Discussion of

Le Pont de Londres
Interactions between monetary and prudential policies in cross-border lending

by Bussiere, Hills, Lloyd, Meunier, Pedrono, Reinhardt, Sowerbutts

A. Cesa-Bianchi*

Bank of England

5th BdF-BoE International Macro Workshop
Banque de France - November 18, 2019

*The views expressed in this paper are those of the author and do not necessarily represent the views of the Bank of England or its committees.
This paper: 1-slide summary
[1] Borrow high frequency monetary policy surprises in the euro area (MP^E_t) from Altavilla et al. (2019)
This paper: 1-slide summary

[1] Borrow high frequency monetary policy surprises in the euro area (MP_{t}^{EA}) from Altavilla et al. (2019)

[2] Does (and how) French banks’ cross-border lending to recipient country j respond to MP_{t}^{EA}?
This paper: 1-slide summary

[1] Borrow high frequency monetary policy surprises in the euro area (MP_{EA}^t) from Altavilla et al. (2019)

[2] Does (and how) French banks’ cross-border lending to recipient country j respond to MP_{EA}^t? **YES, CONTRACTION**
This paper: 1-slide summary

[1] Borrow high frequency monetary policy surprises in the euro area (MP_{EA}^t) from Altavilla et al. (2019)

[2] Does (and how) French banks’ cross-border lending to recipient country j respond to MP_{EA}^t? → YES, CONTRACTION

 * Prudential stance of receiving country (Pru_{jt})?
This paper: 1-slide summary

[1] Borrow high frequency monetary policy surprises in the euro area (MP_{EA}^t) from Altavilla et al. (2019)

[2] Does (and how) French banks’ cross-border lending to recipient country j respond to MP_{EA}^t? **YES, CONTRACTION**

 * Prudential stance of receiving country (Pru_{jt})? **YES, INVERSELY RELATED**
This paper: 1-slide summary

[1] Borrow high frequency monetary policy surprises in the euro area (MP^E_t) from Altavilla et al. (2019)

[2] Does (and how) French banks’ cross-border lending to recipient country j respond to MP^E_t? **YES, CONTRACTION**

- Prudential stance of receiving country (Pru_{jt})?
- Bank size and GSIB affiliation?

YES, INVERSELY RELATED
This paper: 1-slide summary

[1] Borrow high frequency monetary policy surprises in the euro area (M_{t}^{EA}) from Altavilla et al. (2019)

[2] Does (and how) French banks’ cross-border lending to recipient country j respond to M_{t}^{EA}? → YES, CONTRACTION

 * Prudential stance of receiving country (Pru_{jt})?
 * Bank size and GSIB affiliation? → YES, INVERSELY RELATED
This paper: 1-slide summary

[1] Borrow high frequency monetary policy surprises in the euro area (MP^E_A) from Altavilla et al. (2019)

[2] Does (and how) French banks’ cross-border lending to recipient country j respond to MP^E_A? \(\text{YES, CONTRACTION}\)

 * Prudential stance of receiving country (Pru_{jt})?
 * Bank size and GSIB affiliation? \(\text{YES, INVERSELY RELATED}\)

[4] Is there a role for bank location (headquarters vs financial center)?
This paper: 1-slide summary

[1] Borrow high frequency monetary policy surprises in the euro area (MP_{EA}^t) from Altavilla et al. (2019)

[2] Does (and how) French banks’ cross-border lending to recipient country j respond to MP_{EA}^t? \rightarrow YES, CONTRACTION

 * Prudential stance of receiving country (Pru_{jt})? \rightarrow YES, INVERSELY RELATED
 * Bank size and GSIB affiliation?

[4] Is there a role for bank location (headquarters vs financial center)? \rightarrow YES, LONDON BRIDGE
Intriguing paper. Great data and interesting facts.
Intriguing paper. Great data and interesting facts.

Some issues for discussion:

[#1] Pru_{jt}: Levels vs. changes.
[#2] Confounding factors.
[#3] Theoretical mechanisms.
[#4] Lags.
Macropru measure: Level vs. changes

- Prujt measures whether prudential stance in j was tightened (+1), loosened (−1), or unchanged (0) ⇒ Irrespective of the level.
Macropru measure: Level vs. changes

- Pru_{jt} measures whether prudential stance in j was tightened ($+1$), loosened (-1), or unchanged (0) \Rightarrow Irrespective of the level.

- **Theoretical model**: shows that the level of LTV matters.
Macropru measure: Level vs. changes

- Pru_{jt} measures whether prudential stance in j was tightened ($+1$), loosened (-1), or unchanged (0) \Rightarrow Irrespective of the level.

- Theoretical model: shows that the level of LTV matters.

 * Exogenous increase in credit supplied by center country’s banks to receiving country.
Macropru measure: Level vs. changes

- Pru_{jt} measures whether prudential stance in j was tightened (+1), loosened (−1), or unchanged (0) ⇒ Irrespective of the level.

- **Theoretical model**: shows that the level of LTV matters.

 * Exogenous increase in credit supplied by center country’s banks to receiving country.

 * Receiving country’s borrowers face collateral constraint $B_t \leq \theta(q_tH_t)$.
Macropru measure: Level vs. changes

- Pru_{jt} measures whether prudential stance in j was tightened ($+1$), loosened (-1), or unchanged (0) \Rightarrow Irrespective of the level.

- **Theoretical model**: shows that the level of LTV matters.

 * Exogenous increase in credit supplied by center country’s banks to receiving country.

 * Receiving country’s borrowers face collateral constraint $B_t \leq \theta(q_tH_t)$.

 * Larger $\theta \Rightarrow$ More amplification through $q \Rightarrow$ Larger expansion in B_t.

INTRODUCTION, Levels vs. Changes, Confounding factors, Mechanisms, Lags, Conclusions
Macropru measure: Level vs. changes

- Pru_j measures whether prudential stance in j was tightened ($+1$), loosened (-1), or unchanged (0) ⇒ Irrespective of the level.

- **Empirical model**: shows that **HIGH LTV** countries respond to a ‘push’ shock more than **LOW LTV** countries.

NOTE. Average responses to an international credit supply shock, estimated from a panel VAR including 51 countries, see Cesa-Bianchi, Ferrero, Rebucci (2018) for details. The solid line with crosses and circles plot the mean group estimate for ‘Low’ and ‘High’ LTV ratios.
Macropru measure: Level vs. changes

- Pru_{jt} measures whether prudential stance in j was tightened ($+1$), loosened (-1), or unchanged (0) \Rightarrow Irrespective of the level.

- **Empirical model**: shows that **HIGH LTV** countries respond to a ‘push’ shock more than **LOW LTV** countries.

NOTE. Average responses to an international credit supply shock, estimated from a panel VAR including 51 countries, see Cesa-Bianchi, Ferrero, Rebucci (2018) for details. The solid line with crosses and circles plot the mean group estimate for ‘Low’ and ‘High’ LTV ratios.
Simple example. Consider two countries:

* **HIGH LTV** with LTV ratio of 100.
* **LOW LTV** with LTV ratio of 50.
Macropru measure: Level vs. changes

Simple example. Consider two countries:

* **HIGH LTV** with LTV ratio of 100.
* **LOW LTV** with LTV ratio of 50.

Assume that in period t:

* **HIGH LTV** tightens LTV ratio from 100 to 95 $\Rightarrow Pru_{HIGH\ LTV,t} = 1$.
* **LOW LTV** loosens LTV ratio from 50 to 55 $\Rightarrow Pru_{LOW\ LTV,t} = -1$.

Simple example. Consider two countries:

* **HIGH LTV** with LTV ratio of 100.
* **LOW LTV** with LTV ratio of 50.

Assume that in period t:

* **HIGH LTV** tightens LTV ratio from 100 to 95 $\Rightarrow Pru_{\text{HIGH LTV},t} = 1$.
* **LOW LTV** loosens LTV ratio from 50 to 55 $\Rightarrow Pru_{\text{LOW LTV},t} = -1$.

Are your results implying that **HIGH LTV** should experience a smaller contraction in x-border lending than **LOW LTV**?
Simple example. Consider two countries:

- **HIGH LTV** with LTV ratio of 100.
- **LOW LTV** with LTV ratio of 50.

Assume that in period t:

- **HIGH LTV** tightens LTV ratio from 100 to 95 $\Rightarrow Pru_{HIGH \ LTV,t} = 1$.
- **LOW LTV** loosens LTV ratio from 50 to 55 $\Rightarrow Pru_{LOW \ LTV,t} = -1$.

Are your results implying that **HIGH LTV** should experience a smaller contraction in x-border lending than **LOW LTV**?

Need to control for average level of LTV:

$$\ln \Delta B_{bjt} = f_b + f_j + f_t + \sum_{k=0}^{3} \alpha_{2k} (MP_{t-k}^{EA} \times Pru_{j,t-4}) \ldots$$
Simple example. Consider two countries:

* **HIGH LTV** with LTV ratio of 100.
* **LOW LTV** with LTV ratio of 50.

Assume that in period t:

* **HIGH LTV** tightens LTV ratio from 100 to 95 $\Rightarrow Pru_{HIGH\ LTV, t} = 1$.
* **LOW LTV** loosens LTV ratio from 50 to 55 $\Rightarrow Pru_{LOW\ LTV, t} = -1$.

Are your results implying that **HIGH LTV** should experience a smaller contraction in x-border lending than **LOW LTV**?

Need to control for average level of LTV:

$$\ln \Delta B_{bjt} = f_b + f_j + f_t + \sum_{k=0}^{3} \alpha_{2k} (MP_{t-k}^{EA} \times Pru_{j, t-4}) \ldots$$

$$+ \sum_{k=0}^{3} \beta_{2k} (MP_{t-k}^{EA} \times LTV_j) + \text{Controls}_{t-1} + \epsilon_{bjt}$$

Heterogeneous effect by LTV.
Main hypothesis I Receiving countries with tighter prudential policies should face smaller volatility in cross border lending in response to center countries’ monetary policy shocks.
Confounding factors

- **Main hypothesis** I *Receiving countries with tighter prudential policies should face smaller volatility in cross border lending in response to center countries’ monetary policy shocks.*

- Obviously, this is only true *ceteris paribus*. Some confounding factors \((X_j)\):
 - FX regime, share of FX debt, fiscal position, CA-to-GDP ratio, etc.
Main hypothesis 1 Receiving countries with tighter prudential policies should face smaller volatility in cross border lending in response to center countries’ monetary policy shocks.

Obviously, this is only true ceteris paribus. Some confounding factors (X_j):

* FX regime, share of FX debt, fiscal position, CA-to-GDP ratio, etc.

Control for confounding factors:

\[
\ln \Delta B_{bjt} = f_b + f_j + f_t + \sum_{k=0}^{3} \alpha_{2k} \left(MP^{EA}_{t-k} \times Pru_{j,t-4} \right) \ldots
\]
Main hypothesis I Receiving countries with tighter prudential policies should face smaller volatility in cross border lending in response to center countries’ monetary policy shocks.

Obviously, this is only true *ceteris paribus*. Some confounding factors (X_j):

- FX regime, share of FX debt, fiscal position, CA-to-GDP ratio, etc.

Control for confounding factors:

\[
\ln \Delta B_{bjt} = f_b + f_j + f_t + \sum_{k=0}^{3} \alpha_{2k} \left(MP_{t-k}^{EA} \times Pru_{j,t-4} \right) \ldots
\]

\[
+ \sum_{k=0}^{3} \beta_{2k} \left(MP_{t-k}^{EA} \times X_j \right) + Controls_{t-1} + \epsilon_{bjt}
\]

Heterogeneous effect by X_j
Main hypothesis II *Bank size (or being part of a large banking group) affects the coefficient on the* $Pru_{j,t} \times MP_{t}^{EA}$ *interaction.*
Main hypothesis II Bank size (or being part of a large banking group) affects the coefficient on the \(\text{Pru}_j,t \times \text{MP}^E_t \) interaction.

Well known that large (less constrained?) banks are less affected by monetary policy shocks than small banks (e.g. Kashyap and Stein, 2000).
Main hypothesis II Bank size (or being part of a large banking group) affects the coefficient on the \(Pr_u_{j,t} \times M_{P^E}^A \) interaction.

Well known that large (less constrained?) banks are less affected by monetary policy shocks than small banks (e.g. Kashyap and Stein, 2000).

But why should this matter for the interaction with \(Pr_u_{j,t} \)?
Main hypothesis II Bank size (or being part of a large banking group) affects the coefficient on the $Pru_{j,t} \times MPE_A$ interaction.

Well known that large (less constrained?) banks are less affected by monetary policy shocks than small banks (e.g. Kashyap and Stein, 2000).

But why should this matter for the interaction with $Pru_{j,t}$?

More in general, some discussion on the theoretical mechanisms/ingredients would be useful.
Baseline specification:

\[\ln \Delta B_{bjt} = f_b + f_j + \sum_{k=0}^{3} \alpha_{1k} \cdot MP_{EA}^{t-k} + Controls_{t-1} + \epsilon_{bjt} \]
Lags in baseline specification

- Baseline specification:

\[
\ln \Delta B_{bjt} = f_b + f_j + \sum_{k=0}^{3} \alpha_{1k} \cdot MP_{t-k}^{EA} + Controls_{t-1} + \epsilon_{bjt}
\]

- Lag structure is a bit unusual \(\Rightarrow MP_{t-1}^{EA}\) affects \(Controls_{t-1}\).
[4] Lags in baseline specification

- Baseline specification:

\[
\ln \Delta B_{bjt} = f_b + f_j + \sum_{k=0}^{3} \alpha_{1k} \cdot MP_{t-k}^{EA} + Controls_{t-1} + \epsilon_{bjt}
\]

- Lag structure is a bit unusual ⇒ \(MP_{t-1}^{EA} \) affects \(Controls_{t-1} \). ⇒ PROBLEMATIC?
Lags in baseline specification

Baseline specification:

\[
\ln \Delta B_{bjt} = f_b + f_j + \sum_{k=0}^{3} \alpha_{1k} \cdot MP^{EA}_{t-k} + Controls_{t-1} + \epsilon_{bjt}
\]

Lag structure is a bit unusual \(\Rightarrow \) \(MP^{EA}_{t-1} \) affects \(Controls_{t-1} \). PROBLEMATIC?

Consider the alternative local projection specification for \(k = 0, 1, \ldots, K \):

\[
\ln B_{bj,t+k} - \ln B_{bj,t-1} = f_b + f_j + \alpha_{1}^{k} \cdot MP^{EA}_{t} + controls_{t-1} + \epsilon_{bj,t+k}
\]
[#4] Lags in baseline specification

- Baseline specification:
 \[
 \ln \Delta B_{bjt} = f_b + f_j + \sum_{k=0}^{3} \alpha_{1k} \cdot MP_{t-k}^E A + Controls_{t-1} + \epsilon_{bjt}
 \]

- Lag structure is a bit unusual ⇒ \(MP_{t-1}^E A \) affects \(Controls_{t-1} \). → PROBLEMATIC?

- Consider the alternative local projection specification for \(k = 0, 1, \ldots, K \):
 \[
 \ln B_{bj,t+k} - \ln B_{bj,t-1} = f_b + f_j + \alpha_{1}^k \cdot MP_t^E A + controls_{t-1} + \epsilon_{bj,t+k}
 \]

- Coefficient \(\alpha_{1}^k \) captures effect of shock on level of \(B_{bjt} \) at different horizons.
In sum

- **This paper** Uncovers some intriguing facts on cross-border lending.
In sum

- **This paper** Uncovers some intriguing facts on cross-border lending.

- Important to control for the *level* of macropru measures and other confounding factors.

- Clarify some of the theoretical mechanisms.
In sum

- **This paper** Uncovers some intriguing facts on cross-border lending.

- Important to control for the *level* of macropru measures and other confounding factors.

- Clarify some of the theoretical mecanisms.

- Looking forward to future versions!
Discussion of

Le Pont de Londres
Interactions between monetary and prudential policies in cross-border lending

by Bussiere, Hills, Lloyd, Meunier, Pedrono, Reinhardt, Sowerbutts

A. Cesa-Bianchi*

Bank of England

5th BdF-BoE International Macro Workshop
Banque de France - November 18, 2019

*The views expressed in this paper are those of the author and do not necessarily represent the views of the
Bank of England or its committees.