Fiscal moral hazard in a monetary union

Sergio Santoro

Banca d’Italia

Banque de France, CBMMW 2017
Motivation

Sovereign debt crisis in the euro area showed that in a monetary union it is important to provide incentives to member countries to pursue sound fiscal policy. The Stability and Growth Pact (SGP) was not enough to avoid the debt crisis: difficult to enforce. To prevent opportunistic behaviors, many advocate for tighter rules, that leave very little leeway for national policies (e.g., budget balance at constitutional level). When countries are heterogeneous, more flexibility allows to make better use of information and cope with asymmetric shocks. What is the optimal degree of flexibility to leave to national governments?
Motivation

- Sovereign debt crisis in the euro area showed that in a monetary union it is important to provide incentives to member countries to pursue sound fiscal policy.
Motivation

- Sovereign debt crisis in the euro area showed that in a monetary union it is important to provide incentives to member countries to pursue sound fiscal policy.
- Stability and Growth Pact (SGP) was not enough to avoid the debt crisis: difficult to enforce.
Motivation

- Sovereign debt crisis in the euro area showed that in a monetary union it is important to provide incentives to member countries to pursue sound fiscal policy.
- Stability and Growth Pact (SGP) was not enough to avoid the debt crisis: difficult to enforce.
- To prevent opportunistic behaviors, many advocate for tighter rules, that leave very little leeway for national policies (e.g., budget balance at constitutional level).
Motivation

- Sovereign debt crisis in the euro area showed that in a monetary union it is important to provide incentives to member countries to pursue sound fiscal policy.
- Stability and Growth Pact (SGP) was not enough to avoid the debt crisis: difficult to enforce.
- To prevent opportunistic behaviors, many advocate for tighter rules, that leave very little leeway for national policies (e.g., budget balance at constitutional level).
- When countries are heterogeneous, more flexibility allows to make better use of information and cope with asymmetric shocks.
Motivation

- Sovereign debt crisis in the euro area showed that in a monetary union it is important to provide incentives to member countries to pursue sound fiscal policy
- Stability and Growth Pact (SGP) was not enough to avoid the debt crisis: difficult to enforce
- To prevent opportunistic behaviors, many advocate for tighter rules, that leave very little leeway for national policies (e.g., budget balance at constitutional level)
- When countries are heterogeneous, more flexibility allows to make better use of information and cope with asymmetric shocks
- What is the optimal degree of flexibility to leave to national governments?
What we do

We study how to optimally design debt rules when member governments can differ in how much they value current versus future consumption, and these preferences are private information. We develop a model of a monetary union along the lines of Chari and Kehoe (2007; CK hereafter), which shows that the fiscal authorities have an incentive to act in a non-cooperative way when the central bank takes their decisions as given. Augment CK with taste shocks affecting marginal utility of current consumption that are idiosyncratic and privately observed. We take a mechanism design approach: characterize the optimal incentive compatible allocations implemented by a social planner who wants to maximize the welfare of the entire monetary union, but cannot observe the shocks of member countries.
What we do

- We study how to optimally design debt rules when member governments can differ in how much they value current versus future consumption, and these preferences are private information.
What we do

- We study how to optimally design debt rules when member governments can differ in how much they value current versus future consumption, and these preferences are private information.

- We develop a model of a monetary union along the lines of Chari and Kehoe (2007; CK hereafter), which shows that the fiscal authorities have an incentive to act in a non-cooperative way when the central bank takes their decisions as given.
What we do

- We study how to optimally design debt rules when member governments can differ in how much they value current versus future consumption, and these preferences are private information.
- We develop a model of a monetary union along the lines of Chari and Kehoe (2007; CK hereafter), which shows that the fiscal authorities have an incentive to act in a non-cooperative way when the central bank takes their decisions as given.
- Augment CK with taste shocks affecting marginal utility of current consumption that are *idiosyncratic* and *privately observed*.
What we do

- We study how to optimally design debt rules when member governments can differ in how much they value current versus future consumption, and these preferences are private information.
- We develop a model of a monetary union along the lines of Chari and Kehoe (2007; CK hereafter), which shows that the fiscal authorities have an incentive to act in a non-cooperative way when the central bank takes their decisions as given.
- Augment CK with taste shocks affecting marginal utility of current consumption that are *idiosyncratic* and *privately observed*.
- We take a mechanism design approach: characterize the optimal incentive compatible allocations implemented by a social planner who wants to maximize the welfare of the entire monetary union, but cannot observe the shocks of member countries.
For an external observer like a supranational authority it is typically difficult to disentangle if more debt in a country is due to a lack of effort of the government or to genuine political constraints. As argued in Wyplosz (2015), “Fiscal policy is an intensely political instrument and therefore a key prerogative of national governments. It lies at the heart of domestic politics, hence the information asymmetry.

Alternative interpretation is non contractibility of policy constraints: even if they are observed, it might be difficult for the supranational authority to enforce a policy conditional on them (as shown by the difficulties met by the SGP). A similar formulation of a sovereign government subject to a privately observed taste shock is found e.g. in Dovis (2012), Halac and Yared.
For an external observer like a supranational authority it is typically difficult to disentangle if more debt in a country is due to a lack of effort of the government or to genuine political constraints.
What we do

For an external observer like a supranational authority it is typically difficult to disentangle if more debt in a country is due to a lack of effort of the government or to genuine political constraints.

As argued in Wyplosz (2015), “Fiscal policy is an intensely political instrument and therefore a key prerogative of national governments. It lies at the heart of domestic politics, hence the information asymmetry”.

Alternative interpretation is non contractibility of policy constraints: even if they are observed, it might be difficult for the supranational authority to enforce a policy conditional on them (as shown by the difficulties met by the SGP).

A similar formulation of a sovereign government subject to a privately observed taste shock is found e.g. in Dovis (2012), Halac and Yared.
What we do

- For an external observer like a supranational authority it is typically difficult to disentangle if more debt in a country is due to a lack of effort of the government or to genuine political constraints.

- As argued in Wyplosz (2015), “Fiscal policy is an intensely political instrument and therefore a key prerogative of national governments. It lies at the heart of domestic politics, hence the information asymmetry”.

- Alternative interpretation is non contractibility of policy constraints: even if they are observed, it might be difficult for the supranational authority to enforce a policy conditional on them (as shown by the difficulties met by the SGP).
What we do

- For an external observer like a supranational authority it is typically difficult to disentangle if more debt in a country is due to a lack of effort of the government or to genuine political constraints.

- As argued in Wyplosz (2015), “Fiscal policy is an intensely political instrument and therefore a key prerogative of national governments. It lies at the heart of domestic politics, hence the information asymmetry”.

- Alternative interpretation is non contractibility of policy constraints: even if they are observed, it might be difficult for the supranational authority to enforce a policy conditional on them (as shown by the difficulties met by the SGP).

- A similar formulation of a sovereign government subject to a privately observed taste shock is found e.g. in Dovis (2012), Halac and Yared.
Overview of results

The optimal degree of flexibility depends on how different preferences of governments can be. There is a trade-off between the benefit of giving national fiscal authorities flexibility to react to their own private information, and the temptation that these authorities have to free-ride on the other union members (Amador et al. 2006, Athey et al. 2005). If the heterogeneity is low, the importance of private information is so small compared to the severity of the free-rider problem that it is optimal to leave no flexibility at all. If the heterogeneity is high, it is optimal to let countries with a strong preference for current consumption run a higher debt. If the heterogeneity is very high, the first best is incentive compatible.
Overview of results

- The optimal degree of flexibility depends on how different preferences of governments can be.
Overview of results

- The optimal degree of flexibility depends on how different preferences of governments can be.
- There is a trade-off between the benefit of giving national fiscal authorities flexibility to react to their own private information, and the temptation that these authorities have to free-ride on the other union members (Amador et al. 2006, Athey et al. 2005).

If the heterogeneity is low the importance of private information is so small compared to the severity of the free-rider problem that it is optimal to leave no flexibility at all. If the heterogeneity is high it is optimal to let countries with a strong preference for current consumption run a higher debt. If the heterogeneity is very high the first best is incentive compatible.
Overview of results

- The optimal degree of flexibility depends on how different preferences of governments can be.
- There is a trade-off between the benefit of giving national fiscal authorities flexibility to react to their own private information, and the temptation that these authorities have to free-ride on the other union members (Amador et al. 2006, Athey et al. 2005).
- If the heterogeneity is low, the importance of private information is so small compared to the severity of the free-rider problem that it is optimal to leave no flexibility at all.
- If the heterogeneity is high, it is optimal to let countries with a strong preference for current consumption run a higher debt.
Overview of results

- The optimal degree of flexibility depends on how different preferences of governments can be.
- There is a trade-off between the benefit of giving national fiscal authorities flexibility to react to their own private information, and the temptation that these authorities have to free-ride on the other union members (Amador et al. 2006, Athey et al. 2005).
- If the heterogeneity is low the importance of private information is so small compared to the severity of the free-rider problem that it is optimal to leave no flexibility at all.
- If the heterogeneity is high it is optimal to let countries with a strong preference for current consumption run a higher debt.
Overview of results

- The optimal degree of flexibility depends on how different preferences of governments can be.
- There is a trade-off between the benefit of giving national fiscal authorities flexibility to react to their own private information, and the temptation that these authorities have to free-ride on the other union members (Amador et al. 2006, Athey et al. 2005).
- If the heterogeneity is low the importance of private information is so small compared to the severity of the free-rider problem that it is optimal to leave no flexibility at all.
- If the heterogeneity is high it is optimal to let countries with a strong preference for current consumption run a higher debt.
- If the heterogeneity is very high the first best is incentive compatible.
Related literature

Interaction of fiscal and monetary policy in a monetary union

- Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction

Private information in policy games

Optimal monetary policy: Athey et al. (2005), Sleet (2001)

Optimal macroprudential policy: Schroth (2016), Dogra (2016)

Interaction of fiscal and monetary policy without mechanism design: Beetsma and Bovenberg (2001), Sanguinetti and Tommasi (2004)

We study the interaction of fiscal and monetary policy in a monetary union with mechanism design
Related literature

Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)

Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

Interaction with the possibility of self-fulfilling debt crises: Aguiar et al. (2013), (2015)

We focus on private information friction

Private information in policy games

Optimal monetary policy: Athey et al. (2005), Sleet (2001)

Optimal macroprudential policy: Schroth (2016), Dogra (2016)

Interaction of fiscal and monetary policy without mechanism design: Beetsma and Bovemberg (2001), Sanguinetti and Tommasi (2004)

We study the interaction of fiscal and monetary policy in a monetary union with mechanism design.
Related literature
Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction
Private information in policy games

Optimal monetary policy: Athey et al. (2005), Sleet (2001)
Optimal macroprudential policy: Schroth (2016), Dogra (2016)

Interaction of fiscal and monetary policy without mechanism design: Beetsma and Bovemberg (2001), Sanguinetti and Tommasi (2004)

We study the interaction of fiscal and monetary policy in a monetary union with mechanism design
Related literature

Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)
Related literature

Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction
Related literature

Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction

Private information in policy games
Related literature

Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction

Private information in policy games

- Optimal monetary policy: Athey et al. (2005), Sleet (2001)
- Optimal macroprudential policy: Schroth (2016), Dogra (2016)
- Interaction of fiscal and monetary policy without mechanism design: Beetsma and Bovemberg (2001), Sanguinetti and Tommasi (2004)
- We study the interaction of fiscal and monetary policy in a monetary union with mechanism design
Related literature

Interaction of fiscal and monetary policy in a monetary union
- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction
Private information in policy games
- Optimal monetary policy: Athey et al. (2005), Sleet (2001)
Related literature

Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction

Private information in policy games

- Optimal monetary policy: Athey et al. (2005), Sleet (2001)
- Optimal macroprudential policy: Schroth (2016), Dogra (2016)
Related literature

Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction

Private information in policy games

- Optimal monetary policy: Athey et al. (2005), Sleet (2001)
- Optimal macroprudential policy: Schroth (2016), Dogra (2016)
- Interaction of fiscal and monetary policy without mechanism design: Beetsma and Bovemberg (2001), Sanguinetti and Tommasi (2004)
Related literature

Interaction of fiscal and monetary policy in a monetary union

- In New Keynesian models: Beetsma and Jensen (2005), Gali and Monacelli (2008), Ferrero (2009), and Farhi and Werning (2013)
- Rationale for debt ceilings: CK, Beetsma and Uhlig (1999)

We focus on private information friction

Private information in policy games

- Optimal monetary policy: Athey et al. (2005), Sleet (2001)
- Optimal macroprudential policy: Schroth (2016), Dogra (2016)
- Interaction of fiscal and monetary policy without mechanism design: Beetsma and Bovemberg (2001), Sanguinetti and Tommasi (2004)

We study the interaction of fiscal and monetary policy in a monetary union with mechanism design
The model

Chari and Kehoe (2007)
The model

Chari and Kehoe (2007)

- Two-period model with a monetary union consisting of two countries, each of which is small in the world economy
The model

Chari and Kehoe (2007)

- Two-period model with a monetary union consisting of two countries, each of which is small in the world economy
- Each country’s government issues nominal debt in period 0 to a large number of risk neutral lenders who live outside the monetary union
The model

Chari and Kehoe (2007)

- Two-period model with a monetary union consisting of two countries, each of which is small in the world economy
- Each country’s government issues nominal debt in period 0 to a large number of risk neutral lenders who live outside the monetary union
- In period 0 price level given. In period 1, the monetary authority sets the monetary policy for the union (chooses the price level)
The model

Chari and Kehoe (2007)

- Two-period model with a monetary union consisting of two countries, each of which is small in the world economy.
- Each country’s government issues nominal debt in period 0 to a large number of risk neutral lenders who live outside the monetary union.
- In period 0 price level given. In period 1, the monetary authority sets the monetary policy for the union (chooses the price level).
- In period 0 output is a constant given by ω, common across countries.
The model

Chari and Kehoe (2007)

- Two-period model with a monetary union consisting of two countries, each of which is small in the world economy.
- Each country’s government issues nominal debt in period 0 to a large number of risk neutral lenders who live outside the monetary union.
- In period 0 price level given. In period 1, the monetary authority sets the monetary policy for the union (chooses the price level).
- In period 0 output is a constant given by ω, common across countries.
- In period 1, output is given by $y(\pi)$, which depends on the common inflation rate $\pi = p_1/p_0$.
The model

Chari and Kehoe (2007)

The budget constraints of the government in country i are:

\[p_0 c_i^0 = \omega + b_i \]

\[p_1 c_i^1 = p_1 y(\pi) - x_i \]

The profit of a lender who agrees to accept a debt contract (b_i, x_i) is given by:

\[-b_i + \beta x_i \pi. \]

Fiscal authorities move before the central bank; this gives rise to a free-rider problem.
The model

Chari and Kehoe (2007)

- The budget constraints of the government in country i are:

\[
\begin{align*}
p_0 c_{i0} &= \omega + b_i \\
p_1 c_{i1} &= p_1 y(\pi) - x_i
\end{align*}
\]
The model

Chari and Kehoe (2007)

- The budget constraints of the government in country i are:

$$
p_0 c_{i0} = \omega + b_i
$$

$$
p_1 c_{i1} = p_1 y(\pi) - x_i
$$

- The profit of a lender who agrees to accept a debt contract (b_i, x_i) is given by:

$$
- b_i + \beta \frac{x_i}{\pi}.
$$
The model

Chari and Kehoe (2007)

- The budget constraints of the government in country i are:

\[
\begin{align*}
p_0 c_{i0} &= \omega + b_i \\
p_1 c_{i1} &= p_1 y(\pi) - x_i
\end{align*}
\]

- The profit of a lender who agrees to accept a debt contract (b_i, x_i) is given by:

\[- b_i + \beta \frac{x_i}{\pi}.
\]

- Fiscal authorities move before the central bank; this gives rise to a free-rider problem.
The model

We depart from CK along two dimensions

The welfare of country i’s representative consumer which country i’s government wants to maximize is given by:

$$\theta_i U(c_{i0}) + \beta U(c_{i1})$$

θ_i is an iid, mean 1 idiosyncratic taste shock realized at the beginning of period 0 which can take two values, θ_H with prob P and θ_L with prob $1 - P$; if $\theta_H = \theta_L = 1$, back to CK.

θ_i is a reduced-form term that captures the political costs of sticking to fiscal discipline in country i, and these costs might be heterogeneous across countries.

There is private information: θ_i is observed only by government i.

Santoro (Banca d’Italia)
The model

We depart from CK along two dimensions

- The welfare of country i’s representative consumer which country i’s government wants to maximize is given by:

$$\theta_i U(c_{i0}) + \beta U(c_{i1})$$

θ_i is an iid, mean 1 idiosyncratic taste shock realized at the beginning of period 0 which can take two values, θ_H with prob P and θ_L with prob $1 - P$; if $\theta_H = \theta_L = 1$, back to CK.

θ_i is a reduced-form term that captures the political costs of sticking to fiscal discipline in country i, and these costs might be heterogeneous across countries.

There is private information: θ_i is observed only by government i.
The model

We depart from CK along two dimensions

- The welfare of country i’s representative consumer which country i’s government wants to maximize is given by:

$$\theta_i U(c_{i0}) + \beta U(c_{i1})$$

θ_i is an iid, mean 1 idiosyncratic taste shock realized at the beginning of period 0 which can take two values, θ^H with prob P and θ^L with prob $1 - P$; if $\theta^H = \theta^L = 1$, back to CK.
The model

We depart from CK along two dimensions

- The welfare of country i’s representative consumer which country i’s government wants to maximize is given by:

$$\theta_i U(c_{i0}) + \beta U(c_{i1})$$

θ_i is an iid, mean 1 idiosyncratic taste shock realized at the beginning of period 0 which can take two values, θ^H with prob P and θ^L with prob $1 - P$; if $\theta^H = \theta^L = 1$, back to CK.

θ_i is a reduced-form term that captures the political costs of sticking to fiscal discipline in country i, and these costs might be heterogeneous across countries.
The model

We depart from CK along two dimensions

- The welfare of country i’s representative consumer which country i’s government wants to maximize is given by:

$$\theta_i U(c_{i0}) + \beta U(c_{i1})$$

θ_i is an iid, mean 1 idiosyncratic taste shock realized at the beginning of period 0 which can take two values, θ^H with prob P and θ^L with prob $1 - P$; if $\theta^H = \theta^L = 1$, back to CK.

θ_i is a reduced-form term that captures the political costs of sticking to fiscal discipline in country i, and these costs might be heterogeneous across countries.

- There is private information: θ_i is observed only by government i.
Mechanism design problem

Direct revelation game. The monetary union authorities specify rules for:

- Fiscal policy as a function of the national governments' reports on their private information about the realization of θ.
- Monetary policy as a function of national debt contracts.

Given the specified policy rules, the timing of the induced game is the following.

At the beginning of period 0, governments choose simultaneously a strategy for reporting their private information.

θ_i is realized and observed by governments, reports are issued, and debt contracts are offered to international lenders according to the fiscal policy rules.

Lenders decide whether to accept the contracts.

In period 1, the central bank sets the common inflation rate π as a function of the repayments x_i in the contracts according to the monetary policy rule.
Mechanism design problem

Direct revelation game. The monetary union authorities specify rules for:

- fiscal policy as function of the national governments’ reports on their private information about the realization of θ
Mechanism design problem
Direct revelation game. The monetary union authorities specify rules for:

- fiscal policy as function of the national governments’ reports on their private information about the realization of θ
- monetary policy as a function of national debt contracts
Mechanism design problem
Direct revelation game. The monetary union authorities specify rules for:

- fiscal policy as function of the national governments’ reports on their private information about the realization of θ
- monetary policy as a function of national debt contracts

Given the specified policy rules, the timing of the induced game is the following.
Mechanism design problem
Direct revelation game. The monetary union authorities specify rules for:

- fiscal policy as function of the national governments’ reports on their private information about the realization of θ
- monetary policy as a function of national debt contracts

Given the specified policy rules, the timing of the induced game is the following.

- At the beginning of period 0, governments choose simultaneously a strategy for reporting their private information.
Mechanism design problem
Direct revelation game. The monetary union authorities specify rules for:

- fiscal policy as function of the national governments’ reports on their private information about the realization of θ
- monetary policy as a function of national debt contracts

Given the specified policy rules, the timing of the induced game is the following.

- At the beginning of period 0, governments choose simultaneously a strategy for reporting their private information.
- θ_i is realized and observed by governments, reports are issued, and debt contracts are offered to international lenders according to the fiscal policy rules.
Mechanism design problem

Direct revelation game. The monetary union authorities specify rules for:

- fiscal policy as function of the national governments’ reports on their private information about the realization of θ
- monetary policy as a function of national debt contracts

Given the specified policy rules, the timing of the induced game is the following.

- At the beginning of period 0, governments choose simultaneously a strategy for reporting their private information.
- θ_i is realized and observed by governments, reports are issued, and debt contracts are offered to international lenders according to the fiscal policy rules
- Lenders decide whether to accept the contracts
Mechanism design problem
Direct revelation game. The monetary union authorities specify rules for:

- fiscal policy as function of the national governments’ reports on their private information about the realization of θ
- monetary policy as a function of national debt contracts

Given the specified policy rules, the timing of the induced game is the following.

- At the beginning of period 0, governments choose simultaneously a strategy for reporting their private information.
- θ_i is realized and observed by governments, reports are issued, and debt contracts are offered to international lenders according to the fiscal policy rules
- Lenders decide whether to accept the contracts
- In period 1 the central bank sets the common inflation rate π as a function of the repayments x_i in the contracts according to the monetary policy rule
Mechanism design problem

The equilibrium concept we are interested in is (constrained efficient) Nash
Mechanism design problem

The equilibrium concept we are interested in is (constrained efficient) Nash

Definition

An equilibrium of this direct revelation game is:
Mechanism design problem

The equilibrium concept we are interested in is (constrained efficient) Nash

Definition

An equilibrium of this direct revelation game is:

- a monetary policy rule
Mechanism design problem

The equilibrium concept we are interested in is (constrained efficient) Nash

Definition
An equilibrium of this direct revelation game is:

- a monetary policy rule
- fiscal policy rules
Mechanism design problem

The equilibrium concept we are interested in is (constrained efficient) Nash

Definition

An equilibrium of this direct revelation game is:

- a monetary policy rule
- fiscal policy rules
- a reporting strategy for each country
Mechanism design problem

The equilibrium concept we are interested in is (constrained efficient) Nash

Definition
An equilibrium of this direct revelation game is:

- a monetary policy rule
- fiscal policy rules
- a reporting strategy for each country

such that, for each i, the welfare of country i cannot be raised by deviating to any other reporting strategy, and the international lenders accept the resulting debt contracts
Remarks

In order to focus on the consequences of the distortion introduced by private information, we make the following assumptions:

▶ Fiscal policy moves before monetary policy, as in CK: this gives rise to a free-rider problem.
▶ National debt contracts are perfectly enforceable: we rule out sovereign default.
▶ National debt contracts are chosen to maximize the welfare of the monetary union as a whole, instead of the single countries: we rule out issues of non-cooperation among governments.

WLOG, we restrict the choice set to the incentive compatible policy rules: fiscal and monetary policy rules that induce a direct revelation game for which truthtelling is part of an equilibrium.

\[
\begin{align*}
\theta_i & U(\omega + \beta x_i(\theta_i, \theta_{-i})) + \beta U(y(\pi(x(\theta_i, \theta_{-i})))) - x_i(\theta_i, \theta_{-i}) \pi(x(\theta_i, \theta_{-i})) \\
& \geq \theta_i U(\omega + \beta x_i(\theta_{-i} \theta_{-i})) + \beta U(y(\pi(x(\theta_{-i}, \theta_{-i})))) - x_{-i}(\theta_{-i}, \theta_{-i}) \pi(x(\theta_{-i}, \theta_{-i}))
\end{align*}
\]
Remarks

- In order to focus on the consequences of the distortion introduced by private information, we make the following assumptions:
 - Fiscal policy moves before monetary policy, as in CK: this gives rise to a free-rider problem.
 - National debt contracts are perfectly enforceable: we rule out sovereign default.
 - National debt contracts are chosen to maximize the welfare of the monetary union as a whole, instead of the single countries: we rule out issues of non-cooperation among governments.
 - WLOG, we restrict the choice set to the incentive compatible policy rules: fiscal and monetary policy rules that induce a direct revelation game for which truthtelling is part of an equilibrium.
Remarks

- In order to focus on the consequences of the distortion introduced by private information, we make the following assumptions:
 - Fiscal policy moves before monetary policy, as in CK: this gives rise to a free-rider problem.
Remarks

In order to focus on the consequences of the distortion introduced by private information, we make the following assumptions:

- Fiscal policy moves before monetary policy, as in CK: this gives rise to a free-rider problem.
- National debt contracts are perfectly enforceable: we rule out sovereign default.
Remarks

In order to focus on the consequences of the distortion introduced by private information, we make the following assumptions:

- Fiscal policy moves before monetary policy, as in CK: this gives rise to a free-rider problem.
- National debt contracts are perfectly enforceable: we rule out sovereign default.
- National debt contracts are chosen to maximize the welfare of the monetary union as a whole, instead of the single countries: we rule out issues of non-cooperation among governments.
Remarks

- In order to focus on the consequences of the distortion introduced by private information, we make the following assumptions
 - fiscal policy moves before monetary policy, as in CK: this gives rise to a free-rider problem
 - national debt contracts are perfectly enforceable: we rule out sovereign default
 - national debt contracts are chosen to maximize the welfare of the monetary union as a whole, instead of the single countries: we rule out issues of non-cooperation among governments

- WLOG, we restrict the choice set to the incentive compatible policy rules: fiscal and monetary policy rules that induce a direct revelation game for which truthtelling is part of an equilibrium
Remarks

- In order to focus on the consequences of the distortion introduced by private information, we make the following assumptions
 - fiscal policy moves before monetary policy, as in CK: this gives rise to a free-rider problem
 - national debt contracts are perfectly enforceable: we rule out sovereign default
 - national debt contracts are chosen to maximize the welfare of the monetary union as a whole, instead of the single countries: we rule out issues of non-cooperation among governments

- WLOG, we restrict the choice set to the incentive compatible policy rules: fiscal and monetary policy rules that induce a direct revelation game for which truthtelling is part of an equilibrium

\[
\begin{align*}
\theta_i U \left(\omega + \beta \frac{x_i(\theta_i, \theta_{-i})}{\pi(\bar{x}(\theta_i, \theta_{-i}))} \right) + \beta U \left(y(\pi(\bar{x}(\theta_i, \theta_{-i}))) - \frac{x_i(\theta_i, \theta_{-i})}{\pi(\bar{x}(\theta_i, \theta_{-i}))} \right) \\
\theta_i U \left(\omega + \beta \frac{x_i(\theta_i^c, \theta_{-i})}{\pi(\bar{x}(\theta_i^c, \theta_{-i}))} \right) + \beta U \left(y(\pi(\bar{x}(\theta_i^c, \theta_{-i}))) - \frac{x_i(\theta_i^c, \theta_{-i})}{\pi(\bar{x}(\theta_i^c, \theta_{-i}))} \right)
\end{align*}
\]
Solution
We solve the model backwards. Hence, we start from the problem of monetary policy in period 1, taking into account the debt contracts \((b_i, x_i)\) offered by the governments.
Solution

We solve the model backwards. Hence, we start from the problem of monetary policy in period 1, taking into account the debt contracts \((b_i, x_i)\) offered by the governments. It sets an inflation rate that solves the control problem:

\[
\max_{\pi \in [1, \infty)} \frac{1}{2} \left\{ U(y(\pi) - x_1/\pi) + U(y(\pi) - x_2/\pi) \right\}
\]

(1)

Lemma \(\pi(x_1, x_2)\) exists for any \((x_1, x_2)\), is smaller than \(\pi^*\), and is implicitly defined by the FOC:

\[
U'(y(\pi) - x_1\pi)(y'(\pi) + x_1\pi^2) + U'(y(\pi) - x_2\pi)(y'(\pi) + x_2\pi^2) = 0
\]

\(\pi(x_1, x_2)\) belongs to C2.

Let \(x_i \geq x_i - i\); then \(\pi(x_1, x_2)\) is increasing in \(x_i\).

\(x_i \pi(x)\) is increasing in \(x_i\) for any \(i\).
Solution

We solve the model backwards. Hence, we start from the problem of monetary policy in period 1, taking into account the debt contracts \((b_i, x_i)\) offered by the governments. It sets an inflation rate that solves the control problem:

\[
\max_{\pi \in [1, \infty)} \frac{1}{2} \left\{ U(y(\pi) - x_1/\pi) + U(y(\pi) - x_2/\pi) \right\} \tag{1}
\]
Solution

We solve the model backwards. Hence, we start from the problem of monetary policy in period 1, taking into account the debt contracts \((b_i, x_i)\) offered by the governments. It sets an inflation rate that solves the control problem:

\[
\max_{\pi \in [1, \infty)} \frac{1}{2} \left\{ U \left(y(\pi) - \frac{x_1}{\pi} \right) + U \left(y(\pi) - \frac{x_2}{\pi} \right) \right\}
\]

(1)

Lemma

\(\pi(x_1, x_2)\) exists for any \((x_1, x_2)\), is smaller than \(\pi^*\), and is implicitly defined by the FOC:

\[
U' \left(y(\pi) - \frac{x_1}{\pi} \right) \left(y'(\pi) + \frac{x_1}{\pi^2} \right) + U' \left(y(\pi) - \frac{x_2}{\pi} \right) \left(y'(\pi) + \frac{x_2}{\pi^2} \right) = 0
\]

\(\pi(x_1, x_2)\) belongs to \(C^2\).

Let \(x_i \geq x_{-i}\); then \(\pi(x_1, x_2)\) is increasing in \(x_i\).

\(\frac{x_i}{\pi(x)}\) is increasing in \(x_i\) for any \(i\).
The next step is to characterize the fiscal policy of the national governments. To do so we solve for the debt contracts that maximize the welfare of the monetary union subject to the constraints that:
The next step is to characterize the fiscal policy of the national governments. To do so we solve for the debt contracts that maximize the welfare of the monetary union subject to the constraints that:

- inflation is equal to $\pi(x_1, x_2)$ derived previously
The next step is to characterize the fiscal policy of the national governments. To do so we solve for the debt contracts that maximize the welfare of the monetary union subject to the constraints that:

- inflation is equal to $\pi(x_1, x_2)$ derived previously
- truth-telling for the governments is incentive compatible
The next step is to characterize the fiscal policy of the national governments. To do so we solve for the debt contracts that maximize the welfare of the monetary union subject to the constraints that:

- inflation is equal to \(\pi (x_1, x_2) \) derived previously
- truth-telling for the governments is incentive compatible

First of all, we characterize two benchmarks
Solution: first best (FB)
FB maximizes expected welfare of the monetary union when the realizations of θ_i are common knowledge.
Solution: first best (FB)
FB maximizes expected welfare of the monetary union when the realizations of θ_i are common knowledge. It solves the problem

$$
\max_{x(\theta_1, \theta_2) \in \mathbb{R}^4_+ \times \mathbb{R}^4_+} \{ \theta_1 U(\omega + \beta x_1(\theta_1, \theta_2)) \pi(x(\theta_1, \theta_2)) + \beta U(y(\pi(x(\theta_1, \theta_2)))) - x_1(\theta_1, \theta_2) \pi(x(\theta_1, \theta_2)) + \theta_2 U(\omega + \beta x_2(\theta_1, \theta_2)) \pi(x(\theta_1, \theta_2)) + \beta U(y(\pi(x(\theta_1, \theta_2)))) - x_2(\theta_1, \theta_2) \pi(x(\theta_1, \theta_2)) \}.
$$
Solution: first best (FB)

FB maximizes expected welfare of the monetary union when the realizations of θ_i are common knowledge. It solves the problem

$$
\max_{\bar{x}(\theta_1, \theta_2) \in \mathbb{R}_+^4 \times \mathbb{R}_+^4} \frac{1}{2} \left\{ \theta_1 U \left(\omega + \beta \frac{x_1(\theta_1, \theta_2)}{\pi(\bar{x}(\theta_1, \theta_2))} \right) + \theta_2 U \left(\omega + \beta \frac{x_2(\theta_1, \theta_2)}{\pi(\bar{x}(\theta_1, \theta_2))} \right) + \beta U \left(y(\pi(\bar{x}(\theta_1, \theta_2))) - \frac{x_1(\theta_1, \theta_2)}{\pi(\bar{x}(\theta_1, \theta_2))} \right) + \beta U \left(y(\pi(\bar{x}(\theta_1, \theta_2))) - \frac{x_2(\theta_1, \theta_2)}{\pi(\bar{x}(\theta_1, \theta_2))} \right) \right\}
$$
Solution: first best (FB)

FB maximizes expected welfare of the monetary union when the realizations of θ_i are common knowledge. It solves the problem

$$\max_{\bar{x}(\theta_1, \theta_2) \in \mathbb{R}_+^4 \times \mathbb{R}_+^4} \frac{1}{2} \left\{ \theta_1 U \left(\omega + \beta \frac{x_1(\theta_1, \theta_2)}{\pi(\bar{x}(\theta_1, \theta_2))} \right)
ight.$$

$$+ \beta U \left(y \left(\pi \left(\bar{x}(\theta_1, \theta_2) \right) \right) - \frac{x_1(\theta_1, \theta_2)}{\pi(\bar{x}(\theta_1, \theta_2))} \right) +$$

$$\theta_2 U \left(\omega + \beta \frac{x_2(\theta_1, \theta_2)}{\pi(\bar{x}(\theta_1, \theta_2))} \right) + \beta U \left(y \left(\pi \left(\bar{x}(\theta_1, \theta_2) \right) \right) - \frac{x_2(\theta_1, \theta_2)}{\pi(\bar{x}(\theta_1, \theta_2))} \right) \right\}$$

Lemma

(i) there exists a solution to the problem; the correspondence $\bar{x}^{FB}(\theta_i, \theta_{-i})$ is non-empty, compact valued and upper hemi-continuous (u.h.c).

(ii) For any θ_{-i}, $x_i^{FB}(\theta^H, \theta_{-i}) \geq x_i^{FB}(\theta^L, \theta_{-i})$

(iii) For any θ_i, $x_i^{FB}(\theta_i, \theta^H) \geq x_i^{FB}(\theta_i, \theta^L)$
Solution: common rule (CR)

CR maximizes expected welfare of the monetary union when fiscal policy rules cannot depend on the private information (independent of the report on θ, equal across countries).
Solution: common rule (CR)

CR maximizes expected welfare of the monetary union when fiscal policy rules cannot depend on the private information (independent of the report on θ, equal across countries). It solves the problem

\[
\max_{x} \{ E(\theta) U(\omega + \beta x \pi(x)) + \beta U(y(\pi(x)) - x \pi(x)) \}
\]

Lemma

CR is a non-empty, compact set.

\[\pi(x_{CR}) - 2x_{CR} \frac{\partial \pi}{\partial x}(x_{CR}) \pi^2(x_{CR}) > 0\]
Solution: common rule (CR)

CR maximizes expected welfare of the monetary union when fiscal policy rules cannot depend on the private information (independent of the report on θ, equal across countries). It solves the problem

$$\max_x \left\{ E(\theta) U \left(\omega + \beta \frac{x}{\pi(x)} \right) + \beta U \left(y(\pi(x)) - \frac{x}{\pi(x)} \right) \right\}$$
Solution: common rule (CR)

CR maximizes expected welfare of the monetary union when fiscal policy rules cannot depend on the private information (independent of the report on θ, equal across countries). It solves the problem

$$\max_x \left\{ E(\theta) U \left(\omega + \beta \frac{x}{\pi(x)} \right) + \beta U \left(y(\pi(x)) - \frac{x}{\pi(x)} \right) \right\}$$

Lemma

- \bar{x}^{CR} is a non-empty, compact set.

$$\frac{\pi(x^{CR}) - 2x^{CR} \frac{\partial \pi}{\partial x} (x^{CR})}{\pi^2 (x^{CR})} > 0$$
Solution: constrained efficient equilibrium (CE)

CE maximizes expected welfare of the monetary union under private information and subject to the constraint that truth-telling for the governments is incentive compatible.
Solution: constrained efficient equilibrium (CE)

CE maximizes expected welfare of the monetary union under private information and subject to the constraint that truth-telling for the governments is incentive compatible. It solves the problem (2) subject to the IC constraints
Solution: constrained efficient equilibrium (CE)

CE maximizes expected welfare of the monetary union under private information and subject to the constraint that truth-telling for the governments is incentive compatible. It solves the problem (2) subject to the IC constraints

\[
\begin{align*}
\theta_i U \left(\omega + \beta \frac{x_i(\theta_i, \theta_{-i})}{\pi(\bar{X}(\theta_i, \theta_{-i}))} \right) + \beta U \left(y \left(\pi \left(\bar{X}(\theta_i, \theta_{-i}) \right) \right) - \frac{x_i(\theta_i, \theta_{-i})}{\pi(\bar{X}(\theta_i, \theta_{-i}))} \right) & \geq \\
\theta_i U \left(\omega + \beta \frac{x_i(\theta^c_i, \theta_{-i})}{\pi(\bar{X}(\theta^c_i, \theta_{-i}))} \right) + \beta U \left(y \left(\pi \left(\bar{X}(\theta^c_i, \theta_{-i}) \right) \right) - \frac{x_i(\theta^c_i, \theta_{-i})}{\pi(\bar{X}(\theta^c_i, \theta_{-i}))} \right)
\end{align*}
\]
Solution: constrained efficient equilibrium (CE)

We characterize CE as a function of the ex-ante heterogeneity of the two countries. WLOG, we consider only θ^L, since the other can be backed out from the definition of the expected value.
Solution: constrained efficient equilibrium (CE)

We characterize CE as a function of the ex-ante heterogeneity of the two countries. WLOG, we consider only θ^L, since the other can be backed out from the definition of the expected value.

Lower θ^L means more heterogeneity.
Solution: constrained efficient equilibrium (CE)

We characterize CE as a function of the ex-ante heterogeneity of the two countries. WLOG, we consider only θ^L, since the other can be backed out from the definition of the expected value. Lower θ^L means more heterogeneity.

Proposition

There exists a value $\theta^{CR} \in (0, 1)$ such that, if $\theta^L < \theta^{CR}$, the CE equilibrium is such that for any θ_{-i}, $x_i^{CE}(\theta^H, \theta_{-i}) \geq x_i^{CE}(\theta^L, \theta_{-i})$.

Santoro (Banca d’Italia)
Solution: constrained efficient equilibrium (CE)

We characterize CE as a function of the ex-ante heterogeneity of the two countries. WLOG, we consider only θ^L, since the other can be backed out from the definition of the expected value. Lower θ^L means more heterogeneity.

Proposition

There exists a value $\theta^{CR} \in (0, 1)$ such that, if $\theta^L < \theta^{CR}$, the CE equilibrium is such that for any θ_{-i}, $x_i^{CE}(\theta^H, \theta_{-i}) \geq x_i^{CE}(\theta^L, \theta_{-i})$.

Proposition

There exists a value $\tilde{\theta}^{CR} \in (\theta^{CR}, 1)$ such that, if $\theta^L \geq \tilde{\theta}^{CR}$, the CR equilibrium is constrained efficient.
Solution: constrained efficient equilibrium (CE)

We characterize CE as a function of the ex-ante heterogeneity of the two countries. WLOG, we consider only θ^L, since the other can be backed out from the definition of the expected value. Lower θ^L means more heterogeneity.

Proposition

There exists a value $\theta^{CR} \in (0, 1)$ such that, if $\theta^L < \theta^{CR}$, the CE equilibrium is such that for any θ_{-i}, $x^i_{CE} (\theta^H, \theta_{-i}) \geq x^i_{CE} (\theta^L, \theta_{-i})$.

Proposition

There exists a value $\tilde{\theta}^{CR} \in (\theta^{CR}, 1)$ such that, if $\theta^L \geq \tilde{\theta}^{CR}$, the CR equilibrium is constrained efficient.

Proposition

There exists a value $\theta^{FB} \in (0, \theta^{CR}]$ such that, if $\theta^L < \theta^{FB}$, any FB equilibrium is incentive compatible.
Intuition

Result depends on the trade-off between flexibility and incentives to tell the truth.

On the one hand, under full information the optimal debt depends on the taste shocks, so that in the private information model it is desirable to let CE depend on the reported values of these shocks.

On the other hand, because of the free-rider problem the planner has to provide incentives to induce governments to tell the truth.

Higher heterogeneity implies that for the planner flexibility to country-specific shocks is more valuable. The free-rider problem is less severe, since the individually optimal debt levels get more and more different, making less costly for the planner to provide incentives for truth-telling.
Intuition

- Result depends on the trade-off between flexibility and incentives to tell the truth.
Intuition

- Result depends on the trade-off between flexibility and incentives to tell the truth
 - on the one hand, under full information the optimal debt depends on the taste shocks, so that in the private information model it is desirable to let CE depend on the reported values of these shocks
 - on the other hand, because of free-rider problem the planner has to provide incentives to induce governments to tell the truth
 - Higher heterogeneity implies that for the planner flexibility to country-specific shocks is more valuable, the free-rider problem is less severe, since the individually optimal debt levels gets more and more different, making less costly for the planner to provide incentives for truth-telling
Intuition

- Result depends on the trade-off between flexibility and incentives to tell the truth
 - on the one hand, under full information the optimal debt depends on the taste shocks, so that in the private information model it is desirable to let CE depend on the reported values of these shocks
 - on the other hand, because of free-rider problem the planner has to provide incentives to induce governments to tell the truth

Higher heterogeneity implies that for the planner:
- flexibility to country-specific shocks is more valuable
- the free-rider problem is less severe, since the individually optimal debt levels gets more and more different, making less costly for the planner to provide incentives for truth-telling.
Intuition

○ Result depends on the trade-off between flexibility and incentives to tell the truth
 ▶ on the one hand, under full information the optimal debt depends on the taste shocks, so that in the private information model it is desirable to let CE depend on the reported values of these shocks
 ▶ on the other hand, because of free-rider problem the planner has to provide incentives to induce governments to tell the truth

○ Higher heterogeneity implies that for the planner
Intuition

- Result depends on the trade-off between flexibility and incentives to tell the truth
 - on the one hand, under full information the optimal debt depends on the taste shocks, so that in the private information model it is desirable to let CE depend on the reported values of these shocks
 - on the other hand, because of free-rider problem the planner has to provide incentives to induce governments to tell the truth
- Higher heterogeneity implies that for the planner
 - flexibility to country-specific shocks is more valuable
Intuition

- Result depends on the trade-off between flexibility and incentives to tell the truth
 - on the one hand, under full information the optimal debt depends on the taste shocks, so that in the private information model it is desirable to let CE depend on the reported values of these shocks
 - on the other hand, because of free-rider problem the planner has to provide incentives to induce governments to tell the truth

- Higher heterogeneity implies that for the planner
 - flexibility to country-specific shocks is more valuable
 - the free-rider problem is less severe, since the individually optimal debt levels gets more and more different, making less costly for the planner to provide incentives for truth-telling
Conclusions and future research

Design of the optimal policy mix in a monetary union when country-specific shocks are private information of national governments and the central bank cannot commit to its future policies.

The optimal mechanism trades off the desire to limit this form of moral hazard with the need to leave some flexibility to respond to country-specific shocks.

The optimal degree of flexibility depends on how much heterogeneous countries can be.

An important limitation of our analysis is the use of a two-period model. This modeling assumption does not allow us to examine how incentives to misreport are linked to the inherited debt and how they can be counteracted with future penalties.

Another limitation is the absence of aggregate shocks. Limited role for monetary policy.
Conclusions and future research

- Design of the optimal policy mix in a monetary union when country-specific shocks are private information of national governments and the central bank cannot commit to its future policies.

The optimal mechanism trades off the desire to limit this form of moral hazard with the need to leave some flexibility to respond to country-specific shocks. The optimal degree of flexibility depends on how much heterogeneous countries can be.

An important limitation of our analysis is the use of a two-period model. This modeling assumption does not allow us to:
- Examine how incentives to misreport are linked to the inherited debt and how they can be counteracted with future penalties.
- Examine how moral hazard interacts with limited enforcement.

Another limitation is the absence of aggregate shocks, which limits the role for monetary policy.
Conclusions and future research

- Design of the optimal policy mix in a monetary union when country-specific shocks are private information of national governments and the central bank cannot commit to its future policies

- The optimal mechanism trades off the desire to limit this form of moral hazard with the need to leave some flexibility to respond to country-specific shocks

- An important limitation of our analysis is the use of a two-period model. This modeling assumption does not allow us to examine how incentives to misreport are linked to the inherited debt and how they can be counteracted with future penalties

- Another limitation is the absence of aggregate shocks. Limited role for monetary policy
Conclusions and future research

- Design of the optimal policy mix in a monetary union when country-specific shocks are private information of national governments and the central bank cannot commit to its future policies.

- The optimal mechanism trades off the desire to limit this form of moral hazard with the need to leave some flexibility to respond to country-specific shocks.

- The optimal degree of flexibility depends on how much heterogeneous countries can be.

An important limitation of our analysis is the use of a two-period model. This modeling assumption does not allow us to examine how incentives to misreport are linked to the inherited debt and how they can be counteracted with future penalties. Another limitation is the absence of aggregate shocks. Limited role for monetary policy.
Conclusions and future research

- Design of the optimal policy mix in a monetary union when country-specific shocks are private information of national governments and the central bank cannot commit to its future policies
- The optimal mechanism trades off the desire to limit this form of moral hazard with the need to leave some flexibility to respond to country-specific shocks
- The optimal degree of flexibility depends on how much heterogeneous countries can be
- An important limitation of our analysis is the use of a two-period model. This modeling assumption does not allow us to

▶ examine how incentives to misreport are linked to the inherited debt and how they can be counteracted with future penalties
▶ examine how moral hazard interacts with limited enforcement
Conclusions and future research

- Design of the optimal policy mix in a monetary union when country-specific shocks are private information of national governments and the central bank cannot commit to its future policies.
- The optimal mechanism trades off the desire to limit this form of moral hazard with the need to leave some flexibility to respond to country-specific shocks.
- The optimal degree of flexibility depends on how much heterogeneous countries can be.
- An important limitation of our analysis is the use of a two-period model. This modeling assumption does not allow us to:
 - examine how incentives to misreport are linked to the inherited debt and how they can be counteracted with future penalties.
Conclusions and future research

- Design of the optimal policy mix in a monetary union when country-specific shocks are private information of national governments and the central bank cannot commit to its future policies.
- The optimal mechanism trades off the desire to limit this form of moral hazard with the need to leave some flexibility to respond to country-specific shocks.
- The optimal degree of flexibility depends on how much heterogeneous countries can be.
- An important limitation of our analysis is the use of a two-period model. This modeling assumption does not allow us to:
 - examine how incentives to misreport are linked to the inherited debt and how they can be counteracted with future penalties.
 - examine how moral hazard interacts with limited enforcement.
Conclusions and future research

- Design of the optimal policy mix in a monetary union when country-specific shocks are private information of national governments and the central bank cannot commit to its future policies
- The optimal mechanism trades off the desire to limit this form of moral hazard with the need to leave some flexibility to respond to country-specific shocks
- The optimal degree of flexibility depends on how much heterogeneous countries can be
- An important limitation of our analysis is the use of a two-period model. This modeling assumption does not allow us to
 - examine how incentives to misreport are linked to the inherited debt and how they can be counteracted with future penalties
 - examine how moral hazard interacts with limited enforcement
- Another limitation is the absence of aggregate shocks. Limited role for monetary policy