The Price of Complexity in Financial Networks

Discussion by Kartik Anand
Bank of England

Paris, 10th July 2015
Banque du France

Endogenous Financial Networks and Equilibrium Dynamics:
Addressing Challenges of Financial Stability and Monetary Policy

The usual disclaimer applies
Outline

1. The authors’ research question
2. Model structure
 A. Overview
 B. Questions
3. Experiments
4. Concluding questions
1. The authors’ research question

• Headline research question:

 How can we estimate the probability of default for banks that are linked via an intricate web of claims and obligations?

• A couple of specific sub-questions:

 If all claims are secured(?) debt, what are the PDs?

 How do errors in the network structure influence the PDs?

 With a mix of debt and credit derivatives, what are the PDs?
2. A Model structure: Overview

- Two-period model
- \(N \) leveraged financial institutions (banks)
- Each bank is characterized by its balance sheet
 - Assets: External (loans and securities portfolios) and Interbank (debt and derivatives)
 - Liabilities: Internal financing (own capital), interbank (debt and derivatives) and external (retail deposits)
2. A Model structure: Overview

• Value of external assets realized in the second period

\[a_i^E(2) = a_i^E(1) \left(1 + u_i \right) \]

• \(u_i \) (random shock) \(\sim \mathbb{R} \), mean \(\mu \) and standard derivation \(\sigma \)

• Second period default condition for bank \(i \)

\[a_i^E(1) \left(1 + u_i \right) + a_i^B(2) \sum_{j \neq i}^{N} B_{ij} \left(1 - \chi_j \left[1 - \phi \right] \right) - l_i^B < 0 \]

• \(\chi_j \in \{0, 1\} \) is the default indicator and \(\phi \) is the recovery rate
2. A Model structure: Overview

- Re-arranging, one obtains that bank i defaults ($\chi_i = 1$) whenever $u_i < \theta_i(\chi)$

- The ex-post outcome given by the fixed-point equation

\[
\chi_i^* = \mathbb{I} \left[u_i - \theta_i(\chi^*) \right]
\]

- The ex-ante probability of default for bank i is

\[
P_i = \int_{\theta_i(\chi^*)}^{\infty} dF(u)
\]
2.A Model structure: Overview

- Derivatives contracts can be included in the setup via

\[\theta_i(\chi) \rightarrow \theta_i(\chi) - \delta \sum_{j,k} D_{ijk} y_{ijk}(P_k, P_j) \]
2.B Model Structure: Questions

• No limited liability for banks?

• Nature of the debt contract - shouldn’t the recovery rate (if the contract is unsecured) be endogenous?

• The fixed-point equations yields multiple solutions. What criteria do you use to select a solution?

• The probability of systemic default does not seem well defined - looks like it is the average over a product of indicator functions. Isn’t using the sum of indicator functions, i.e., the sum of banks that default better?

• When introducing derivatives into the setup, the ex-post default condition should not depend on the ex-ante PDs. Instead, you should have the derivatives’ values depend on the default indicators (χ)
3. Experiments

- First experiment - the planner has imprecise information regarding the bilateral contract values

- Authors conclude that even a small imprecision can lead to a large under- / over-estimation of the PDs

- I feel the analysis could be better grounded - e.g., suppose the planner has a prior belief $f(\gamma)$ about the structure of contracts (γ). However, the planner is unsure if this belief is correct and is willing to contemplate alternate beliefs (robust control)

$$g^* = \arg \max_g \int P^{sys}(\gamma)g(\gamma)d\gamma - \psi R(g, f)$$
3. Experiments

- Second experiment - the planner does not know the arrangement of contracts between banks, but only the maximum number of contracts.

- Since all (debt) contracts have the same unit value, the total number of possible networks, \mathcal{N}, is given by a similar combinatorial argument.

- Market complexity (drawing from the literature on statistical mechanics of complex networks) $\sim \log \mathcal{N}$.

- Authors claim that: as market complexity increases (networks become more dense), the probability of systemic default increase.

- However, this is counter-intuitive to the robust-yet-fragile notion.
4. Concluding remarks

- There are several similar models out there, some of which you mention in your paper. As such, the paper would benefit from a discussion regarding the differences between your method and the others.

- You implicitly argue that multi-layer networks are “bad” for financial stability. This is not clear to me.

 Interesting aside fact - in recent statements, the governor of the PBoC mentions reforming Chinese financial markets by “[…] establishing multi-layered capital markets.”

- The paper is a bit light on economic / optimizing behaviour. Any thoughts on how to improve on this?