the Covid-19 crisis. Indicators shows a clear 80% decline in the number of new offers during the first lockdown and also shows that during the lockdown, sellers refrained from changing their prices, suggesting that most adopted a "wait-and-see" approach. In the aftermath of the lockdown, mean selling prices started to increase at country-level. However, this hides large discrepancies across regions: while prices increased steadily in rural areas, they declined in London – the region most affected by the virus and where evidence suggests that the housing market is the most tense. In a second endeavour, we also compute the buyers’ negotiation margin, showing large heterogeneities across regions.

This paper contributes to the literature, first by providing new evidence for the ongoing move to higher frequency statistics relying to some extent on alternative data (see Veronese et al., 2020). Rather than competing with official statistics, our web-scraped data however complement the latter by detecting trends with enhanced timeliness (daily indices in real-time vs. monthly / quarterly with lag) and high granularity (ZIP code level vs. at best region-level). In a broader perspective, this paper mirrors the recent endeavour across economists to design high-frequency indicators (e.g. Lewis et al., 2020) – which the Covid-19 and the subsequent abrupt swings in economic activity made more pressing. More specifically, we also contribute to the literature using alternative data to monitor the real-estate market, such as Kulkarni et al., 2009 with Google Trends. Closer to us, we expand a recent strand of the literature making use of web-scraping to analyze
the housing market (e.g. Hanson and Santas, 2014). In this strand of the literature, this paper is among the first with Galesi et al., 2020 to derive indicators focusing on sellers’ perspective, and to use it to compute a metrics for buyers’ negotiation margin. Finally, this paper stands out by focusing on the UK market in this Covid-19 / Brexit period – though the approach can be seamlessly expanded in other geographies.

The remainder of the paper is organised as follows. Section 2 reviews the related literature, section 3 describes how we retrieve and clean the data, section 4 presents the real-time monitoring of the housing market during the Covid-19 crisis. Section 5 explores alternative indicators, namely a measure of buyers’ negotiation power as well as the rent-to-price ratio. Finally, section 6 concludes.

2 Literature review

This paper first contributes to the literature on monitoring the housing market, a key topic for economists not only because of its importance in the transmission between credit and business cycles (Kiyotaki, 1998) but also as it may act as a propagation mechanism for shocks (Kiyotaki and Moore, 1997) or even be the source of larger crises (Cheng et al., 2014). House prices can become disconnected from fundamentals up to the point that agents sharply revise down their assessment (Case and Schiller, 1990; Case and Schiller, 2003), potentially leading to a deterioration of banks’ balance sheets while inducing negative wealth effect for households (e.g. Slacalek, 2009) with both factors ultimately weighing on aggregate demand. In that vein, papers such as Rünstler and Vlekke, 2018 establish a strong correlation between the housing cycle and GDP components. Therefore, designing indicators tracking price misalignments (e.g. rent-to-price ratio, vacancy rate, pending sales, price-to-income ratio) has been a long-lasting endeavour in the literature (e.g. Miller and Sklarz, 1986, Flood, 1997, Quigley, 2001, Case and Wachter, 2005, Lind, 2009, Dujardin et al., 2015, Engsted et al., 2016, and Blot et al., 2018).

We contribute to this literature by using cutting-edge techniques to retrieve information at the fastest pace – in real-time – and in a very granular fashion – at ZIP code level, keeping however in mind the need to conciliate granularity with the representativeness constraint. In addition, our dataset allows us to get information from the sellers’ perspective in contrast with usual indicators that rely on transactions. Therefore, we are also able to design innovative indicators reflecting sellers’ point of view (number of new offers, price changes for existing offers), allowing to compare selling prices with final transacted prices and therefore to measure the negotiation margin of buyers. On a more conjectural standpoint, we contribute by monitoring the impact of the Covid-19 on the
This paper also contributes to the growing field of the literature focusing on tracking the economy in real-time. In the wake of the Covid-19 crisis, a number of innovative high-frequency datasets have emerged such as weekly labour statistics (Coibion et al., 2020), daily credit card data (Carvalho et al., 2020), hourly electricity consumption (Chen et al., 2020), or marine traffic by the minute (Cerdeiro et al., 2020). Particularly illustrative of this search for original data, Chetty et al., 2020 have developed multiple partnerships with private entities to provide a vast amount of data — untapped until now in the economic literature — on US employment, household spending and mobility. In the same vein, Bricongne et al., 2020 have proposed a number of indicators for the French economy available from public sources. These high-frequency data allow for a swift detection of turning point in economic activity and their signalling power has been used to develop activity trackers such as in Lewis et al., 2020 or to nowcast macroeconomic variables such as world GDP in Jardet and Meunier, 2020. We contribute by covering the housing market while most of this literature has rather focused on GDP, industrial production or households’ consumption.

This paper more closely relates to the literature using alternative data, including through web-scraping, to analyse the housing market. Web-scraping is indeed increasingly used in housing, whether for obtaining the levels of house prices (Bricongne et al., 2019) or rents (Chapelle and Eymeoud, 2018). This innovative technique has also been used to address more specific issues such as potential discrimination in rentals across the US (Hanson and Santas, 2014) or the impact of rent control in Germany (Mense et al., 2017). Web-scraping is also extensively used to take into account new digital players of the housing market not covered by official statistics, for example Airbnb (Horn and Merante, 2017) or García-López et al., 2020. More broadly, a number of papers have relied on user-generated data available online to analyse the housing market such as Askitas, 2015 and McLaren and Shanbhogue, 2011. In particular, Wu and Brynjolfsson, 2013 Veldhuizen et al., 2016, Oust and Martin, 2018 and Pavlou and Kristoufek, 2019 have demonstrated the capacity of Google searches data to monitor the dynamics of the housing market. Closer to us would be both Boeing and Waddell, 2017 who use web-scraping for tracking the housing market but focus only on rentals in the US, and Loberto et al., 2018 who use also web-scraped ads for monitoring the Italian real-estate market. We contribute to this literature through a more comprehensive effort to monitor in real-time and for all types of goods the housing market for the UK. In the effort to compute buyers’ negotiation margin, this paper is close to Galesi et al., 2020 who however do not rely on web-scraping and do not compute real-time information on the housing market.

Policy-wise and particularly relevant to our focus, we finally contribute to the on-going
movement calling economists – and particularly national statistical agencies – to rely more on alternative data. While the Covid-19 crisis has amplified this burgeoning movement (Veronese et al., 2020), a number of initiatives had been taken beforehand. Interestingly, some relied on web-scraping as a form of data collection such as Polidoro et al., 2015 who get consumer prices for the Italian National Institute of Statistics (ISTAT) or Dumbacher and Capps, 2016 who retrieve government tax revenue for the US Census Bureau. Owing to heterogeneities in the source data (posted offers vs. transactions) as well as in the statistical adjustments applied to raw data, the indicators developed in this paper however aim at complementing official statistics rather than supplanting them.

3 Data

3.1 Web-scraping

Data are retrieved through a daily web-scraping of the three most important real-estate websites in the UK: Zoopla, Rightmove, and OnTheMarket. To enhance our coverage on specific areas, we also scrap PropertyPal – a real-estate website specialized on Northern Ireland – and S1Homes – its alter ego for Scotland. Through these websites, we scrap on average more than 1,500,000 real-estate offers every day. Out of these, around two thirds are offers for sale. More details can be found in Table 1. Data for Zoopla are scraped since the beginning of March 2020 while data for other websites are available since July 2020.

In the residential segment, newly built dwellings represent on average around 11% of the total offers – a broadly stable share over time as shown in Figure 11 in appendix B and in line with the share of new buildings in official UK’s House Price Index, around 10%.

<table>
<thead>
<tr>
<th>Website name</th>
<th>For sale</th>
<th>To rent</th>
<th>Commercial for sale</th>
<th>Commercial to rent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoopla</td>
<td>300,000</td>
<td>200,000</td>
<td>15,000</td>
<td>35,000</td>
</tr>
<tr>
<td>Rightmove</td>
<td>500,000</td>
<td>200,000</td>
<td>20,000</td>
<td>25,000</td>
</tr>
<tr>
<td>OnTheMarket</td>
<td>250,000</td>
<td>100,000</td>
<td>5,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>

For each offer, we scrap information describing in detail the dwelling, the type of trans-

2For this reason, the analysis undertaken in section 4 regarding the effect of the Covid-19 on the UK housing market relies only on Zoopla data.
action, the price, and importantly its location at a very granular level. For our main provider Zoopla, we get the following information for residential real-estate offers: city, ZIP code, address, surface area, type of transaction (auction vs. sale), type of building (new housing projects vs. existing dwellings), number of bedrooms, number of bathrooms, number of living rooms, general description (e.g. "lovely flat with a terrace in a safe neighbourhood"), and type of good (e.g. flat, duplex, property). For commercial real-estate offers, we also retrieve the type of use such as hotel, offices, pub, restaurant, retail, warehouse, parking. Having extensive information on an offer might allow to better isolate the market effect from other elements that can affect the pricing of an offer (location, type of good, area, etc.). In particular, retrieving the general description might allow to check whether it contains keywords referring to additional facilities (e.g. balcony, terrace, garage) that can add a premium on the price.

3.2 Data cleaning

Once data are scraped, we first perform quality checks and harmonize the observations. We first test if the price is displayed in British pounds and not in other currencies. We also give special attention to the area unit as they can be displayed in squared feet, squared meters or even acres. Where appropriate, we transform it to have all our data expressed in the same unit (squared meters). In addition, instead of displaying a single value for the area, offers might display a range: in this case, we transform it to the mean of such range. We also address the fact that rents can be expressed as weekly amount: in this case, we transform the data to have rent expressed per calendar month. For string objects, we transform them to enhance the comparability of keywords across offers: we lower characters and eliminate extraneous space character, line break and tabulation.

We also filter our data in order to gain a consistent picture of UK real-estate market. We first exclude properties that do not match residential offers like garages, parkings, mobile homes, lands and bungalows. Focusing on offers for sale posted on Zoopla, these offers accounts for around 30,000 offers per day – roughly 10% of the total offers for sale in the residential segment. Second, we handle duplicates that may arise even on

3However, area data are missing for a large number of observations. While it might be natural to interpolate such data, the issue is that this data are not missing at random: area is often quoted for premium dwellings geared towards international buyers such as large apartments in London. Owing to this issue and the fact that area is provided for a very limited sample (less than 5%), no interpolation is conducted.

4Further specific analysis on land prices can be found in appendix D

5The main provider in the analysis below, since the scraping has started in March 2020 for this website vs. July 2020 for other websites

6
the same website. For dwellings that share the same address, title of the offer, number of rooms, elements of description, and price, we keep only one of them. However we do it only for existing dwellings: in the case of new dwellings, a seemingly similar offer can match different properties – as multiple dwellings with similar characteristics can be constructed simultaneously in the same building. Also for offers for sale on Zoopla, around 7,500 daily offers are duplicates – around 2.5% of the total offers for sale in the residential segment. Finally, it appears that a number of real-estate deals in the UK are transacted by auctions: in this case, the price displayed is in fact the reserve price. Therefore, we drop this type of offers that amounts to around 3,000 daily offers (1% of total). In total, these steps eliminate around 15% of the offers. Figure 12 in appendix B shows that the number of offers removed in those filtering steps remains broadly stable over time – an indication of the regularity of our dataset. In addition, Figure 2 presents evidence that price trends remain similar after those filtering steps. We finally smooth the remaining outliers by performing a winsorization at the 1% level (even if alternative treatments for extreme values and potential outliers may be envisaged).

Figure 2: Mean selling prices after filtering steps

Source: Zoopla and authors’ calculation

Finally, using text mining techniques on the description of the offer, we create dummy variables associated with the presence of keywords referring to additional facilities (e.g. "parking", "balcony", "garden") or to qualitative aspects (e.g. "viewing", "ground floor") that can affect the price.

The address can be given only at street level: in this case the comparison is done by relying on longitude and latitude coordinates. For more information on this procedure, please refer to the description of the KNN algorithm in Section 5.
3.3 Comparing with official statistics

A conceptual issue relates to whether alternative statistics should be substitutes or complements of official ones, i.e. whether or not the former should aim at providing the exact same information as the latter. In the particular case of this paper, it should be noted that web-scraped data represent a different aspect of the housing market from official data. Official statistics are indeed based on mortgages and transacted prices – values that can be observed when a dwelling is actually sold – while web-scraped data account for the price asked by the seller, which can markedly differ from the transacted price or might not even translate into a transaction at all. On top of this, there is a temporal discrepancy since web-scraped data are taken at the start of the process, when the seller puts its dwelling on the market, while official statistics are taken at the very end of it. Finally, statistical discrepancies might arise since the House Price Index – the main index for housing prices in the UK – is computed as a geometrical mean with values corrected using hedonic regressions and mix-adjustment. This is in contrast with our alternative indices which do not feature similar corrections due to the limited time span in our dataset and the very particular nature of the economic conjecture that might distort the results. We however leave it as an avenue for future research when more data become available. As a consequence, in the particular context of this paper, discrepancies are inevitable between alternative and official statistics, and the former should rather be viewed as a complement of the latter.

While discrepancies with official statistics are inevitable, we however tried to limit biases in our web-scraped data. A key question relates to its representativity: while a vast majority of real-estate firms post ads on real-estate websites (92% according to Realtor – op. cit.), this might entail composition effects due notably to uneven geographical coverage. As shown in appendix A, the geographical coverage of our main provider 7In addition, our alternative indices use the arithmetic mean vs. the geometric mean in official statistics. That being said, a figure with median prices, less influenced by high-value properties than arithmetic mean, can be found in Figure 13 in appendix B it conveys the same message as Figure 6 based on the arithmetic mean. The median house price obtained from web-scraped data is also broadly similar to the statistically-adjusted geometric mean price in Land Registry as shown in Figure 14.

8This number however likely constitutes an upper bound to the share of "real-life" ads that are captured by web-scraping. Another upper bound is given by comparing the number of transactions from Land Registry during a month, with the number of web-scraped ads that disappear during the same month. Results are provided in Table 3 in appendix B both figures are on average broadly similar. A lower bound can be computed through the share of transactions in Land Registry matched in our dataset (see section 5): using only data from Zoopla and assuming conservative assumptions that limit the matching, such a lower bound is estimated at a relatively low level, e.g 23% in London though there are regional disparities. This relatively limited matching also reflects the fact that some transactions were not yet registered in official statistics with data retrieved at the time of the study (Nov. 2020).
Zoopla is indeed uneven with an over-representation of England. This is the main reason why we complement it with other websites, and in particular PropertyPal and S1Homes which specialize respectively in Northern Ireland and Scotland. It should however be noted that results in section 4 are based only on Zoopla data since the web-scraping of other websites started only as of July 2020, a caveat to keep in mind for section 4. Consequently, the cross-sectional analysis in this section is limited to England for which the geographical coverage of Zoopla is more balanced. In addition, most of the statistics presented in this paper are at granular level, limiting such an issue of composition effects.

4 Real-time monitoring of the housing market: an application to the Covid-19 crisis

Using our web-scraped data, we produce daily statistics for the housing market – in advance of official statistics. Interestingly, we can also use location data to construct indicators at a very granular level. This allows to track several usual indicators (e.g. mean price, number of new construction projects) with enhanced timeliness compared with official statistics, together with a high granularity.

In addition, getting data from offers gives us the perspective from the sellers – in contrast with usual statistics based on transaction data. It therefore brings an innovative standpoint on the housing market: as such we track the number of new offers which indicates whether sellers are eager to put their properties on the market. A deviation from its "normal" value would signal that sellers are anticipating (or facing) a shock in the housing market. Interestingly, our dataset also allows to track how the price of an existing offer fluctuates over time. Again, a deviation from the "normal" trend of corrections (even under stable economic conditions, sellers might adjust their prices over time to correct for initial under-/over-valuations) would indicate potential crisis/bubble episodes. The advantage of this approach relatively to official statistics is that the latter are based on transactions while our approach is based on offers, therefore at an earlier stage of the process. This might then allow for a swifter detection of turning points in the housing market.

For the mean price at national level, we compute an alternative index in a bottom-up fashion where regional indices are aggregated and weighted by their average share of dwellings sold from Land Registry data. This weighted mean is shown in Figure 15 in appendix B, which compares to the simple mean of Figure 5 in section 4. Both show the same trend.
4.1 An Application: UK real-estate amidst the Covid-19 crisis

A first indicator is the number of new offers – which indicates whether sellers find it is the appropriate time to sell their property. In Figure 3 we display the weekly number of new offers. This has clearly been 5 to 6 times less important during the lockdown than after or before this period.

![Figure 3: Weekly new offers](source: Zoopla and authors’ calculation)

Another indicator is the number of offers that are still available after one month on the website. This is displayed in Figure 4 on which a strong lockdown effect appears as around 90% of the offers posted at the beginning of April were still available one month later. After the lockdown, the proportion drops progressively and stabilizes around its pre-lockdown level at about two thirds of the total.

10While data are available at daily frequency, looking at a weekly sum has the advantage of taking care of intra-weekly seasonality in offer posting.
We now turn to daily prices in Figure 5 showing the mean price at national level. This figure and the monthly growth rate recapitulated in Table 2 show a slight decrease from end-February to the beginning of May, followed by a steady increase after the lockdown. This figure also highlights the role of filtering which removes non-residential offers (e.g. garage, parking, lands) whose average price tends to be lower.

The granularity of our dataset also allows us to explore price trends by categories: available in appendix B, Figures 16, 17, and 18 analyse price level and evolutions by quantiles while Figure 19 shows the prices by dwelling categories (studio; 2-rooms, etc.). Those decompositions are particularly key to alleviate concerns over composition effects that might distort our indices since the lack of surface data impairs computing a price index per squared meter.\footnote{It should be however noted that the same issue arises in official statistics which do not provide such price index per surface.} In the particular case of the Covid-19 crisis, breaking down the sample by price quantiles or dwelling categories suggests that price trends have been shared across all types of dwellings.
Figure 5: Selling price evolution

Source: Zoopla and authors’ calculation

Table 2: Monthly selling price evolution (filtered data)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean price (pounds)</td>
<td>439,998</td>
<td>438,847</td>
<td>439,816</td>
<td>451,566</td>
<td>463,071</td>
<td>467,885</td>
</tr>
<tr>
<td>Monthly change (%)</td>
<td>-</td>
<td>-0.26</td>
<td>0.22</td>
<td>2.67</td>
<td>2.55</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Taking advantage of the granularity of our dataset, prices can also be observed at local level. In Figure 6, we represent price trends for four sub-regions: East England, South-East England, South-West England, and London. While trends are relatively similar for the first three, the case of London stands out with a continued decline from May to the end of August. This may be due to a fall in price per squared meter, a composition effect with more transactions taking place for smaller surfaces or a mix of the two.
Using our web-scraped data, we can also focus on how the price fluctuates for each offer. Using an offer posted at a given day, we check if it is still available in the next day and whether its price has changed; we then repeat the same process day after day. Comparing offers for which the price changes over the total number of offers, it appears that only a minority of offers (between 8 and 10%) experience price changes with 90% of these changes being downward revisions (see Figure 20 in appendix B). In Figure 7 we take a look at the share of offers with price changes after 7, 14, 21, 31 and 45 days on the market. It shows that at the beginning of the lockdown, sellers were not yet ready to change their prices and adopted a "wait-and-see" approach: a significantly lower share of offers experienced price changes compared to pre-lockdown period – even for offers that were in the market for an extended period of time (45 days). However, after the lockdown, the share of offers whose price changes has grown rapidly and stabilized around levels that appear higher than pre-lockdown levels for offers already staying for a longer period in the market.
Further analysis on the web traffic related to UK housing market, based on alternative data from Google Trends and SimilarWeb can be found in appendix C. In particular, it corroborates our finding that price trends have been quite dissimilar in London compared to rural areas since the lockdown.

5 Alternative indicators

On top of monitoring in real-time selling prices and sellers’ behaviour in the housing market, our dataset allows us to derive alternative indicators to measure complementary dimensions in the housing market. In particular, having the sellers’ perspective allows us to measure the difference between selling prices and final transacted prices, therefore providing an estimate for the buyers’ negotiation margin. Such a metrics is – to the best of our knowledge – uncharted in the literature, and can prove useful for actors in the real-estate market (sellers, buyers, intermediaries, and regulators). It can provide, from a policy perspective, an indication of tensions in the housing market which can also be proxied through other early indicators such as the rent-to-price or price-to-income ratios which have been extensively analyzed in the literature (e.g. Lind, 2009 or Bunda and Ca’Zorzi, 2010) – and put into use by regulators to anticipate housing bubbles (e.g. Kelly et al., 2019).
5.1 Measuring buyers’ negotiation margin

One main innovation brought by this paper is to get the perspective of the sellers by retrieving the price that sellers are expecting for their dwellings – in contrast with official statistics based on the prices of transactions. We have shown how this particular perspective can be exploited to monitor the housing market in real-time in section 4. We now turn to comparing our dataset on selling prices with notarial data on transacted prices: while the latter reflects prices after negotiation, the former reflect the price initially expected by the seller. Comparing the two therefore provides information about the negotiation margin of the buyers $M_{r,t}$ for a region r at a time t as the median of all the individual negotiation margins for dwellings j transacted and defined – in line with Galesi et al., 2020\footnote{However, Galesi et al., 2020 compute the regional index as the average of the individuals margins.} – as:

$$\frac{SellingPrice_{j,t} - TransactionPrice_{j,t}}{SellingPrice_{j,t}}$$

Land Registry data provide prices for all real-estate transaction in the UK. In this dataset, dwellings are identified by their exact address, the type of property (e.g. detached, semi-detached, flat), the type of dwelling (new-build or not), the transaction price, and the date of the transaction. Since there is no predefined key to match these notarial data with our web-scraped data, we design a matching algorithm based on the K-Nearest-Neighbours (KNN) algorithm first developed by Fix and Hodges, 1951 and widely used in the machine learning literature (see for example Hastie et al., 2009). A first element of comparison would naturally be the address but ads in the web-scraped dataset are generally not identified by their exact location but in most cases the most granular information is the name of the street. The first step is then to transform addresses in both datasets into longitude and latitude coordinates using openstreetmap – a collaborative project creating a free editable world map – in order to compare the distance between dwellings in Land Registry (exact location) and the web-scraped dataset (approximate location). The algorithm then takes the following sequential steps:

1. Starting from a transaction in the Land Registry, it searches whether observations in the web-scraped share the same longitude and latitude (i.e. at the highest locational precision possible provided by openstreetmap). If no ad is found, the algorithm stops and no matching is done for this transaction,

2. On the selected ads, the algorithm retains only those which share the same type of property (detached, semi-detached, etc.) and the same type of dwelling (new...
or old). If no ad remains, the algorithm stops and no matching is done for this transaction,

3. On the remaining ads, the algorithm retains only those which share the same time range – more precisely those ads that are present at least one time in a range of three months before and two months after the date of the transaction. If no ad remains, the algorithm stops and no matching is done for this transaction,

4. On the remaining ads, the algorithm retains only those falls within a similar price range. Specifically, we assume that the transacted price should have experienced a maximum decrease of 35% and a maximum increase of 35% compared to the selling price. If no ad remains, the algorithm stops and no matching is done for this transaction,

5. At this stage, generally at most a single corresponding ad remains. In the few cases where several ads remain, the algorithm takes the average of their prices as they might be considered as indistinguishable with respects to the transaction.

As a consequence of these constraints, not all transactions are matched (around 30% when using only Zoopla data) but this ensures that only very similar dwellings are matched – a pattern that we manually verify. Step 1 in particular eliminates a number of potential matches given the imprecise location of the web-scraped data. This is in particular the case in rural regions where a street might cover a wider.

Based on this methodology, Figure 8 shows an estimation of the buyers’ negotiation margin at local level computed as the average percent change of the transacted price over the lastly-posted selling price – meaning that if the price on a dwelling changes over time, only the last selling price is kept in the matching with Land Registry. A first observation relates to the fact that transacted prices are lower than selling prices across all regions, as indicated by a negative negotiation margin. Second, buyers’ negotiation margin tends to be largely lower in London – as would be expected in a tense housing market. On the opposite, the negotiation margin is the double of London’s in North-West England and the East Midlands. These large discrepancies across regions validate ex post our granular approach. Finally, while no noticeable change in the negotiation margin can be detected over our time sample, the temporal dimension should come more relevant as more data become available – the web-scraping started only as of February 2020 – in complement of the cross-section analysis presented here.
5.2 Rent-to-price ratio

A well-established early indicator is the rent-to-price ratio (see for example Campbell et al., 2009 and Engsted and Pedersen, 2015) which measures whether it is cheaper to rent or own a property. It is used as an indicator of whether housing prices are overvalued and might also be viewed as a proxy for yields in the housing market – not taking into account taxation. The innovation brought by the web-scraped data is the ability to compute such indicators in real-time and more importantly in a very granular fashion. On top of the rent-to-price ratio, other indicators – the price-to-income ratio and a novel purchasing-power-capacity – are also shown in appendix E.

We produce a rent-to-price estimation by matching an offer to rent in our dataset with offers for sale sharing similar characteristics (ZIP code level, area, number of living rooms, bedrooms, and bathrooms). To construct such an indicator, we rely on machine learning techniques and use the KNN algorithm. We compute the rent-to-price for an individual offer i as:

$$RTP_i = \frac{\text{AnnualRent}_i}{\frac{1}{K} \sum_{j=1}^{K} \text{HomePrice}_j}$$

(2)
In our approach, we match every offer with its $K = 10$ closest ones: for the whole dataset, the rent-to-price ratio stands around 4.1\%13 Our web-scraped data allows us to produce this indicator on a daily basis. A main contribution of our approach lies in the possibility of providing such an indicator at a very granular level. Regional rent-to-price ratios are represented in Figure 9. It validates our granular approach since it shows large discrepancies across regions. In particular, the London area stands out with a very low rent-to-price ratio which might signal to some extent an over-valuation of the housing market – corroborating the findings of Marsden,2015 or more recently Petris et al.,in press for some London’s boroughs – or the fact that this location is considered less risky and that corresponding yield integrates a smaller risk premium.

![Figure 9: Rent-to-price ratio per region](image)

Source: Real-estate websites and authors’ calculation

Due to heterogeneous coverage of UK regions in our web-scraped data, the rent-to-price ratio for the whole dataset cannot however be considered as a rent-to-price at the national level due to composition effects. Using the regional rent-to-price ratios, we

13Note that this depends on K. Rent-to-price ratio varies between 3.7 and 4.1 when taking K between 10 and 50. However if K is larger, a rental offer will be paired with offers for sale less and less related. In addition, if K is larger, the matching would require more data at local level – When this is not the case, the matching is impossible. Therefore when K is larger, matching can only be performed in large cities, distorting the computation of the rent-to-price ratio. For those reasons, we choose $K = 10$ which appears sufficiently low to match an offer only with comparable ones but sufficiently large to have a statistically meaningful number of offers to compare with.

14See appendix A for the coverage of Zoopla. As explained above, the analysis afferent to the Covid-19 period is only computed based on Zoopla data since the web-scraping of other websites has only started later in July 2020.
compute a national index using the share of each region in the total number of dwellings at national level. We find a ratio around 5.1% – to be compared with the 4.1% obtained for the unweighted index. This reflects notably the fact that large urban areas with lower ratios are over-represented in our dataset.

6 Conclusion

By web-scraping main real-estate websites in the UK, this paper builds daily indicators that monitor the housing market in real-time. This approach allows for more timeliness than what can be achieved with official statistics. A second contribution is the high granularity of our dataset (ZIP code level). In addition, our web-scraping approach on online offers shows the perspective of the sellers – in contrast with official statistics based on transactions. We are then able to define a number of innovative indicators for example the number of new offers, indicating buyers’ willingness to put their properties on the market, and how the price of existing offers fluctuates over time. The latter gives a very early signal of the housing market dynamics by showing whether sellers are eager to lower their prices to adapt to economic conditions. Finally, matching our web-scraped data on selling prices with notarial data on transacted prices allows us to assess the buyers’ negotiation margin.

We use these innovative data to monitor the UK housing market during the Covid-19 crisis. The lockdown has been characterized by a freezing of activity in terms of new offers posted and of price adjustments for existing offers. It appears therefore that sellers adopted a "wait-and-see" approach. However, evidence shows that they have been more ready to lower their prices afterwards – in particular for offers that were already on the market for a long time. Mean price slightly decreases during the lockdown until the beginning of May 2020, after which it started to increase at national level. This trend however hides regional disparities as the London area has been experiencing a continued decline in mean selling price since the lockdown. We finally compute rent-to-price ratios at very granular level, an early indicator for imbalances on the housing market. While there is no evidence for changes in this indicator during the Covid-19 period, it displays large heterogeneities across regions – validating somehow our granular endeavour.

A potential limitation is however the lack of timespan since data have been collected only since March 2020. While it captures the Covid-19 crisis, the lack of timespan makes it challenging to properly correct for seasonality issues that might bias the indicators. It also makes it difficult to test for the predictive capacities of our innovative indicators. Another limitation is the fact that we cover only the UK, though the approach can be extended seamlessly to other countries – as long as their main real-estate websites allow
for web-scraping.

Finally, this analysis can be usefully extended to land prices which, combined with other costs (especially construction costs), and possibly compared with the prices of new dwellings, can give insights about under-/over-investment in the construction sector – see for example Bricongne and Pontuch, 2017. Another avenue for future work relates to computing prices indices for commercial real-estate – a category mostly uncovered by official statistics. Finally, web-scraped data can serve in econometric models – for example in nowcasting housing prices or modelling the housing price convergence at longer-term horizons.

\[15\] Preliminary analysis for land prices are performed in appendix D.
References

A Zoopla geographical coverage

In this paper, our main provider is Zoopla whose offers are web-scraped since March 2020 while it started only in July 2020 for other websites. In our analysis of the UK market, it should be kept in mind that the geographical coverage of this provider is however uneven across the UK territory: in the figure below, it appears in particular that data for Scotland and Northern Ireland are limited. This is why we also scrap Propertypal and S1homes, specialized in those two regions.

Figure 10: Zoopla’s geographical coverage
The size of a circle represent the average number of daily ads per ZIP code, in red if > 500, blue if < 100, and green otherwise; source: Zoopla and authors’ calculation
B Additional graphs

Figure 11: Share of newly built dwellings in the residential real-estate

Source: Zoopla and authors’ calculation

Figure 12: Share of offers filtered from the Zoopla dataset

Source: Zoopla and authors’ calculation
Figure 13: Median selling prices by region

Source: Zoopla and authors’ calculation

Figure 14: Statistically-adjusted geometric average selling prices by region

In pounds per dwelling, source: Land Registry
Figure 15: Mean selling prices as a weighted average of regional indices

Source: Zoopla and authors’ calculation

Table 3: Ads removed during a month compared to transactions

<table>
<thead>
<tr>
<th>Average monthly data</th>
<th>Zoopla</th>
<th>Rightmove</th>
<th>OnThe Market</th>
<th>Transactions (Land Registry)</th>
<th>Total dwellings (ONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Midlands</td>
<td>8832</td>
<td>16758</td>
<td>9075</td>
<td>7378</td>
<td>1961000</td>
</tr>
<tr>
<td>East of England</td>
<td>14649</td>
<td>26590</td>
<td>17969</td>
<td>8945</td>
<td>2520000</td>
</tr>
<tr>
<td>London</td>
<td>23693</td>
<td>32274</td>
<td>23923</td>
<td>8862</td>
<td>3318000</td>
</tr>
<tr>
<td>North East England</td>
<td>4531</td>
<td>8472</td>
<td>7097</td>
<td>3959</td>
<td>1164000</td>
</tr>
<tr>
<td>North West England</td>
<td>14691</td>
<td>22935</td>
<td>11949</td>
<td>11172</td>
<td>3111000</td>
</tr>
<tr>
<td>South East England</td>
<td>25838</td>
<td>41095</td>
<td>28253</td>
<td>12974</td>
<td>3683000</td>
</tr>
<tr>
<td>South West England</td>
<td>13053</td>
<td>23346</td>
<td>16428</td>
<td>8909</td>
<td>2403000</td>
</tr>
<tr>
<td>West Midlands</td>
<td>10160</td>
<td>17378</td>
<td>11645</td>
<td>7995</td>
<td>2358000</td>
</tr>
<tr>
<td>Yorkshire and the Humber</td>
<td>9664</td>
<td>15505</td>
<td>11116</td>
<td>8175</td>
<td>2294000</td>
</tr>
</tbody>
</table>
Figure 16: Weekly percentage change per quantile
Source: Zoopla and authors’ calculation

Figure 17: Monthly percentage change per quantile
Source: Zoopla and authors’ calculation
Figure 18: Price by quantile
Source: Zoopla and authors’ calculation

Figure 19: Mean price by dwelling type
Source: Zoopla and authors’ calculation
Figure 20: Price changes as the share of total offers

Source: Zoopla and authors’ calculation
C Web traffic statistics during the Covid-19 crisis

C.1 Google Trends

Google Trends data show a strong effect of Covid-19 on real-estate-related Google searches. Searches for "Zoopla" were plummeting during the first lockdown while those related to "mortgage" peaked – potentially suggesting that some households had envisaged renegotiation. This peculiar Covid-19 period stands out with a clear decorrelation between these two terms, a unique feature in the last 5 years – see Figure 21.

Figure 21: Google Trends for "mortgage" and "Zoopla" over the last 5 years
Source: Google Trends and authors’ calculation

C.2 Similar Web

SimilarWeb, which provides audience data for websites, gives a complementary and congruent view. The loss of traffic during the Covid-19 period is visible in Figure 22 as the real-estate industry in the UK lost a quarter of its traffic in March.
SimilarWeb also shows geographical heterogeneities in this pattern, confirming to some extent the disparities observed in section 4 regarding the evolution of the mean selling price. As shown in Figure 23, web traffic related to property sales in London (the area most affected by the virus) dropped by 12% in March 2020 compared to 2019, while the decline was only 7% for home counties (region immediately outside London). Further away from London, in the city of Canterbury, the traffic related to property sales instead grew by 20%. Also, the traffic for rentals proved more resilient than for non-rentals as the former declined only by 10% year-on-year vs. a 17% drop for the latter.
D Land prices

Part of the scraped data is also labeled as lands and farms. The evolution of land prices in levels is shown in Figure 24. It should however be noted that web-scraped offers for lands include agricultural lands and leisure lands. In future research, identifying building plots could inform on the evolution of this factor in the construction sector.

Figure 24: Land prices

Source: Zoopla and authors’ calculation
Another well-established early indicator in the literature is the price-to-income ratio (André et al., 2014) which measures the number of years of median income necessary to buy a dwelling. It measures the affordability of the housing (the lower, the more affordable) and can be used to analyse the long-term equilibrium of the housing market (Goodman, 1988). Our main contribution to the existing literature is the capacity to compute those ratios at very granular level – building on findings such as those of Gan and Hill, 2009 that a finer picture is more relevant than the national median price-to-income ratio. This heterogeneity can be verified with Figure 25 built on historical prices and incomes from the ONS.

Figure 25: Price-to-income ratio per locality
Source: ONS and authors’ calculation

However the aforementioned price-to-income ratio does not take into account interest rates – as well as other factors that can impact housing prices (see Case and Schiller, 1990). To take into account mortgage rates, we propose the purchasing-power-capacity (PPC) based on the following formula:

\[D \]: median duration
ER: maximum effort rate

MR: mortgage rate

ITP: income-to-price ratio

\[
PPC = \frac{ER}{MR} \cdot ITP \cdot \left[1 - \frac{1}{(1 + MR)^D} \right]
\]

Using historical data from the ONS about income and housing price, and mortgage rates from the Bank of England (or the Building Society Association if not available), this is possible to derive a PPC index for each of the 400 localities in the UK. To compute the index we assume a maximum effort (ER) rate of 33% – which is widely taken as the upper limit for the effort rate in France – and a median duration (D) of 15 years. Results are plotted in Figure 26.

Figure 26: PPC per locality

Source: ONS and authors’ calculation

We then explore the signalling power of this new indicator. Considering data on PPC and on real-estate crisis per locality, we test whether there exists a threshold maximizing the signalling power of the PPC (i.e. a threshold value above which the PPC signals a
potential risk of housing crisis entailing an adjustment of housing prices). More formally, the signalling power is defined as follows:

TP: true positive, i.e. $PPC > \text{threshold}$ and a housing crisis actually occurs

FP: false positive, i.e. $PPC > \text{threshold but no housing crisis actually occurs}$ (incorrect prediction of a crisis)

TN: true negative, i.e. $PPC < \text{threshold}$ and no housing crisis actually occurs

TP: false negative, i.e. $PPC < \text{threshold but a housing crisis actually occurs}$ (incorrect prediction of no crisis)

$$\text{Signalling Power} = \frac{TP}{TP + FN} + \frac{TN}{TN + FP} - 1 \quad (4)$$

The signalling power (also named "informedness" or "bookmaker informedness") can reach 0.48 for an optimal threshold near 0.003. It should be in particular noted that the signalling power of the PPC is higher than for the price-to-income ratio for which it stands only around 0.34. Comparing this threshold with actual values in Figure 27, it appears that many localities in the UK are still above this threshold.

\[16\] 15,000 potential thresholds have been tested.
Figure 27: PPC per locality compared with optimal threshold

Source: ONS and authors’ calculation