Dominant-Currency Pricing and the Global Output Spillovers from US Dollar Appreciation

Discussion of Georgiadis and Schumann (2019)

Simon P. Lloyd

Bank of England

November 2019

The views expressed here do not necessarily reflect the position of the Bank of England.
This Paper

What We Know?

- Pricing paradigm (PCP, LCP, DCP) matters for exchange rate pass-through, sign/size of macroeconomic spillovers, optimal monetary policy, case for coordination (...)
 - Predictions usually derived from 2-country models
- Prevailing pricing paradigm is rarely polar and/or symmetric

What This Paper Teaches Us?

⋆ Identify spillover channel via trade (third-country expenditure-switching), arising in an $N \geq 3$-country model with partial and asymmetric DCP

Output spillover from USD appreciation negatively correlated with a country's export-import USD-invoicing share differential ($s \equiv x - m$) where negatively correlated \iff less positive or more negative

⋆ Provide empirical evidence for the prediction using data on 45 economies
This Paper

What We Know?

► Pricing paradigm (PCP, LCP, DCP) matters for exchange rate pass-through, sign/size of macroeconomic spillovers, optimal monetary policy, case for coordination (...)
 – Predictions usually derived from 2-country models
► Prevailing pricing paradigm is rarely polar and/or symmetric

What This Paper Teaches Us?

⋆ Identify spillover channel via trade (third-country expenditure-switching), arising in an $N \geq 3$-country model with partial and asymmetric DCP

 Output spillover from USD appreciation negatively correlated with a country’s export-import USD-invoicing share differential ($s \equiv x - m$) where negatively correlated \iff less positive or more negative

⋆ Provide empirical evidence for the prediction using data on 45 economies
Main Mechanism

FX: $1 = E1 = R1

DCP, x: $1 \rightarrow P^{DCP}_X = R1$

PCP, $1 - x$: $E1 \rightarrow P^{PCP}_X = R1$

EM

RoW

\[E1 = P^{DCP}_M \leftarrow \$1 : m ,DCP \]
\[E1 = P^{PCP}_M \leftarrow R1 : 1 - m ,PCP \]

where:

- **E** is the EM currency unit and **R** is the RoW currency unit
- **x** is the share of EM exports to RoW priced in $\$
- **m** is the share of EM imports from RoW priced in $\$
- \(s \equiv x - m \) is EM’s export-import $-$ invoicing share differential
Main Mechanism: Multilateral $ Appreciation

DCP, $1 x \rightarrow P^\text{DCP}_X = R2
PCP, $1 - x$ $E1 \rightarrow P^\text{PCP}_X = R1

FX: $0.5 = E1 = R1

E2 = P^\text{DCP}_M \leftarrow $1 : m, DCP
E1 = P^\text{PCP}_M \leftarrow R1 : 1 - m, PCP

For the EM, with some price stickiness: (Δ denotes $\%$-change vs. pre-$\$ change)

\[
\Delta P_X \approx x\Delta P^\text{DCP}_X + (1 - x)\Delta P^\text{PCP}_X = x\Delta P^\text{DCP}
\]
\[
\Delta P_M \approx m\Delta P^\text{DCP}_M + (1 - m)\Delta P^\text{PCP}_M = m\Delta P^\text{DCP}
\]

Assuming sufficiently symmetric and constant trade elasticity then

\[
\Delta NX \propto -(x - m)\Delta P^\text{DCP} = -s\Delta P^\text{DCP}
\]
This Is Really Robust

Extensive battery of robustness tests, including controls for:

- **Financial spillovers**: controls for $-exposure

 ? Given that the only countries facing negative spillovers from US AD shock are EMs (⇒ dominant financial channel), perhaps this should be in the baseline?

- **Commodity exporting**: main model mechanism relies on price stickiness

- **Range of shocks**: UIP, monetary policy, (...)

There is even a placebo test if you still don’t believe them!

Careful language around hypothesis tested given that:

 Invoicing currency ≠ Pricing currency
Main Comment: Framing

Underselling?

- "We test for / Provide new evidence for the empirical relevance of DCP"
 - Is this a question macro data is best-suited to answer?
 - We have direct evidence on currency of trade invoicing [Gopinath 2015] and growing sources of customs data too

Alternatives:

+ "Provide new evidence on the importance of DCP in global trade"
+ *Identify novel channel of macroeconomic spillovers, via third-country expenditure-switching, arising under empirically relevant partial DCP*
+ "Address some important shortcomings of existing work"
 - We miss things writing 2-country models with polar assumptions

To really back these points up, the paper could go further in discussing the **economic significance** of the main mechanism
s \equiv x - m > 0 \text{ for some major EMs:}

- Argentina and Brazil: \(s \approx 10\% \) and \(\Delta \hat{y}_i \approx -0.4\% \)
- Given \(\Delta \hat{y}_t = -0.004s \rightarrow \) spillover around 0.04 pp more negative due to third-country partial-DCP trade—i.e. 10% of the spillover!
Speculation

Some of the biggest ‘beneficiaries’ (with $s \equiv x - m < 0$) are major AEs (Euro area, UK, Japan)

- Under polar DCP: case for coordination for non-US, but US has no incentive to coordinate [Egorov and Mukhin 2019]
- Does partial DCP disincentivise coordination of non-US AEs too?
- More generally, what does third-country expenditure switching mean for welfare?
Things get more complicated when we account for third-country effects and non-polar pricing paradigms.

In these instances, third-country expenditure-switching is likely to matter, over and above standard third-country demand spillovers. I’d like to know by how much?

- There are likely other third-country trade/pricing mechanisms we’ve yet to understand too [Lisack, Lloyd and Sajedi 2020(?)]

These provide additional trade-offs to account for when, *inter alia*, considering optimal policy and the case for coordination.
Appendix
EMs and the Financial Channel

The only countries facing negative spillovers from a positive US AD shock are EMs, indicating a dominant financial channel (vs. a trade channel) governing their spillovers.

Figure 5: Estimated GDP responses to a positive US demand shock

The only countries facing negative spillovers from a positive US AD shock are EMs, indicating a dominant financial channel (vs. a trade channel) governing their spillovers.