The Real Exchange Rate, Innovation and Productivity: Heterogeneity, Asymmetries and Hysteresis

Laura Alfaro (HBS and NBER) Alejandro Cuñat (Vienna and CESifo) Harald Fadinger (Mannheim and CEPR) Yanping Liu (Mannheim)

Nov 2019
Motivation

- Aftermath of Global Financial Crisis: renewed the debate of the effects of real exchange rate (RER) movements.
 - Massive inflows to emerging markets (quantitative easing): policymakers from emerging markets concerned about loss of competitiveness.
 - Rich countries: recent concerns about appreciated exchange rates and their impact on manufacturing.
Motivation

- Aftermath of Global Financial Crisis: renewed the debate of the effects of real exchange rate (RER) movements.
 - Massive inflows to emerging markets (quantitative easing): policymakers from emerging markets concerned about loss of competitiveness.
 - Rich countries: recent concerns about appreciated exchange rates and their impact on manufacturing.

- Revived interest in different policies:
 - Macro: reserve accumulation and capital controls to limit exchange rate appreciations (Alfaro, Chari, Kanczuk, 2015).
 - Micro: production and export subsidies, tariffs/industrial policy; exchange rates (RER)
Motivation: RER Effects

- Effects of RER depreciation/appreciation far from clear, evidence inconclusive.
Motivation: RER Effects

- Effects of RER depreciation/appreciation far from clear, evidence inconclusive.
- An extensive empirical literature has focused on characterizing the aggregate effects of RER depreciation (Rodrik, 2008 and references therein).
 - No consensus on the channels: externalities from specialization in tradables/exports, larger aggregate savings…; other effects.
 - Empirical issues: omitted variables, reverse causality, etc. (Woodford, 2008, Henry, 2008).
- Firm-level studies mixed evidence.
- Industrialized countries: muted impact RER depreciations (Berman et al., 2012; Amiti et al., 2014).
- Emerging countries (data constraints): productivity gains associated to imports (Halpern et al., 2015; Gopinath and Neiman, 2014).
- Increased intermediate inputs trade and GVC (Baldwin, 2016).
Motivation: RER Effects

- Effects of RER depreciation/appreciation far from clear, evidence inconclusive.
- An extensive empirical literature has focused on characterizing the aggregate effects of RER depreciation (Rodrik, 2008 and references therein).
 - No consensus on the channels: externalities from specialization in tradables/exports, larger aggregate savings...; other effects.
 - Empirical issues: omitted variables, reverse causality, etc. (Woodford, 2008, Henry, 2008).
- Firm-level studies mixed evidence.
 - Industrialized countries: muted impact RER depreciations (Berman et al., 2012; Amiti et al., 2014).
 - Emerging countries (data constraints): productivity gains associated to imports (Halpern et al., 2015; Gopinath and Neiman, 2014).
 - Increased intermediate inputs trade and GVC (Baldwin, 2016)
What We do

- We investigate the effects of RER movements on firm productivity, export and import decisions, and innovation
 - Compilation of cross-country firm-level data
- Explore a number of mechanisms and their implications by structurally estimating a dynamic model of R&D choice, exporting and importing.
 - Counterfactuals
What We do: Micro-Level Evidence

- We investigate the effects of RER movements on firm productivity, export and import decisions, and innovation, exploiting cross-country firm-level data.
 - Comprehensive compilation of firm-level data: economic activity, trade status, R&D, currency denomination of debt, etc. (manufacturing sector).
 - Years 2001-2010, ≈ 70 dev. + 23 indust. countries, ≈ 500,000 firms.
 - Administrative Plant-Level Data (Colombia, France, China, Hungary).
We investigate the effects of RER movements on firm productivity, export and import decisions, and innovation, exploiting cross-country firm-level data.

- Comprehensive compilation of firm-level data: economic activity, trade status, R&D, currency denomination of debt, etc. (manufacturing sector).
- Years 2001-2010, ≈ 70 dev. + 23 indust. countries, ≈ 500,000 firms.
 - Administrative Plant-Level Data (Colombia, France, China, Hungary).

We document empirical evidence on the heterogeneous effects of RER movements on average manufacturing-firm-level outcomes across three regions:

- Emerging Asia, Other Developing (Latin America, Eastern Europe), Industrialized.
Stylized Fact: Regional Heterogeneity in Export and Import Orientation

Emerging Asia firms are relatively more export to import oriented than firms from other emerging countries; industrial-country firms are relatively more balanced.

Table: Import and Export Propensity/Intensity (to Sales) of Manufacturing plants (Computed from census micro data)

<table>
<thead>
<tr>
<th></th>
<th>China</th>
<th>Colombia</th>
<th>Hungary</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export prob.</td>
<td>0.26</td>
<td>0.37</td>
<td>0.35</td>
<td>0.23</td>
</tr>
<tr>
<td>Import prob.</td>
<td>0.17</td>
<td>0.45</td>
<td>0.39</td>
<td>0.20</td>
</tr>
<tr>
<td>Relative export prob.</td>
<td>1.53</td>
<td>0.82</td>
<td>0.90</td>
<td>1.15</td>
</tr>
<tr>
<td>Avg. export intensity (exporters)</td>
<td>0.6</td>
<td>0.10</td>
<td>0.10</td>
<td>0.23</td>
</tr>
<tr>
<td>Avg. import intensity (importers)</td>
<td>0.13</td>
<td>0.14</td>
<td>0.24</td>
<td>0.14</td>
</tr>
<tr>
<td>Relative export intensity</td>
<td>4.62</td>
<td>0.71</td>
<td>0.42</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Similar evidence by region: D&B and World Bank’s Enterprise Survey (no industr.).
Finding: Regional Heterogeneity

- Firm-level Revenue-based Productivity (TFPR) growth and the RER growth rate
 - Positively correlated in Emerging Asia;
 - Negatively correlated in Other Emerging Markets;
 - Uncorrelated in Industrialized Economies.

Figure: I. RER and Firm-level TFPR Growth: 2001-2010
(Binned Scatter Plots; Country-sector, Year FE and Business Cycle Controls)
Finding: Exporters and Importers

- Firm-level revenue-based productivity (TFPR) growth and the RER growth rate:
 - Positively correlated for exporters; negatively correlated for importers.

Figure: IIa. RER and Firm-level TFPR Growth by Trade Status: 2001-2010
(Binned Scatter Plots; Country-sector-time FE, Trade and MNC Status)

Figure: IIb. RER and Firm-level Changes in R&D probability: 2001-2010
(Binned Scatter Plots; Country-sector-time FE, Trade and MNC Status)
Finding: R&D and Financial Constraints

- Firm-level R&D probability and cash flow are positively correlated;
- Effect stronger for exporters; in emerging markets than in industrialized economies;

Figure: RER and Firm-level Cash flow: 2001-2010 (Binned Scatter Plots)
Micro-Level Evidence: Overview Findings

- Heterogeneous effects of RER movements on average manufacturing firm-level outcomes across three regions.
 - Emerging Asia, RER depreciations associated with:
 1. Faster firm-level TFP (revenue-based), sales and cash flow growth;
 2. Higher probability to engage in R&D and export.
 3. The positive effects on outcomes are concentrated on exporting firms.
 4. Firms importing intermediates are negatively affected.
 - On average negative effects for firms located in other emerging economies (Latin America, Eastern Europe).
 - Most import intensive; foreign currency debt.
 - No significant effects for manufacturing firms in industrialized countries.
Micro-Level Evidence: Overview Findings

- Heterogeneous effects of RER movements on average manufacturing firm-level outcomes across three regions.
 - Emerging Asia, RER depreciations associated with:
 1. Faster firm-level TFP (revenue-based), sales and cash flow growth;
 2. Higher probability to engage in R&D and export.
 3. The positive effects on outcomes are concentrated on exporting firms.
 4. Firms importing intermediates are negatively affected.
 - On average negative effects for firms located in other emerging economies (Latin America, Eastern Europe).
 - Most import intensive; foreign currency debt.
 - No significant effects for manufacturing firms in industrialized countries.

...the existing manufacturing sector generally takes a dim view of exchange rate devaluations and fears such policy (Díaz Alejandro, 1965).
Microeconomic channels through which the RER effects come through.

- Changes in productivity are not the result of externalities but of firms’ deliberate decisions.
 - Exploit structural differences in export and import orientation and financial development across regions.
What We Do: Model-Mechanisms

- **Microeconomic channels** through which the RER effects come through.
 - Changes in productivity are not the result of externalities but of firms’ deliberate decisions.
 - Exploit structural differences in export and import orientation and financial development across regions.
- We structurally estimate a dynamic firm-level model of exporting, importing and R&D investment featuring:
 1. Imported intermediate goods
 2. R&D investment subject to financial constraints.
 3. Market-size effects: cash flow
Microeconomic channels through which the RER effects come through.

- Changes in productivity are not the result of externalities but of firms’ deliberate decisions.
 - Exploit structural differences in export and import orientation and financial development across regions.

We structurally estimate a dynamic firm-level model of exporting, importing and R&D investment featuring:

1. Imported intermediate goods
2. R&D investment subject to financial constraints.
3. Market-size effects: cash flow

Decompose average TFPR effects: persistent physical productivity effects due to innovation, demand effects, firm-level imports; market-size effect and financial constraint.
Conduct counterfactual simulations of temporary depreciations and appreciations.
What We Do: Simulation

- Conduct counterfactual simulations of temporary depreciations and appreciations.
 - Temporary RER movements can have **persistent** (positive or negative) effects on TFP growth through innovation.
 - **Non-linear** effects.
 - Depreciations/appreciations **asymmetric** effects.
 - Export and import orientations; substitution between domestic and intermediate inputs.
 - Option value of engaging in R&D, hysteresis due to sunk costs; credit constraints; (Baldwin, 1988; Baldwin and Krugman 1989).
What We Do: Simulation

- Conduct counterfactual simulations of temporary depreciations and appreciations.
 - Temporary RER movements can have **persistent** (positive or negative) effects on TFP growth through innovation.
 - **Non-linear** effects.
 - Depreciations/appreciations **asymmetric** effects.
 - Export and import orientations; substitution between domestic and intermediate inputs.
 - Option value of engaging in R&D, hysteresis due to sunk costs; credit constraints; (Baldwin, 1988; Baldwin and Krugman 1989).

⇒ Firm-level responses aggregate into the **heterogeneous** average effects of real-exchange-rate fluctuations on R&D and productivity growth across regions.
Our analysis is silent on:

- How the RER appreciation/depreciation came about.
- Welfare analysis; Costs of reserve accumulation, inflation, financial repression, tensions/interactions among countries, service sector, etc. (Woodford, 2008; Henry, 2008).
Related Literature

- **Trade, Innovation, and productivity growth**
 - Exports, market size and innovation: Lileeva and Trefler, 2010 (Canada); Bustos, 2011 (Argentina); Aw et al, 2010 (Taiwan); Aghion et al. (France).
 - Imports and productivity: Halpern et al, 2015 (Hungary)
 - Sovereign default-productivity losses: Mendoza and Yue, 2012 (Mexico)

- **Effects of Exchange Rates**
 - Effects of RER movements on rich-country firms: Amiti et al, 2012 (Belgium); Berman et al, 2012 (France), Ekholm et al, 2012 (Norway); Fitzgerald and Haller, 2015 (Ireland)
 - Effects of large devaluations on emerging markets: Verhoogen, 2008 (Mexico); Gopinath and Neiman, 2014 (Argentina)

- **Financial Constraints**
 - Financial constraints and exports: Manova, 2013
 - Financial constraints exporting and R&D: Gorodnichenko and Schnitzer, 2013 (Eastern Europe)
 - Financial constraints and TFP: Midrigan and Xu, 2014 (S. Korea)
Outline

- Introduction
- Empirical Evidence: Stylized Facts
- Theoretical Model
- Estimation Strategy
- Estimation Results
- Counterfactual Experiments
- Robustness
Sample: Manufacturing Firms

- **Orbis** (Bureau Van Dijk): 2 CDs + web version
 - Firm-level data of listed and unlisted firms: sales, materials, capital stock, employees, cash flow, R&D expenditure.
 - Years 2001-2010, \(\approx 70 \) dev. + 23 indust. countries, \(\approx 500,000 \) firms.

- **Worldbase** (Dunn and Brad Street): plant-level export and import status, sales, employment for years 2000, 2005, 2007, 2009 (matched with Orbis);

- Detailed **administrative plant-level data**: Colombia, France, China, Hungary (export/import participation and intensities).

- Worldbank **exporter dynamics database**: entry and exit rates into/from exporting.

Other data: Fraction of firms performing R&D: OECD innovation scoreboard.

Other Controls: real GDP growth (PWT 8.0), inflation (IMF GDP deflators)

Robustness: Currency composition of debt: World Bank Enterprise survey, Salomão and Valera (2007); IADB Firms' Balance Sheet project.
Sample: Manufacturing Firms

- **Orbis** (Bureau Van Dijk): 2 CDs + web version
 - Firm-level data of listed and unlisted firms: sales, materials, capital stock, employees, cash flow, R&D expenditure.
 - Years 2001-2010, ≈ 70 dev. + 23 indust. countries, ≈ 500,000 firms.

- **Worldbase** (Dunn and Brad Street): plant-level export and import status, sales, employment for years 2000, 2005, 2007, 2009 (matched with Orbis);

- Detailed administrative plant-level data: Colombia, France, China, Hungary (export/import participation and intensities).

- Worldbank exporter dynamics database: entry and exit rates into/from exporting.

- **Real exchange rate**: PPP of GDP from Penn World Tables 8.0 (PWT 8.0), export and import-weighted RER constructed by combining PPP with bilateral sectoral export/import shares (3-digit level) from UN COMTRADE database.
Sample: Manufacturing Firms

- **Orbis** (Bureau Van Dijk): 2 CDs + web version
 - Firm-level data of listed and unlisted firms: sales, materials, capital stock, employees, cash flow, R&D expenditure.
 - Years 2001-2010, ≈ 70 dev. + 23 indust. countries, ≈ 500,000 firms.

- **Worldbase** (Dunn and Brad Street): plant-level export and import status, sales, employment for years 2000, 2005, 2007, 2009 (matched with Orbis);

- Detailed **administrative plant-level data**: Colombia, France, China, Hungary (export/import participation and intensities).

- Worldbank **exporter dynamics database**: entry and exit rates into/from exporting.

- **Real exchange rate**: PPP of GDP from Penn World Tables 8.0 (PWT 8.0), export and import-weighted RER constructed by combining PPP with bilateral sectoral export/import shares (3-digit level) from UN COMTRADE database.

- Other data:
 - Fraction of firms performing R&D: OECD innovation scoreboard.
 - **Other Controls**: real GDP growth (PWT 8.0), inflation (IMF GDP deflators)
 - (Robustness:) **Currency composition of debt**: World Bank Enterprise survey, Salomão and Valera (2007); IADB Firms’ Balance Sheet project.
RER is *endogenous* to *aggregate shocks* (e.g. supply shocks and demand shocks).
Reduced-form evidence: RER and firm-level outcomes

- RER is *endogenous* to *aggregate shocks* (e.g. supply shocks and demand shocks).
- RER has large *exogenous* component due to nominal exchange rate; RER hard to predict short- medium-run.
Reduced-form evidence: RER and firm-level outcomes

- RER is *endogenous* to *aggregate shocks* (e.g. supply shocks and demand shocks).
 - RER has large *exogenous* component due to nominal exchange rate; RER hard to predict short- medium-run.

- Individual manufacturing firms ⇒ reverse causality unlikely (treat aggregate RER fluctuations as exogenous shocks).

- Potential *omitted variable bias* (positive aggregate supply (demand) shocks should positively (negatively) correlate with RER) ⇒ control for GDP growth, inflation.
Reduced-form evidence: RER and firm-level outcomes

- RER is *endogenous* to *aggregate shocks* (e.g. supply shocks and demand shocks).
 - RER has large *exogenous* component due to nominal exchange rate; RER hard to predict short-medium-run.
- Individual manufacturing firms ⇒ reverse causality unlikely (treat aggregate RER fluctuations as exogenous shocks).
- Potential *omitted variable bias* (positive aggregate supply (demand) shocks should positively (negatively) correlate with RER) ⇒ control for GDP growth, inflation.
- **Strategy I:** Trade-weighted RERs:
 - Omitted variable bias: control for country-time fixed effects (aggregate shocks to manuf. sector); *country-sector-time FE*.
 - Endogeneity of trade-weighted RER: (i) pre-sample trade weights; (ii) each of the 163 manufacturing sectors: negligible weight in aggregate price level.
Reduced-form evidence: RER and firm-level outcomes

- RER is *endogenous* to *aggregate shocks* (e.g. supply shocks and demand shocks).
 - RER has large *exogenous* component due to nominal exchange rate; RER hard to predict short- medium-run.

- Individual manufacturing firms ⇒ reverse causality unlikely (treat aggregate RER fluctuations as exogenous shocks).

- Potential *omitted variable bias* (positive aggregate supply (demand) shocks should positively (negatively) correlate with RER) ⇒ control for GDP growth, inflation.

- **Strategy I:** Trade-weighted RERs:
 - Omitted variable bias: control for country-time fixed effects (aggregate shocks to manuf. sector); *country-sector-time FE*.
 - Endogeneity of trade-weighted RER: (i) pre-sample trade weights; (ii) each of the 163 manufacturing sectors: negligible weight in aggregate price level.

- **Strategy II:** IV exploiting (i) exogenous fluctuations in world commodity prices interacted with (pre-sample) trade weights; (ii) world capital flows interacted with financial account openness.
Reduced-form evidence: RER and firm-level outcomes

\[\Delta \log(Y_{it}) = \beta_0 + \sum_{r \in R} \beta_r \Delta \log(e_{ct}) l_r + \beta_2 X_{ct} + \delta_{sc} + \delta_t + u_{ict}, \]

- **Dependent variable (firm(i)-time(t)-level):**
 1. revenue-based TFP (TFPR) growth rate, from value added;
 2. revenue-based TFP growth rate, from gross output;
 3. sales growth rate;
 4. cash flow growth rate;
 5. change of an indicator variable for R&D (linear probability model.);
 6. growth rate of entry rate into exporting at the country-time level (new exporters/total exporters).

- **Aggregate RER varies at the country(c)-time(t) level.**
- **\(l_r\) dummy for country \(c\) belonging to region \(r\); \(\delta_{sc}\): sector-country fixed effect; \(\delta_t\): time fixed effect; vector \(X_{ct}\): business-cycle controls (real GDP growth rate and the inflation rate).**
- **Cluster standard errors at the country level.**
Changes in aggregate RER and firm-level outcomes

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ log TFPR_{VA, it}</td>
<td>Δ log TFPR_{GO, it}</td>
<td>Δ log sales_{it}</td>
<td>Δ log c. f._{it}</td>
<td>Δ R&D prob._{it}</td>
<td>Δ log export entry rate_{ct}</td>
</tr>
<tr>
<td>Δ log e_{ct} ×</td>
<td>0.239***</td>
<td>0.120***</td>
<td>-0.105**</td>
<td>-0.762***</td>
<td>-0.557</td>
<td>0.0196</td>
</tr>
<tr>
<td>emerging East Asia_{c}</td>
<td>(0.0895)</td>
<td>(0.0198)</td>
<td>(0.216)</td>
<td>(0.114)</td>
<td>(0.095)</td>
<td>(0.207)</td>
</tr>
<tr>
<td>Δ log e_{ct} ×</td>
<td>-0.546***</td>
<td>-0.105**</td>
<td>-0.762***</td>
<td>-0.557</td>
<td>0.16</td>
<td>0.063</td>
</tr>
<tr>
<td>other emerging_{c}</td>
<td>(0.185)</td>
<td>(0.0426)</td>
<td>(0.274)</td>
<td>(0.414)</td>
<td>(0.125)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>Δ log e_{ct} ×</td>
<td>0.0196</td>
<td>-0.031</td>
<td>-0.282</td>
<td>-0.319**</td>
<td>-0.168</td>
<td>-0.275</td>
</tr>
<tr>
<td>industrialized_{c}</td>
<td>(0.103)</td>
<td>(0.0309)</td>
<td>(0.217)</td>
<td>(0.126)</td>
<td>(0.149)</td>
<td>(0.274)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,333,986</td>
<td>1,333,986</td>
<td>1,275,606</td>
<td>772,970</td>
<td>148,367</td>
<td>392</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.057</td>
<td>0.038</td>
<td>0.103</td>
<td>0.024</td>
<td>0.016</td>
<td>0.107</td>
</tr>
<tr>
<td>Country-sector FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Time FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Business cycle</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

- Results are robust to:
 - trade-weighted RERs with country-time FE
 - excluding years of global financial crisis
 - 3-year changes (annualized)
 - IV estimates
Import and Export Participation by region: World Enterprise Survey

<table>
<thead>
<tr>
<th></th>
<th>Emerging Asia</th>
<th>Other Emerging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export prob.</td>
<td>0.20</td>
<td>0.26</td>
</tr>
<tr>
<td>Import prob.</td>
<td>0.19</td>
<td>0.33</td>
</tr>
<tr>
<td>Avg. export intensity</td>
<td>0.58 (exporters)</td>
<td>0.25 (exporters)</td>
</tr>
<tr>
<td>Avg. import intensity</td>
<td>0.13 (importers)</td>
<td>0.14 (importers)</td>
</tr>
</tbody>
</table>

Table: Import and export propensity/intensity of manufacturing plants from Worldbank’s 2016 Enterprise Survey. Emerging Asia is defined as developing East Asia and South Asia; other emerging economies are defined as Eastern Europe and Latin America.
Trade Status

\[
\Delta \log(Y_{ic,t}) = \beta_0 + \sum_{r \in R, T \in \text{exp, imp}} \beta_{Tr} \Delta \log(e_{c,t}) I_{T} I_{r} + \sum_{r \in R, T \in \text{exp, imp}} I_{T} I_{r} + \delta_{cst} + u_{ic,t}
\]

- Interact effect of RER with firm-level trade status (exporter, importer; multinational):
 - Include country-sector-time FE \((\delta_{cst})\).
- To avoid endogeneity of the trade status, we keep the firms’ trade status fixed over the sample period (equal to the trade status in the first period we observe it).
Aggregate RER and Firm-Level Outcomes

Table: Aggregate RER and firm-level outcomes by firm’s trade status

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \log e_{ct} \times) emerging Asia (_c \times) exporter (_f)</td>
<td>0.197**</td>
<td>0.030</td>
<td>0.135***</td>
<td>0.243***</td>
<td>0.065***</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.019)</td>
<td>(0.036)</td>
<td>(0.035)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>(\Delta \log e_{ct} \times) emerging Asia (_c \times) importer (_f)</td>
<td>-0.157***</td>
<td>-0.016**</td>
<td>-0.099***</td>
<td>-0.123**</td>
<td>-0.101***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.008)</td>
<td>(0.024)</td>
<td>(0.049)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>(\Delta \log e_{ct} \times) emerging Asia (_c \times) multinational (_f)</td>
<td>-0.005</td>
<td>0.019</td>
<td>-0.088***</td>
<td>-0.096</td>
<td>-0.049*</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.019)</td>
<td>(0.015)</td>
<td>(0.059)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>(\Delta \log e_{ct} \times) other emerging (_c \times) exporter (_f)</td>
<td>0.394**</td>
<td>0.087**</td>
<td>0.333***</td>
<td>1.162***</td>
<td>0.167***</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>(0.036)</td>
<td>(0.079)</td>
<td>(0.281)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>(\Delta \log e_{ct} \times) other emerging (_c \times) importer (_f)</td>
<td>-0.251</td>
<td>-0.074</td>
<td>0.005</td>
<td>-0.803***</td>
<td>-0.119</td>
</tr>
<tr>
<td></td>
<td>(0.177)</td>
<td>(0.046)</td>
<td>(0.102)</td>
<td>(0.203)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>(\Delta \log e_{ct} \times) other emerging (_c \times) multinational (_f)</td>
<td>-0.027</td>
<td>-0.083**</td>
<td>0.382</td>
<td>0.502*</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>(0.127)</td>
<td>(0.040)</td>
<td>(0.248)</td>
<td>(0.292)</td>
<td>(0.024)</td>
</tr>
</tbody>
</table>

- **Observations**: 511,061 511,061 481,733 313,856 35,151
- **R-squared**: 0.094 0.076 0.16 0.063 0.116
- **Country-sector-time FE**: YES YES YES YES YES
- **Firm status controls**: YES YES YES YES YES
- **Cluster**: Country Country Country Country Country

- **Industrialized**: smaller/insignificant.
Financial constraints and R&D Decisions

\[I_{RDit} = \beta_0 + \beta_1 \text{fin. dev.}_c + \beta_2 \log(c.f.)_it + \beta_3 \log(c.f.)_it \times \text{fin. dev.}_c + \beta_4 X_{ict} + \nu_{it}, \]

- \(I_{RDit} \): indicator that equals one if firm \(i \) performs R&D in year \(t \); \(\log(c.f.)_{it} \) is the firm’s cash flow (in logs); \(\text{fin. dev.}_c \) is a measure of country-level financial development (private credit/GDP).

- Controls: employment and capital stock (in logs), the inflation rate and the real growth rate of GDP.

- Depending on the specification, we include different fixed effects (country and sector, country-sector or firm).
R&D, credit constraints and financial development

<table>
<thead>
<tr>
<th></th>
<th>(1) R&D prob.(_{it})</th>
<th>(2) R&D prob.(_{it})</th>
<th>(3) R&D prob.(_{it})</th>
<th>(4) R&D prob.(_{it})</th>
</tr>
</thead>
<tbody>
<tr>
<td>financial development(_c)</td>
<td>0.589***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(cash flow)(_{ft})</td>
<td>0.044***</td>
<td>0.04***</td>
<td>0.052***</td>
<td>0.015***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>log(cash flow)(_{ft}) × financial development(_c)</td>
<td>-0.028***</td>
<td>-0.028***</td>
<td>-0.032***</td>
<td>-0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.250</td>
<td>0.338</td>
<td>0.375</td>
<td>0.790</td>
</tr>
<tr>
<td>Observations</td>
<td>117,403</td>
<td>117,394</td>
<td>117,142</td>
<td>108,826</td>
</tr>
</tbody>
</table>

- Time FE: YES
- Sector FE: NO
- Country FE: NO
- Sector-country FE: NO
- Firm FE: NO
- Cluster: Firm

Financial development is measured as log(cash flow) × financial development, with R-squared ranging from 0.250 to 0.790, and observations ranging from 117,142 to 108,826.
R&D Sensitivity, credit constraints and financial development

\[l_{iRD,t} = \beta_0 \sum_{i=1}^{4} \beta_1 i \log(cashflow)_{i,t} \times size_i + \sum_{i=1}^{4} \beta_2 i \log(cashflow)_{i,t} \times size_i \times fin.dev.c + \beta_4 X_{iC,t} + \nu_{i,t}, \]

<table>
<thead>
<tr>
<th></th>
<th>(1) R&D prob.(_{it})</th>
<th>(2) R&D prob.(_{it})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log(cash \ flow)_{1f} \times)</td>
<td>0.015</td>
<td>0.008</td>
</tr>
<tr>
<td>size quartile 1(_f)</td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>(\log(cash \ flow)_{2f} \times)</td>
<td>0.035**</td>
<td>0.018</td>
</tr>
<tr>
<td>size quartile 2(_f)</td>
<td>(0.0153)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>(\log(cash \ flow)_{3f} \times)</td>
<td>0.052***</td>
<td>0.048***</td>
</tr>
<tr>
<td>size quartile 3(_f)</td>
<td>(0.005)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>(\log(cash \ flow)_{4f} \times)</td>
<td>0.056***</td>
<td>0.059***</td>
</tr>
<tr>
<td>size quartile 4(_f)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>(\log(cash \ flow)_{f} \times)</td>
<td>-0.0001</td>
<td>-0.0001</td>
</tr>
<tr>
<td>size quartile 1(_f) \times credit(_c)</td>
<td>(0.0001)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>(\log(cash \ flow)_{2f} \times)</td>
<td>-0.0002*</td>
<td>-0.0001</td>
</tr>
<tr>
<td>size quartile 2(_f) \times credit(_c)</td>
<td>(0.0001)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>(\log(cash \ flow)_{3f} \times)</td>
<td>-0.0002***</td>
<td>-0.0002***</td>
</tr>
<tr>
<td>size quartile 3(_f) \times credit(_c)</td>
<td>(0.00004)</td>
<td>(0.00004)</td>
</tr>
<tr>
<td>(\log(cash \ flow)_{4f} \times)</td>
<td>-0.0002***</td>
<td>-0.0002***</td>
</tr>
<tr>
<td>size quartile 4(_f) \times credit(_c)</td>
<td>(0.00002)</td>
<td>(0.00002)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>YES</th>
<th>YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/Firm FE/B.C.</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Sector FE</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Country FE</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Sector-country FE</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Foreign Debt Shares by Region

<table>
<thead>
<tr>
<th></th>
<th>(1) foreign debt share</th>
<th>(2) foreign debt share</th>
</tr>
</thead>
<tbody>
<tr>
<td>emerging Asia$_c$</td>
<td>10.61*** (0.338)</td>
<td>4.820*** (0.462)</td>
</tr>
<tr>
<td>emerging Asia$_c$ × exporter$_f$</td>
<td>18.21*** (0.876)</td>
<td></td>
</tr>
<tr>
<td>emerging Asia$_c$ × importer$_f$</td>
<td>0.433 (0.626)</td>
<td></td>
</tr>
<tr>
<td>other emerging$_c$</td>
<td>19.09*** (0.386)</td>
<td>14.15*** (0.581)</td>
</tr>
<tr>
<td>other emerging$_c$ × exporter$_f$</td>
<td>24.90*** (1.073)</td>
<td></td>
</tr>
<tr>
<td>other emerging$_c$ × importer$_f$</td>
<td>-0.919 (0.759)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>14,554</td>
<td>14,554</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.201</td>
<td>0.271</td>
</tr>
<tr>
<td>Cluster</td>
<td>Firm</td>
<td>Firm</td>
</tr>
</tbody>
</table>
Summary of stylized facts

- Firms in emerging Asia: real depreciations are associated with faster revenue-based productivity growth, faster sales growth, faster growth of cash flow, higher probability to engage in R&D, and higher export entry rates.

- Other emerging markets (Latin America and Eastern Europe): real depreciations have a significantly negative effect on firm-level outcomes.

- Industrialized countries: real depreciations have no significant effects.

- Exporters: positively affected by real depreciations; firms importing intermediates: negatively impacted.

- Firms in emerging Asia: less likely to import, less import intensive, higher export intensity than firms in other regions. Firms in other emerging economies: most likely to import and most import intensive.

- Firms' R&D choice depends on the level of cash flow; the more so the less developed local financial markets are.

- Firms in other emerging economies are most exposed to foreign currency borrowing, followed by firms from emerging Asia.
Summary of stylized facts

- Firms in emerging Asia: real depreciations are associated with faster revenue-based productivity growth, faster sales growth, faster growth of cash flow, higher probability to engage in R&D, and higher export entry rates.
- Other emerging markets (Latin America and Eastern Europe): real depreciations have a significantly negative effect on firm-level outcomes.
- Industrialized countries: real depreciations have no significant effects.
- Exporters: positively affected by real depreciations; firms importing intermediates: negatively impacted.
Summary of stylized facts

- Firms in emerging Asia: real depreciations are associated with faster revenue-based productivity growth, faster sales growth, faster growth of cash flow, higher probability to engage in R&D, and higher export entry rates.

- Other emerging markets (Latin America and Eastern Europe): real depreciations have a significantly negative effect on firm-level outcomes.

- Industrialized countries: real depreciations have no significant effects.

- Exporters: positively affected by real depreciations; firms importing intermediates: negatively impacted.

- Firms in emerging Asia: less likely to import, less import intensive, higher export intensity than firms in other regions. Firms in other emerging economies: most likely to import and most import intensive.
Summary of stylized facts

- Firms in emerging Asia: real depreciations are associated with faster revenue-based productivity growth, faster sales growth, faster growth of cash flow, higher probability to engage in R&D, and higher export entry rates.

- Other emerging markets (Latin America and Eastern Europe): real depreciations have a significantly negative effect on firm-level outcomes.

- Industrialized countries: real depreciations have no significant effects.

- Exporters: positively affected by real depreciations; firms importing intermediates: negatively impacted.

- Firms in emerging Asia: less likely to import, less import intensive, higher export intensity than firms in other regions. Firms in other emerging economies: most likely to import and most import intensive.

- Firms’ R&D choice depends on the level of cash flow; the more so the less developed local financial markets are.

- Firms in other emerging economies are most exposed to foreign currency borrowing, followed by firms from emerging Asia.
Model: Setup

- Small open economy: foreign variables exogenous.
- Focus on manufacturing sector.
Model: Setup

- Small open economy: foreign variables exogenous.
- Focus on manufacturing sector.
- Heterogeneous monopolistic firms producing a single variety of the manufacturing good, $Y_{it} = \exp(\omega_{it}) K_{it}^{\beta_k} L_{it}^{\beta_l} M_{it}^{\beta_m}$.
Model: Setup

- Small open economy: foreign variables exogenous.
- Focus on manufacturing sector.
- Heterogeneous monopolistic firms producing a single variety of the manufacturing good, \(Y_{it} = \exp(\omega_{it}) K_{it}^{\beta_k} L_{it}^{\beta_l} M_{it}^{\beta_m} \).
- Firms choose whether to invest in R&D; affects their future productivity, \(\omega_{it} \).
- R&D: intangible investment, subject to sunk costs \(f_{RD,0} \) (in the period the firm starts innovating) and fixed costs \(f_{RD} \) (in other periods it innovates).
 - R&D cannot be used as collateral (borrowing constraints);
 - Only firms with operating profits larger than the sunk costs can finance R&D.
 - Firms can borrow at most \(\theta \) of current profits;
Model: Setup

- Small open economy: foreign variables exogenous.
- Focus on manufacturing sector.
- Heterogeneous monopolistic firms producing a single variety of the manufacturing good, \(Y_{it} = \exp(\omega_{it}) K_{it}^{\beta_k} L_{it}^{\beta_l} M_{it}^{\beta_m} \).
- Firms choose whether to invest in R&D; affects their future productivity, \(\omega_{it} \).
- R&D: intangible investment, subject to sunk costs \(f_{RD,0} \) (in the period the firm starts innovating) and fixed costs \(f_{RD} \) (in other periods it innovates).
 - R&D cannot be used as collateral (borrowing constraints);
 - Only firms with operating profits larger than the sunk costs can finance R&D.
 - Firms can borrow at most \(\theta \) of current profits;
- RER fluctuations change cash flow and affect thereby the behavior of firms, follow an AR(1) process; \(\log(e_t) = \gamma_0 + \gamma_1 \log(e_{t-1}) + \nu_t \).
Model: Setup (cont.)

- Consumers’ preferences over manufacturing varieties \(i \):

\[
D_{T,t} = \left(\int_{i \in \Omega_T} d_i^{\sigma-1} di + \int_{i \in \Omega_T^*} d_i^{\sigma-1} di \right)^{\frac{\sigma}{\sigma-1}},
\]

- \(\Omega_T \) and \(\Omega_T^* \): sets of domestically produced and imported varieties.
Model: Setup (cont.)

- Consumers’ preferences over manufacturing varieties i:
 \[
 D_{T,t} = \left(\int_{i \in \Omega_T} d_i^{\sigma-1} \, di + \int_{i \in \Omega_T^*} d_i^{\sigma-1} \, di \right)^{\frac{\sigma}{\sigma-1}},
 \]

- Ω_T and Ω_T^*: sets of domestically produced and imported varieties.

- Firms self-select into exporting their output and/or importing materials; per-period fixed costs f_m and f_x, i.i.d. random draws.

[Note: The mathematical expressions and text have been reproduced accurately from the original document.]
Consumers’ preferences over manufacturing varieties i:

$$D_{T,t} = \left(\int_{i \in \Omega_T} d_{it}^{\sigma-1} \, di + \int_{i \in \Omega_T^*} d_{it}^{\sigma-1} \, di \right)^{\frac{\sigma}{\sigma-1}},$$

Ω_T and Ω_T^*: sets of domestically produced and imported varieties.

Firms self-select into exporting their output and/or importing materials; per-period fixed costs f_m and f_x, i.i.d. random draws.

Domestic (X_{it}) and imported (X_{it}^*) intermediates: imperfect substitutes, $\epsilon > 1$:

$$M_{it} = \left[(B^* X_{it}^*)^{\frac{\epsilon}{\epsilon-1}} + X_{it}^{\frac{\epsilon}{\epsilon-1}} \right]^{\frac{\epsilon-1}{\epsilon}}$$

Firm importing inputs: $P_{Mt} = P_{Xt} \left[1 + \left(A e_t^{-1} \right)^{\frac{\epsilon-1}{1-\epsilon}} \right]^{\frac{1}{1-\epsilon}}$; $A \equiv B^* / P_{Xt}^*$: quality-adjusted relative cost of imported intermediates (RER, quality, and imperfect substitution).
Model: Setup (cont.)

- Consumers’ preferences over manufacturing varieties i:
 \[D_{T,t} = \left(\int_{i \in \Omega_T} d_{it}^{\frac{\sigma-1}{\sigma}} di + \int_{i \in \Omega_T^*} d_{it}^{\frac{\sigma-1}{\sigma}} di \right)^\frac{\sigma}{\sigma-1}, \]

- Ω_T and Ω_T^*: sets of domestically produced and imported varieties.

- Firms self-select into exporting their output and/or importing materials; per-period fixed costs f_m and f_x, i.i.d. random draws.

- Domestic (X_{it}) and imported (X_{it}^*) intermediates: imperfect substitutes, $\varepsilon > 1$:
 \[M_{it} = \left((B^* X_{it}^*)^{\frac{\varepsilon}{\varepsilon-1}} + X_{it}^{\frac{\varepsilon}{\varepsilon-1}} \right)^{\frac{\varepsilon-1}{\varepsilon}} \]

- Firm importing inputs: $P_{Mt} = P_{Xt} \left[1 + \left(A e^{-1} \right)^{\varepsilon-1} \right]^{\frac{1}{1-\varepsilon}}$; $A \equiv B^*/P_{Xt}^*$: quality-adjusted relative cost of imported intermediates (RER, quality, and imperfect substitution).

- Firm i chooses one among four different “regimes”, which characterize the following per-period profit function:
 \[\Pi_{it} = \max \left[\Pi_{it}^{(x,m)} - f_x - f_m, \Pi_{it}^{(x,0)} - f_x, \Pi_{it}^{(0,m)} - f_m, \Pi_{it}^{(0,0)} \right] \]
R&D and Financial Constraints

- Innovation raises productivity, subject to sunk costs $f_{RD,0}$ (in the period the firm starts innovating) and fixed costs f_{RD} (in other periods it innovates).
 - $\omega_{it} = \alpha_0 + \alpha_1 \omega_{it-1} + \alpha_2 l_{iRD,t-1} + u_{it}$;
 - $l_{iRD,t-1}$: indicator for innovation in $t-1$; α_2: return to innovation.
Innovation raises productivity, subject to sunk costs $f_{RD,0}$ (in the period the firm starts innovating) and fixed costs f_{RD} (in other periods it innovates).

- $\omega_{it} = \alpha_0 + \alpha_1 \omega_{it-1} + \alpha_2 I_{iRD,t-1} + u_{it}$;
- $I_{iRD,t-1}$: indicator for innovation in $t-1$; α_2: return to innovation.

Financial constraint: in each period the innovation fixed/sunk cost has to be proportional to current profits.

$$I_{iRD,t} \left[f_{RD,0} (1 - I_{iRD,t-1}) + f_{RD} I_{iRD,t-1} \right] \leq \theta \epsilon_{i,t} \Pi_{i,t} (\omega_{i,t}, e_t)$$

- $\theta \in [1, \bar{\theta}]$ quality of financial system; $\epsilon_{i,t}$ is an i.i.d. shock.
R&D and Financial Constraints

- Innovation raises productivity, subject to sunk costs $f_{RD,0}$ (in the period the firm starts innovating) and fixed costs f_{RD} (in other periods it innovates).
 - $\omega_{it} = \alpha_0 + \alpha_1 \omega_{it-1} + \alpha_2 I_{iRD,t-1} + u_{it}$;
 - $I_{iRD,t-1}$: indicator for innovation in $t-1$; α_2: return to innovation.

- Financial constraint: in each period the innovation fixed/sunk cost has to be proportional to current profits.
 \[l_{iRD,t} [f_{RD,0} (1 - l_{iRD,t-1}) + f_{RD} l_{iRD,t-1}] \leq \theta \epsilon_{i,t} \Pi_{i,t} (\omega_{i,t}, e_t) \]
 - $\theta \in [1, \bar{\theta}]$ quality of financial system; $\epsilon_{i,t}$ is an i.i.d. shock.

- The firm chooses an infinite sequence of R&D decisions $l_{iRD,t}$ that maximizes the value function subject to the financial constraint for R&D.
 \[V_{i,t} (s_{i,t}) = \max_{l_{iRD,t}} \left\{ \Pi_{i,t} (\omega_{i,t}, e_t) - [f_{RD,0} (1 - l_{iRD,t-1}) + f_{RD} l_{iRD,t-1}] + \beta E_t V_{i,t+1} (s_{i,t+1} | l_{iRD,t} = 1, s_{i,t}) \right\} \]
 - $\beta = (1 + r)^{-1}$
Summary: Timing Decisions

1. Observe $s_{i,t} = (\omega_{i,t}, e_t, l_{iRD,t-1})$.
2. Observe the realizations of f_x and f_m.
3. Choose variables inputs $(M_{i,t}, L_{i,t}, K_{i,t})$, export status $l_{ix,t}$ and import status $l_{im,t}$.
4. Observe realization of cash-flow shock $\epsilon_{i,t}$ and R&D fixed costs $f_{RD,0}$, and f_{RD}.
5. Make R&D decision $l_{iRD,t}$.
Construct revenue-based productivity as:

\[tfpr_{it} \equiv r_{it} - \hat{\beta}_l l - \hat{\beta}_k k_{it} - \hat{\beta}_m m_{it} = [\hat{\beta}_0 + \bar{\omega}_{it} + \bar{\epsilon}_{it} + \hat{\beta}_m \bar{a}_{it} - \hat{\beta}_m \log P_{Xst}] + g_{it} \left(D_{T,t}, D_{T,t}^*, e_t \right). \]

In the model \(\frac{\partial E(tfpr_{i,t})}{\partial \log e_t} \) can be decomposed as:

\[\beta_1 \equiv \frac{\partial E(tfptr_{i,t})}{\partial \log e_t} = \bar{\alpha}_2 \frac{\partial \text{Prob}(I_{tRD,t-1} = 1)}{\partial \log e_t} + \hat{\beta}_m \frac{\partial E(\bar{a}_{i,t})}{\partial \log e_t} + \frac{\partial E(g_{i,t}(D_{T,t}, D_{T,t}^*, e_t))}{\partial \log e_t} \]

1. Innovation channel: financial constraints effect.
2. Importing channel: extensive (probability to import) and intensive margin (import intensity).
3. Change in demand: demand/exporters (extensive and intensive).
Parameter calibration/estimation strategy consists of several steps:

1. Calibrate parameters σ (elasticity of demand; 4), ε (subst. elasticity of intermediates; 4) and r (interest rate; 0.05-industrialized and 0.10-emerging).

2. For a given elasticity of demand σ, parameters α_0, α_1, α_2, (stochastic process for log-productivity), and output elasticities, β_l, β_k, β_m: obtained from model-consistent estimation of the production function (following De Loecker, 2011; Halpern et al, 2015).

3. The parameters ruling the stochastic process of the RER (γ_0, γ_1, σ_v^2): obtained by estimating the AR(1) process specified for log (e_t).

4. Rest of the model’s parameters (f_x, f_m, $f_{RD,0}$, f_{RD}, D, D^*, θ, σ_u^2): estimated by using an indirect inference approach that matches model and data statistics.
Estimated Parameters and Model Fit: Emerging Asia

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values (S.E.)</th>
<th>Moments</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_x</td>
<td>log export fixed cost, mean</td>
<td>7.98 (0.01) (11th pctile of exporters' sales)</td>
<td>R&D probability</td>
<td>0.25</td>
<td>0.19</td>
</tr>
<tr>
<td>$f_{RD,0}$</td>
<td>log R&D sunkcost, mean</td>
<td>13.38 (1.63) (17.6 pct. of avg. R&D benefit)</td>
<td>Export probability</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>f_{RD}</td>
<td>log R&D fixed cost, mean</td>
<td>9.06 (1.25) (0.24 pct. of avg. R&D benefit)</td>
<td>Export/sales Ratio, mean</td>
<td>0.60</td>
<td>0.64</td>
</tr>
<tr>
<td>f_m</td>
<td>import fixed cost, mean</td>
<td>7.99 (0.04) (5th pctile of importers' sales)</td>
<td>Import probability</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>A</td>
<td>quality of imported intermediates</td>
<td>0.72 (0.01)</td>
<td>Import/sales ratio</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>D_T</td>
<td>log domestic demand</td>
<td>5.56 (0.01)</td>
<td>Mean firm size (log revenue)</td>
<td>6.6</td>
<td>6.7</td>
</tr>
<tr>
<td>D_T^*</td>
<td>log foreign demand</td>
<td>6.53 (0.01)</td>
<td>Sd, firm size (log revenue)</td>
<td>3.23</td>
<td>3.19</td>
</tr>
<tr>
<td>α_1</td>
<td>persistence, productivity</td>
<td>0.86 (0.003)</td>
<td>(Dynamic moments)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_u</td>
<td>sd, innovation of productivity</td>
<td>0.44 (0.006)</td>
<td>R&D, continuation prob.</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>θ</td>
<td>credit constraint</td>
<td>15 (23.97)</td>
<td>R&D, start prob.</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Estimated parameters: Other Emerging Economies, Industrialized

Alfaro, Cuñat, Fadinger, Liu
Elasticity of TFPR w.r.t RER, Decomposition

<table>
<thead>
<tr>
<th>Region</th>
<th>Innovation (R&D)</th>
<th>Imports</th>
<th>Demand</th>
<th>Total Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerging Asia</td>
<td>0.013</td>
<td>-0.055</td>
<td>0.266</td>
<td>0.21</td>
</tr>
<tr>
<td>Other emerging</td>
<td>0.009</td>
<td>-0.207</td>
<td>0.051</td>
<td>-0.15</td>
</tr>
<tr>
<td>Industrialized</td>
<td>0.013</td>
<td>-0.069</td>
<td>0.051</td>
<td>-0.01</td>
</tr>
</tbody>
</table>
Counterfactual Exercises

- Yearly depreciation of 5% for five years followed by sudden re-appreciation (25%).
- Depreciation/appreciation: unanticipated.
- Other cases: Yearly depreciation of 2.5%; appreciation 5% for five years followed by sudden re-appreciation.
Persistent effects: changes in physical productivity from changes in innovation (R&D) after the temporary depreciation are more long-lasting.

Figure: A.1 Unexpected real depreciation of 25%: Emerging East Asia
Persistent effects: changes in physical productivity from changes in innovation (R&D) after the temporary depreciation are more long-lasting.

Figure: A.2 Unexpected real depreciation of 25%: Emerging East Asia (left), Other Emerging (right)
Counterfactual: TFP Growth Time Paths for the Average Firm–Different Regions

- Relatively short-lived real depreciation: heterogeneous effects

Figure: A.3 Time path TFP growth against RER growth rate (25% RER depreciation)
Counterfactual: Temporary Depreciation/Appreciation, Emerging East Asia

- Non-linear and asymmetric effects.

Figure: B. Unexpected Real Depreciation (25%, 12.5%) and Appreciation (25%), Emerging East Asia
Additional Results and Robustness Checks

- RER and firm level outcomes: depreciations and appreciations
- Foreign-currency borrowing
- Non-targeted moments
- Return to R&D
- Elasticity of demand; interest rates
- Sensitivity parameters/specifications
Conclusions

- The effects of RER changes on firm-level outcomes vary across economies according to a number of features: export orientation, dependence on imports of intermediates (integration GVC), financial development.
- Explain micro channels of heterogeneous aggregate effects of RER changes on firm-level outcomes across countries.
- Temporary RER changes have very persistent effects on TFP growth and innovation.
- RER changes effects: asymmetric, non-linear.
The effects of RER changes on firm-level outcomes vary across economies according to a number of features: export orientation, dependence on imports of intermediates (integration GVC), financial development.

Explain micro channels of heterogeneous aggregate effects of RER changes on firm-level outcomes across countries.

Temporary RER changes have very persistent effects on TFP growth and innovation.

RER changes effects: asymmetric, non-linear.

Future Work:

Services; Interactions

Implications for policy