Sticky Capital Controls

Miguel Acosta-Henao¹, Laura Alfaro, Andres Fernandez¹

Central Bank of Chile, Harvard & NBER, Central Bank of Chile

Dec 3rd, 2020

¹Disclaimer: Views do not correspond to those of the Central Bank of Chile or its board members.
Novel dataset

- We use *textual analysis*.
- Focus on *de joure* measures of the intensive margin (rates).
- Other macroprudential tools.
What We Do

- Novel dataset
 - We use *textual analysis*.
 - Focus on *de joure* measures of the intensive margin (rates).
 - Other macroprudential tools.
- Document 6 stylized facts.
 - Main finding: Capital controls are *Sticky*.
What We Do

Theory

- Take the canonical model of pecuniary externalities to the data.

- The model cannot account for the observed behavior of capital controls.

- We propose a reduced-form S-s extension to the canonical model.

- The augmented model accounts for the observed patterns of capital controls.

- Policy-making costs reduce their welfare-improving properties.
What We Do

- Theory
 - Take the canonical model of pecuniary externalities to the data.
 - The model cannot account for the observed behavior of capital controls.
 - We propose a reduced-form S-s extension to the canonical model.
 - The augmented model accounts for the observed patterns of capital controls.
 - Policy-making costs reduce their welfare-improving properties.
 - Provide a discussion of possible underlying reasons behind the S-s costs.
Dataset: Key Features

- Two *de jure* capital controls:
 - URRs rates applied to cross-border flows.
 - Tax rates to cross-border flows.
- Methodology: *Textual analysis* on different sources: Multilateral (AREAER), national, other studies, domestic authorities.
Dataset: Key Features

Table: Number of observations by instrument

<table>
<thead>
<tr>
<th>Observation Instrument</th>
<th>Total Observations</th>
<th>With Observation</th>
<th>Without Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>URR</td>
<td>1712</td>
<td>286</td>
<td>1426</td>
</tr>
<tr>
<td>Tax Inflows</td>
<td>1680</td>
<td>378</td>
<td>1302</td>
</tr>
<tr>
<td>Tax Outflows</td>
<td>1680</td>
<td>445</td>
<td>1235</td>
</tr>
</tbody>
</table>
Stylized Facts - 1. Lack of Widespread Use

Figure: Use of Capital Control & Macro Prudential Instruments

Panel A. Share of Countries

Panel B. Share of Time
Stylized Facts - 2. Heterogeneity in the Intensive Margin

Figure: The Intensive Margin of Capital Control & Macro Prudential Instruments
Stylized Facts - 3. Infrequent and Persistent Changes

Figure: Frequency of changes in capital controls
Stylized Facts - 3. Infrequent and Persistent Changes

Figure: Episodes of Capital Controls
Stylized Facts - 3. Infrequent and Persistent Changes

Figure: Serial Correlation of Capital Controls
Households maximize

$$E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma} - 1}{1 - \sigma}$$

subject to

$$c_t = [a(c_t^T)^{1-1/\zeta} + (1-a)(c_t^N)^{1-1/\zeta}]^{1/(1-1/\zeta)}$$

$$c_t^T + p_t c_t^N + d_t = y_t^T + p_t y_t^N + \frac{d_{t+1}}{1 + r_t}$$

$$d_{t+1} \leq \kappa(y_t^T + p_t y_t^N)$$
Canonical Model - Ramsey Planner

The Planner maximizes:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta_t \frac{c_t^{1-\sigma} - 1}{1 - \sigma}$$

subject to:

$$c_t^T + d_t = y_t^T + \frac{d_{t+1}}{1 + r_t}$$

$$d_{t+1} \leq \kappa [y_t^T + \frac{1 - a}{a} (\frac{c_t^T}{y_t^N})^{1/\zeta} y_t^N]$$
The government’s and households’ new SBC:

$$\tau_t \frac{d_{t+1}}{1 + r_t} = l_t$$

$$c_t^T + p_t c_t^N + d_t = y_t^T + p_t y_t^N + (1 - \tau_t) \frac{d_{t+1}}{1 + r_t} + l_t$$

The optimal capital control tax is:

$$\tau_t = 1 - \frac{E_t \lambda_{t+1}^R}{E_t \lambda_{t+1}^R(1 - \mu_{t+1}^R \Psi_{t+1})}$$

Where $$\Psi_t = \kappa \frac{1-a}{a} \lambda_t (c_t^N y_t^N) \frac{1}{\zeta} - 1$$

The canonical model does not reproduce stickiness in capital controls.
Augmented Model: An S-s Extension

The recursive formulation for the Ramsey Planner becomes:

$$ V(y^T, r, d, \tau) = \max[V^A(y^T, r, d, \tau), V^{NA}(y^T, r, d, \tau)] $$

Where:

$$ V^A(y^T, r, d, \tau) = [U(c^T(\tau^*)) - K] + \beta E[\max(V^A(y'^T, r', d', \tau'), V^{NA}(y'^T, r', d', \tau'))] $$

$$ V^{NA}(y^T, r, d, \tau) = U(c^T(\tau)) + \beta E[\max(V^A(y'^T, r', d', \tau'), V^{NA}(y'^T, r', d', \tau'))] $$
Calibration

- We calibrate the bivariate endowment process for each country as a VAR(1) and then transform it into a Markov Chain of 16 states.

- Canonical model: We calibrate κ to match the frequency of crisis in R&R (2010).

- Augmented (S-s) model: We calibrate κ and K to match the frequency of crisis in R&R (2010) and the frequency of changes in τ_t

- The rest of the parameters follow Bianchi (2011).
Results - Share of time (Use)

Figure: Share of time with $\tau > 0$ - Cross-country mean: Canonical Model, S-s Model, Data
Results - Mean value of the tax

Figure: Mean value of τ - Cross-country mean: Canonical Model, S-s Model, Data
Results - Number of changes in the tax

Figure: Number of changes in τ (20-year mean) - Cross-country mean: Canonical Model, S-s Model, Data
Results - Autocorrelation

Figure: Order $t + j$ autocorrelation of τ, $j = \{-2, -1, ..., +2\}$. - Cross-country mean: Canonical Model, S-s Model, Data
Results - Episodes of activation

Figure: Episodes of activation in τ - Cross-country mean: Canonical Model, S-s Model, Data
Welfare

- For the canonical model:
 \[
 \sum_{t=0}^{\infty} \beta^t u \left[C_t^{UR} \left(1 + \lambda^{UR} \right) \right] = \sum_{t=0}^{\infty} \beta^t u \left[C_t^R \right]
 \]

- For the augmented (S-s) model:
 \[
 \sum_{t=0}^{\infty} \beta^t u \left[C_t^{S-s} \left(1 + \lambda^{S-s} \right) \right] = \sum_{t=0}^{\infty} \beta^t u \left[C_t^R \right]
 \]

- Cross-country mean: \(\lambda^{UR} = 0.94\% \) & \(\lambda^{S-s} = 0.76\% \)

- We also find that, the higher the value of \(K \) in a given country, the higher the value of \(\lambda^{S-s} \)
Microfundations of Ss costs: A Discussion

While a fully fledged theory is beyond our scope, we believe that the literature offers (at least) 5 causes of S-s costs:

1. Negative effects / Unintended consequences.
2. Credibility and signaling.
3. Political economy.
5. Lack of effectiveness.
We contribute to the debate on capital controls by addressing positive and normative features.

Positive: Using a novel data on the intensive margin of controls and document that they are Sticky.

Normative: An S-s structure allows the theory of pecuniary externalities to better account for the data. Welfare implications are considerable.
THANKS!
We focus on priced-based measures of capital controls.

Two intensive margins on *de joure* cross-border capital controls: URRs (and equivalent), Taxes; both on cross-border flows.

Countries: Argentina, Brazil, Chile, Colombia, Ecuador, Mexico, Peru. China, India, Indonesia, Korea, Malaysia, Philippines, Thailand, Czech Republic, Hungary, Poland, Russia, Turkey, South Africa, and Israel.
Stylized Facts - 4. Asymmetric Cyclicality Across Instruments

Figure: Episodes of Capital Control and the Business Cycle
Stylized Facts - 5. No Complementarity with Macroprudential Tools

Figure: Episodes of Capital Control & Broader Macro Prudential Instruments
Stylized Facts - 6. Stickiness is robust to the extensive margin

Figure: Share of instruments that are Price-Based and Non Priced-Based
Stylized Facts - 6. Stickiness is robust to the extensive margin

Figure: Annual Episodes of Capital Controls - Extensive Margin Including All Instruments (Priced-Based and Non Priced-Based)
Stylized Facts - 6. Stickiness is robust to the extensive margin

Figure: Serial Correlation of Capital Controls - Extensive Margin Including All Instruments (Priced-Based and Non Priced-Based)
Model: Households Unregulated - F.O.C

\[
\begin{align*}
[c_t^T] & : U'(A(c_t^T, c_t^N))A_1(c_t^T, c_t^N) = \lambda_t \\
[c_t^N] & : U'(A(c_t^T, c_t^N))A_2(c_t^T, c_t^N) = p_t \lambda_t \\
[d_{t+1}] & : (\frac{1}{1 + r_t} - \mu_t)\lambda_t = \beta E_t \lambda_{t+1} \\
& \quad \mu_t \geq 0
\end{align*}
\]

and

\[
\mu_t[d_{t+1} - \kappa(y_t^T + p_t y_t^N)] = 0
\]

Combining the first two yields:

\[
p_t = \frac{1 - a}{a} (\frac{c_t^T}{c_t^N})^{1/\zeta}
\]
Model: Households Unregulated - Equilibrium

\[
\left(\frac{1}{1 + r_t} - \mu_t\right) U'(A(c_t^T, y_t^N)) A_1(c_t^T, y_t^N) = \beta E_t U'(A(c_{t+1}^T, y_{t+1}^N)) A_1(c_{t+1}^T, y_{t+1}^N)
\]

\[
c_t^T + d_t = y_t^T + \frac{d_{t+1}}{1 + r_t}
\]

\[
d_{t+1} \leq \kappa [y_t^T + \frac{1 - a}{a} (c_t^T)^{1/\zeta} (y_t^N)^{1-1/\zeta}]
\]

\[
\mu_t \geq 0
\]

\[
\mu_t [\kappa (y_t^T + \frac{1 - a}{a} (c_t^T)^{1/\zeta} (y_t^N)^{1-1/\zeta}) - d_{t+1}] = 0
\]
Calibration

Table: Baseline Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>2</td>
<td>Inverse of intertemporal elast. of subst.</td>
</tr>
<tr>
<td>β</td>
<td>0.91</td>
<td>Subjective discount factor</td>
</tr>
<tr>
<td>r</td>
<td>0.04</td>
<td>Annual interest rate</td>
</tr>
<tr>
<td>ζ</td>
<td>0.83</td>
<td>Intratemporal elast. of subst.</td>
</tr>
<tr>
<td>a</td>
<td>0.31</td>
<td>Weight on tradables in CES aggregator</td>
</tr>
</tbody>
</table>
Table: Calibration Canonical Model ($K = 0$) - Country-by-country

<table>
<thead>
<tr>
<th>Country Name</th>
<th>Currency Crisis 1995-2010</th>
<th>Number of crises every 100 years</th>
<th>Number of changes in τ every 20 Years</th>
<th>κ</th>
<th>K</th>
<th>Simulated Crisis</th>
<th>Simulated Changes in τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1</td>
<td>6.3</td>
<td>5.0</td>
<td>0.3200</td>
<td>0</td>
<td>1.90</td>
<td>13.14</td>
</tr>
<tr>
<td>Brazil</td>
<td>5</td>
<td>31.3</td>
<td>7.0</td>
<td>0.2950</td>
<td>0</td>
<td>30.29</td>
<td>17.12</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
<td>6.3</td>
<td>0.5</td>
<td>0.3100</td>
<td>0</td>
<td>2.48</td>
<td>12.98</td>
</tr>
<tr>
<td>China</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3300</td>
<td>0</td>
<td>0.00</td>
<td>11.77</td>
</tr>
<tr>
<td>Colombia</td>
<td>6</td>
<td>37.5</td>
<td>2.0</td>
<td>0.3250</td>
<td>0</td>
<td>28.04</td>
<td>16.10</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3400</td>
<td>0</td>
<td>0.00</td>
<td>10.27</td>
</tr>
<tr>
<td>Ecuador</td>
<td>6</td>
<td>37.5</td>
<td>2.5</td>
<td>0.3200</td>
<td>0</td>
<td>32.60</td>
<td>10.59</td>
</tr>
<tr>
<td>Hungary</td>
<td>4</td>
<td>25.0</td>
<td>0.0</td>
<td>0.3220</td>
<td>0</td>
<td>18.62</td>
<td>14.65</td>
</tr>
<tr>
<td>India</td>
<td>4</td>
<td>25.0</td>
<td>0.0</td>
<td>0.2950</td>
<td>0</td>
<td>28.89</td>
<td>17.94</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
<td>6.3</td>
<td>1.0</td>
<td>0.3270</td>
<td>0</td>
<td>1.97</td>
<td>13.72</td>
</tr>
<tr>
<td>Israel</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3300</td>
<td>0</td>
<td>0.00</td>
<td>9.79</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>2</td>
<td>12.5</td>
<td>2.5</td>
<td>0.2915</td>
<td>0</td>
<td>15.68</td>
<td>12.05</td>
</tr>
<tr>
<td>Malaysia</td>
<td>3</td>
<td>18.8</td>
<td>2.5</td>
<td>0.3152</td>
<td>0</td>
<td>25.39</td>
<td>12.42</td>
</tr>
<tr>
<td>Mexico</td>
<td>1</td>
<td>6.3</td>
<td>0.0</td>
<td>0.3281</td>
<td>0</td>
<td>2.7</td>
<td>12.08</td>
</tr>
<tr>
<td>Peru</td>
<td>1</td>
<td>6.3</td>
<td>0.5</td>
<td>0.3150</td>
<td>0</td>
<td>11.50</td>
<td>14.21</td>
</tr>
<tr>
<td>Philippines</td>
<td>2</td>
<td>12.5</td>
<td>0.0</td>
<td>0.2950</td>
<td>0</td>
<td>27.80</td>
<td>16.80</td>
</tr>
<tr>
<td>Poland</td>
<td>5</td>
<td>31.3</td>
<td>0.0</td>
<td>0.3220</td>
<td>0</td>
<td>29.40</td>
<td>16.41</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>6</td>
<td>37.5</td>
<td>1.5</td>
<td>0.3100</td>
<td>0</td>
<td>29.59</td>
<td>15.41</td>
</tr>
<tr>
<td>South Africa</td>
<td>2</td>
<td>12.5</td>
<td>2.0</td>
<td>0.3200</td>
<td>0</td>
<td>17.79</td>
<td>16.42</td>
</tr>
<tr>
<td>Thailand</td>
<td>8</td>
<td>50.0</td>
<td>0.0</td>
<td>0.2500</td>
<td>0</td>
<td>50.09</td>
<td>11.05</td>
</tr>
<tr>
<td>Turkey</td>
<td>5</td>
<td>31.3</td>
<td>1.5</td>
<td>0.3150</td>
<td>0</td>
<td>30.92</td>
<td>16.49</td>
</tr>
<tr>
<td>Mean</td>
<td>3.0</td>
<td>18.8</td>
<td>1.4</td>
<td>0.3131</td>
<td>0</td>
<td>18.36</td>
<td>13.88</td>
</tr>
</tbody>
</table>
Table: Calibration S-s Model - Country-by-country

<table>
<thead>
<tr>
<th>Country</th>
<th>Currency Crisis 1995-2010</th>
<th>Number of crisis every 100 years</th>
<th>Number of changes in τ every 20 Years</th>
<th>N</th>
<th>K</th>
<th>Simulated Crisis</th>
<th>Simulated Changes in τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1</td>
<td>6.3</td>
<td>5.0</td>
<td>0.325</td>
<td>0.012</td>
<td>2.88</td>
<td>4.02</td>
</tr>
<tr>
<td>Brazil</td>
<td>5</td>
<td>31.3</td>
<td>7.0</td>
<td>0.305</td>
<td>0.0169</td>
<td>32.92</td>
<td>4.09</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
<td>6.3</td>
<td>0.5</td>
<td>0.33</td>
<td>0.0004</td>
<td>2.38</td>
<td>0.62</td>
</tr>
<tr>
<td>China</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.35</td>
<td>0.0001</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Colombia</td>
<td>6</td>
<td>37.5</td>
<td>2.0</td>
<td>0.325</td>
<td>0.0095</td>
<td>28.08</td>
<td>2.36</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.340</td>
<td>10^{-16}</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ecuador</td>
<td>6</td>
<td>37.5</td>
<td>2.5</td>
<td>0.320</td>
<td>0.01553</td>
<td>59.52</td>
<td>7.34</td>
</tr>
<tr>
<td>Hungary</td>
<td>4</td>
<td>25.0</td>
<td>0.0</td>
<td>0.327</td>
<td>0.019</td>
<td>1.99</td>
<td>0.00</td>
</tr>
<tr>
<td>India</td>
<td>4</td>
<td>25.0</td>
<td>0.0</td>
<td>0.320</td>
<td>0.018</td>
<td>48.55</td>
<td>0.00</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
<td>6.3</td>
<td>1.0</td>
<td>0.329</td>
<td>10^{-11}</td>
<td>1.66</td>
<td>2.00E-05</td>
</tr>
<tr>
<td>Israel</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.340</td>
<td>10^{-17}</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>2</td>
<td>12.5</td>
<td>2.5</td>
<td>0.324</td>
<td>0.0156</td>
<td>3.43</td>
<td>3.21</td>
</tr>
<tr>
<td>Malaysia</td>
<td>3</td>
<td>18.8</td>
<td>2.5</td>
<td>0.31516</td>
<td>0.0156</td>
<td>48.37</td>
<td>2.64</td>
</tr>
<tr>
<td>Mexico</td>
<td>1</td>
<td>6.3</td>
<td>0.0</td>
<td>0.329</td>
<td>5×10^{-13}</td>
<td>1.60</td>
<td>0.00</td>
</tr>
<tr>
<td>Peru</td>
<td>1</td>
<td>6.3</td>
<td>0.5</td>
<td>0.325</td>
<td>0.014</td>
<td>25.75</td>
<td>0.71</td>
</tr>
<tr>
<td>Philippines</td>
<td>2</td>
<td>12.5</td>
<td>0.0</td>
<td>0.326</td>
<td>0.004</td>
<td>1.75</td>
<td>0.00</td>
</tr>
<tr>
<td>Poland</td>
<td>5</td>
<td>31.3</td>
<td>0.0</td>
<td>0.324</td>
<td>0.015</td>
<td>21.44</td>
<td>0.00</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>6</td>
<td>37.5</td>
<td>1.5</td>
<td>0.320</td>
<td>0.0189</td>
<td>17.39</td>
<td>1.58</td>
</tr>
<tr>
<td>South Africa</td>
<td>2</td>
<td>12.5</td>
<td>2.0</td>
<td>0.326300000</td>
<td>0.0051</td>
<td>47.68</td>
<td>4.67</td>
</tr>
<tr>
<td>Thailand</td>
<td>8</td>
<td>50.0</td>
<td>0.0</td>
<td>0.320000000</td>
<td>0.017</td>
<td>39.22</td>
<td>0.00</td>
</tr>
<tr>
<td>Turkey</td>
<td>5</td>
<td>31.3</td>
<td>1.5</td>
<td>0.320000000</td>
<td>0.0166</td>
<td>27.35</td>
<td>3.16</td>
</tr>
<tr>
<td>Mean</td>
<td>3.0</td>
<td>18.8</td>
<td>1.4</td>
<td>0.3257</td>
<td>0.0102</td>
<td>19.62</td>
<td>1.64</td>
</tr>
</tbody>
</table>
Welfare Argentina

Table: Moments and welfare gains generated by the model for different values of K: One million years (1M Y) and 20 years around a financial crisis (20Y). All variables are in percentage points except for Frequency of Change and first order autocorrelation.

<table>
<thead>
<tr>
<th>K</th>
<th>Frequency of Change 20Y</th>
<th>Corr(t, t − 1)</th>
<th>Desv. Est</th>
<th>(\lambda_{UR}) (1M Y)</th>
<th>(\lambda_{UR}) (20 Y)</th>
<th>(\lambda_{FC}) (1M Y)</th>
<th>(\lambda_{FC}) (20 Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>0.589</td>
<td>1.879</td>
<td>0.0819</td>
<td>1.4488</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.002</td>
<td>12</td>
<td>0.638</td>
<td>1.879</td>
<td>0.0745</td>
<td>1.3829</td>
<td>0.0074</td>
<td>0.0830</td>
</tr>
<tr>
<td>0.006</td>
<td>9</td>
<td>0.649</td>
<td>1.985</td>
<td>0.0683</td>
<td>1.1952</td>
<td>0.0124</td>
<td>0.3032</td>
</tr>
<tr>
<td>0.01</td>
<td>8</td>
<td>0.648</td>
<td>1.975</td>
<td>0.0655</td>
<td>1.0779</td>
<td>0.0185</td>
<td>0.4532</td>
</tr>
<tr>
<td>0.014</td>
<td>7</td>
<td>0.643</td>
<td>1.933</td>
<td>0.0585</td>
<td>0.9314</td>
<td>0.0267</td>
<td>0.5987</td>
</tr>
<tr>
<td>0.018</td>
<td>5</td>
<td>0.845</td>
<td>2.221</td>
<td>0.0512</td>
<td>0.9055</td>
<td>0.0318</td>
<td>0.6145</td>
</tr>
<tr>
<td>0.0205</td>
<td>5</td>
<td>0.845</td>
<td>2.221</td>
<td>0.0493</td>
<td>0.8509</td>
<td>0.0370</td>
<td>0.6295</td>
</tr>
</tbody>
</table>