Unconventional Monetary and Fiscal Policies in Interconnected Economies:

Do Policy Rules Matter?

Guay C. Lim, University of Melbourne, Parkville, Australia

Paul D. McNelis, Fordham University, New York, USA.

November 2017

Aim: to understand effectiveness of unconventional policies for economies that are highly integrated in trade and finance. Which types of shock and policy combinations make beggar-thy-neighbor effects more likely? Which conditions create win-win outcomes?

Feature: optimal tax rate rules as alternative to unconventional monetary policy (QE) in times of prolonged crisis
• tax rates enter the Euler equations (like interest rates) and affect the intertemporal allocation of resources

• examines conditions when tax-rate rules are as effective in non-QE implementing countries as QE policy to manage crisis
Recent experience: QE Policies in Japan, USA, UK, Euro Zone

Methodology: policies under alternative shock scenarios

- capital quality shocks or financial incentive (leverage) shocks
- countries subject to same/different type of shocks
- base case: no policy response in either country
• country1: adopts QE; country2: (1) do nothing (2) adopt an optimal tax-rate rule for labor income

• simulation of one-off shock - impulse responses

• simulation of recurring shocks - kernel distributions

• zoom in on outcomes during crisis - event study or "dark corner" dynamics

QE and Beggar-Thy Neighbor Effects

• Blustein and Canova (2015): no evidence in European countries of any such effects

• Some better off, others worse off, as a result of ECB policies
• Credit and confidence channels more important than exchange-rate channel for shaping responses in non-QE countries

Model

• two-country economy model

• households, firms, financial intermediaries (bankers), government sector which is responsible for monetary and fiscal policies

• same equations apply to both economies

• banking sector financial friction, in the form of incentive-compatibility constraints linking banking balance sheets with terminal wealth
• NOT firm-level collateral constraint

• Villa has shown that financial frictions in banking sector rather than at the firm level, better explain the propagation of shocks in the Euro Area and USA.

• reference or base case is a no-policy response in both countries.

Consumption and savings

\[
\max E_t \sum_{i=0}^{\infty} \beta^i U(C_t, L_t) \tag{1}
\]

\[
U(C_t, L_t) = \frac{(C_t - hC_{t-1})^{1-\sigma}}{1 - \sigma} - \chi \frac{L_t^{1+\varphi}}{1 + \varphi} \tag{2}
\]

\[
C_t + (B_t + D_t) = (1 - \tau)w_tL_t + \Pi_t \\
+ R_{t-1}(D_{t-1} + B_{t-1}) + T_t \tag{3}
\]
\[\varrho_t = (C_t - hC_{t-1})^{-\sigma} - \beta hE_t (C_{t+1} - hC_t)^{-\sigma} \tag{4} \]

\[\chi L_t^\varphi = \varrho_t w_t (1 - \tau) \tag{5} \]

\[1 = \beta R_t E_t \frac{\varrho_{t+1}}{\varrho_t} = \beta R_t E_t \Lambda_{t,t+1} \tag{6} \]
Investment and borrowing

production - goods producers and capital producers

\[Y_t = A_t K_t^\alpha L_t^{1-\alpha} \] (7)

\[K_{t+1} = \xi_t((1 - \delta)K_t + I_t) = \xi(S_t) \] (8)

\[\xi_t = \rho^\xi \xi_{t-1} + (1 - \rho^\xi)\bar{\xi} + \varepsilon^\xi; \; \varepsilon^\xi \sim N(0, \sigma^2_\xi) \] (9)

capital producers build new capital, maximize discounted profits subject to adjustment cost \(f_t(.) \)

eqn relates price of capital goods \(Q_t \) to marginal cost of producing investment goods:

\[Q_t = 1 + f_t(.) + \frac{\partial f_t(.)}{\partial I_t} I_t + \beta \mathbb{E}_{t+1} I_{t+1} \frac{\partial f_t(.)}{\partial I_t} I_{t+1} \] (10)

\[w_t = (1 - \alpha) \frac{Y_t}{L_t} \] (11)

\[Z_t = \alpha \frac{Y_t}{K_t} \] (12)
producers borrow from financial sector, \(Q_t S_t\) each period at gross rate \(R_t^k\)

\[S_t = (1 - \delta)K_t + I_t \] \hspace{1cm} (13)

\[Q_t S_t + Z_t K_t = R_t^k Q_{t-1} S_{t-1} + Q_t I_t \] \hspace{1cm} (14)

firms borrow to finance the installation of capital; equal to funds provided by the home and foreign-country banks:

\[Q_t(s_t^h + s_t^{h*}) = Q_t S_t = Q_t[(1 - \delta)K_t + I_t] \] \hspace{1cm} (15)

Financial intermediaries - balance sheet equation:

\[Q_{t-1} s_{t-1}^h R_{t-1}^k + Q_{t-1}^* s_{t-1}^f R_{t-1}^{k*} + D_t = Q_t s_t^h + Q_t^* s_t^f + R_{t-1} D_t \] \hspace{1cm} (16)

International accounting

\[Y_t + Y_t^* = C_t + C_t^* + G_t + G_t^* + (1 + f_t(\cdot)) I_t + (1 + f_t^*(\cdot)) I_t^* \] \hspace{1cm} (17)
Banking behavior

- bankers are a subset of the householders and at any point in time, they have the option to start-up new banks, continue to invest in banking or exit - probability of exiting: \((1 - \theta)\)

- The incentive-compatibility condition is:
 \[
 V_t \geq \lambda_t W_t,
 \]
 \(\lambda_t\) is the fraction of funds which banks are willing to divert to households, \(W_t\) is the value of the bank’s balance sheet and \(V_t\) is the expected terminal wealth

- value of the bank \(W_t\) is the sum of deposits \(D_t\) and the bank’s net worth \(N\):
 \[
 W_t = N_t + D_t = Q_t s_t^h + Q_t^* s_t^f
 \]
• present value of terminal wealth:

\[
V_t = \max \beta \mathbb{E}_t \{ \Lambda_{t,t+1}[(1 - \theta)N_{t+1} + \theta V_{t+1}] \} \\
V_t = \nu_t \mathcal{W}_t + \eta_t N_t
\]

(19)
(20)

• continuously binding incentive-compatibility constraint - expression for the law of motion for aggregate net worth \(N_t \) (comprising new and existing banks) is:

\[
N_t = \theta \left(\left[\frac{R_t^k - R_{t-1}}{\mathcal{W}_{t-1}} \left(\frac{R_t^k - R_t^{k*}}{\mathcal{W}_{t-1}} \right) \right]^{\phi_{t-1}} \right) N_{t-1} \\
+ \omega \mathcal{W}_{t-1}
\]

(21)

start-up capital of new banks: proportion \(\omega \) of \(\mathcal{W}_{t-1} \)

• leverage ratio \(\phi_t \) defined as the ratio of the banks balance sheet to its net worth:

\[
\mathcal{W}_t = \frac{n_t}{\lambda_t - \nu_t} N_t = \phi_t N_t
\]

(22)
• For completeness, \(\nu_t \) and \(\eta_t \)

\[
\nu_t = \mathbb{E}_t[(1 - \theta)\beta \Lambda_{t+1}(R_{t+1}^k - R_{t+1}) + \beta \Lambda_{t+1}\theta x_{t+1}]
\]

\[
\eta_t = \mathbb{E}_t[(1 - \theta) + \beta \Lambda_{t+1}\theta z_t \eta_{t+1}]
\]

\[
z_{t+1} = \frac{N_{t+1}}{N_t} = (R_{t+1}^k - R_{t+1})\phi_t + R_{t-1}
\]

\[
x_{t+1} = \frac{W_{t+1}}{W_t} = \frac{\phi_{t+1} z_{t+1}}{\phi_t}
\]

• leverage ratio - financial crisis affects the relationship between households and banks

• model the incentive-compatibility ratio \(\lambda_t \) as a time-varying parameter subject to a stochastic process:

\[
\lambda_t = \lambda \exp(\varsigma_t)
\]

\[
\varsigma_t = \rho^\lambda \varsigma_t + (1 - \rho^\lambda)\xi + \varepsilon^\lambda; \quad \varepsilon^\lambda_t \sim N(0, \sigma^2_{\varepsilon^\lambda})
\]

shocks to \(\lambda \) directly affect the leverage ratio, higher \(\lambda \) (reflecting the risks of more funds being diverted by bankers), lower the leverage ratio
Crises and Policies

- two-types of crises - adverse shocks to the financial incentive compatibility ratio, λ_t and to quality of capital, A_t

- capital quality shock affects production directly with consequences for effective capital, return to capital as well as bank’s net worth

- financial incentive shocks affect leverage ratios directly which in turn generates further negative real consequences

- global shocks in an integrated world - same in all experiments - can attribute the different outcomes, relative to a base scenario of no-policy rules, to the policy responses and not to the shocks
• reference case - no policy

• assume country 1 adopts a QE policy (regardless of source of shocks with endogenous changes in G to maintain fiscal balance)

• other country: has a do nothing, or implements a fiscal tax-rate policy (via changes in τ).

• Eqns describing household and firm behavior are identical (with the same parameter values) in all scenarios, but shocks and policy rules differ in each scenario

• assume central bank in country 1 sets its policy rule on the basis of its own domestic objective - QE policy does not take into account country 2’s policy stances
QE and tax-rate rules

- government buys private sector debt $\psi_t Q_t S_t$ where
 ψ_t is a function of the risk premium:
 \[
 \psi_t = \psi + \kappa^q E_t \left(R_{t+1}^k - R_t \right)
 \]
 \[
 (1 - \psi_t) Q_t S_t = Q_t (s_t^h + s_t^{h*})
 \]
 \[
 G_t + \psi_t Q_t S_t = R_{t-1}^k \psi_{t-1} Q_{t-1} S_{t-1} + T
 \]
 κ^q is the optimal policy parameter, ψ is the steady-state QE parameter; $s_t^{h*} \neq 0$

- by assumption, government budget is in balance [$\psi_t > 0$: expansionary QE policies, increase G; $\psi_t < 0$, tapering G is reduced below its steady state]

- fiscal rule for the labor-income tax rate:
 \[
 \tau_t^* = \tau^* - \kappa^{t*} E_t \left(R_{t+1}^{k*} - R_t^* \right)
 \]
 \[
 G_t = T_t + \tau w_t L_t
 \]
 τ^* is the steady-state tax/subsidy rate
Table 1: Calibrated parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount factor</td>
<td>β</td>
<td>0.99</td>
</tr>
<tr>
<td>risk aversion</td>
<td>σ</td>
<td>1</td>
</tr>
<tr>
<td>habit persistence</td>
<td>h</td>
<td>0.815</td>
</tr>
<tr>
<td>relative utility weight of labour</td>
<td>χ</td>
<td>3.40</td>
</tr>
<tr>
<td>inverse Frisch elasticity of labour supply</td>
<td>φ</td>
<td>0.276</td>
</tr>
<tr>
<td>capital share</td>
<td>α</td>
<td>0.33</td>
</tr>
<tr>
<td>depreciation rate</td>
<td>δ</td>
<td>0.025</td>
</tr>
<tr>
<td>inverse elasticity of investment to Q</td>
<td>η</td>
<td>1.728</td>
</tr>
<tr>
<td>government share of GDP</td>
<td>G/Y</td>
<td>0.2</td>
</tr>
<tr>
<td>start-up transfer</td>
<td>ω</td>
<td>0.002</td>
</tr>
<tr>
<td>divertible fraction</td>
<td>λ</td>
<td>0.382</td>
</tr>
<tr>
<td>banker continuation probability</td>
<td>θ</td>
<td>0.972</td>
</tr>
<tr>
<td>standard deviation of productivity shock</td>
<td>σ_a</td>
<td>0.01</td>
</tr>
<tr>
<td>standard deviation of incentive shock</td>
<td>σ_λ</td>
<td>0.01</td>
</tr>
<tr>
<td>persistence: productivity shock</td>
<td>ρ_a</td>
<td>0.90</td>
</tr>
<tr>
<td>persistence: incentive shock</td>
<td>ρ_λ</td>
<td>0.90</td>
</tr>
<tr>
<td>steady state leverage</td>
<td>ϕ</td>
<td>4</td>
</tr>
<tr>
<td>steady state premium</td>
<td>$(R^k - R) \times 400$</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 2: Optimal parameters

<table>
<thead>
<tr>
<th>Shock Scenarios</th>
<th>κ^q</th>
<th>κ^{t*}</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ in both countries</td>
<td>16.855</td>
<td>1.070</td>
</tr>
<tr>
<td>λ in both countries</td>
<td>58.616</td>
<td>1.071</td>
</tr>
<tr>
<td>λ in country 1 and α in country 2</td>
<td>58.617</td>
<td>1.070</td>
</tr>
<tr>
<td>λ in country 1 and λ in country 2</td>
<td>16.241</td>
<td>1.766</td>
</tr>
</tbody>
</table>

- minimization of squared deviations of the spreads from their steady-state values and output growth

- QE parameter for country 1 is derived strictly from optimization of its own spread and output

- tax parameter for country 2 is derived strictly from optimization of its own spread and output but conditional on country 2 implementing QE
Simulations

• four shock scenarios are:
 – both countries are subjected to capital quality (ξ) shocks
 – both countries are subjected to financial incentive (λ) shocks;
 – country 1 is subject to ξ shocks; country 2 is subjected to λ shocks
 – country 1 is subjected to λ shocks; country 2 is subjected to ξ shocks.

• economies are identical except for the nature of the shocks and choice of policies: QE and tax-rate rules
Base case: no policy rules

- three sets of results.
 - impulse response functions
 - recurring shocks to assess the implications of policies on average, over the long run - distributions of outcomes over 10000 simulations.
 - crisis-event analysis, dynamic behavior of key variables, pre-, during and post- crisis events - sequence of adverse shocks - GDP growth is two standard deviations below its stochastic mean
Figure 1: Impulses Responses for GDP: various shock scenarios
Figure 2: Kernel Densities for Growth in GDP: various shock scenarios
Figure 3: Dark Corner Analysis for GDP Growth: various shock scenarios
- Policy Scenarios

<table>
<thead>
<tr>
<th>Shocks</th>
<th>(\kappa^t_* = 0) QE in country 1</th>
<th>(\kappa^q = 0) FT in country 2</th>
<th>QE in country 1 & FT in country 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi \xi^*)</td>
<td>2.2158</td>
<td>0.8695</td>
<td>4.1530 5.3447</td>
</tr>
<tr>
<td>(\lambda \lambda^*)</td>
<td>2.2108</td>
<td>0.8436</td>
<td>3.4160 1.2326</td>
</tr>
<tr>
<td>(\xi \lambda^*)</td>
<td>2.2241</td>
<td>0.8690</td>
<td>4.2766 5.2823</td>
</tr>
<tr>
<td>(\lambda \xi^*)</td>
<td>2.0675</td>
<td>0.8861</td>
<td>4.9266 0.8723</td>
</tr>
</tbody>
</table>

Table 2: Optimal parameters
Figure 4: Impulse Responses for GDP: Various Policy Scenarios
Figure 5: Kernel Distributions for Growth in GDP: Various Policy Scenarios
Figure 6: Dark Corner Analysis for GDP Growth: Various Policy Scenarios
Summary of Results: Positive (√), Neutral (○), Negative (×)

<table>
<thead>
<tr>
<th></th>
<th>QE only</th>
<th>QE & Tax</th>
<th>QE only</th>
<th>QE & Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>country 1</td>
<td>country 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crisis</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>distribution</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>λ shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crisis</td>
<td>√</td>
<td>√*</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>distribution</td>
<td>√</td>
<td>√*</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>ξ- λ* shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crisis</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>distribution</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>λ-ξ* shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crisis</td>
<td>√</td>
<td>○</td>
<td>√</td>
<td>○</td>
</tr>
<tr>
<td>distribution</td>
<td>√</td>
<td>○</td>
<td>√</td>
<td>○</td>
</tr>
</tbody>
</table>
Concluding Remarks

- focus on the management of crisis situations for countries that are open to repercussions from each other’s policies

- investigated situations when sources of shocks (correlated real CQ, financial λ) are the same/different

- two policy options - QE which acts on investment and tax policies which act on labour income/supply

- effectiveness of policy depends critically on the sources of the crisis and policies adopted in closely linked countries

 - win-win; lose-lose: beggar thyself: (lose-win)
 beggar-thy-neighbour (win-lose)
• The comparative advantage of the QE policy appears to be in combating shocks to financial intermediation at home.

• An expansionary QE policy in a financially troubled country can lead to improvement in other countries which are not financially troubled (even when they experience downturns due to other sources).

• If the QE-setting country is experiencing an increase in λ, while the other country is experiencing negative ξ^* shocks, the QE policy only can become a win-win situation.

• If the other country is also experiencing financial intermediation shocks, then the QE policy alone will result in a beggar thy neighbor effect (one country improves at the expense of the other).
in this case, since the simple tax-rate rules considered here are effective in mitigating the negative effects of financial intermediation shocks, taking a pro-active FT policy will offset the beggar-thy-neighbor effects from QE abroad, but the overall result is not a clear win-win outcome.