Discussion of ’Testing Information Diffusion in the Decentralized Unsecured Market for Euro Funds’ by Edoardo Rainone

Julia Schaumburg
VU University Amsterdam, Tinbergen Institute
Paper overview

► Aim: Test for the presence of information diffusion in the formation of interbank rates.

► Idea: Bilateral interest rate a bank agrees on may be influenced by rates its ‘neighbors’ have agreed on ⇒ ”loan network”.

► Methodology: Spatial autoregressive model for loan prices, with bank characteristics and country dummies as regressors.
Paper overview

▶ Aim: Test for the presence of information diffusion in the formation of interbank rates.

▶ Idea: Bilateral interest rate a bank agrees on may be influenced by rates its ’neighbors’ have agreed on ⇒ ”loan network”.

▶ Methodology: Spatial autoregressive model for loan prices, with bank characteristics and country dummies as regressors.

▶ Main findings:
 ▶ Extent of price diffusion is not constant over time, and is particularly high during periods of high market uncertainty.
 ▶ Network of loans becomes sparse after LTROs.
 ▶ Borrower and lender characteristics (partly) impact interbank rates.
Spatial autoregressive model

- Let \(y \) denote a vector of observations of a dependent variable for \(n \) units. Model:

\[
y = \rho \underbrace{Wy} + X\beta + e, \quad e \sim (0, \sigma^2 I_n),
\]

where

- \(W \) is a nonstochastic \((n \times n)\) row-normalized matrix with zeros on the main diagonal, \(X \) is a \((n \times k)\)-matrix of covariates,
- \(\rho, \sigma^2 \), and \(\beta = (\beta_1, \ldots, \beta_k)' \) are unknown coefficients.
Spatial autoregressive model

- Let \(y \) denote a vector of observations of a dependent variable for \(n \) units. Model:

\[
y = \rho \underbrace{Wy}_{\text{'spatial lag'}} + X\beta + e, \quad e \sim (0, \sigma^2 I_n),
\]

where

\(W \) is a nonstochastic \((n \times n)\) row-normalized matrix with zeros on the main diagonal, \(X \) is a \((n \times k)\)-matrix of covariates,

\(\rho, \sigma^2, \) and \(\beta = (\beta_1, ..., \beta_k)' \) are unknown coefficients.

- Model (1) is a nonlinear model that captures feedback:

\[
y = (I_n - \rho W)^{-1}X\beta + (I_n - \rho W)^{-1}e
\]
Comment 1

- Specification of spatial weights matrix
 - Somewhat arbitrary definition of loan neighborhood: Two loans A and B are connected if the borrower of A is the lender of B.

 ⇒ Check alternatives using ML?
Comment 1

- Specification of spatial weights matrix
 - Somewhat arbitrary definition of loan neighborhood: Two loans A and B are connected if the borrower of A is the lender of B.

⇒ Check alternatives using ML?
- Include loan volumes as weights?
Comment 1

▶ Specification of spatial weights matrix

▷ Somewhat arbitrary definition of loan neighborhood: Two loans A and B are connected if the borrower of A is the lender of B.

⇒ Check alternatives using ML?
▷ Include loan volumes as weights?
▷ Endogeneity due to ordering of loan activities within Maintenance Periods?
Comment 2

Repeated cross-section regressions vs. dynamic panel regression

▷ Dynamic spatial panel model, (see, e.g., Elhorst, 2012)

\[y_t = \rho W_t y_t + \gamma Y_{t-1} + X_t \beta + e_t, \]

▷ Time-varying spillover strength (see Blasques et al. 2014)

\[y_t = \rho_t W_t y_t + X_t \beta + e_t, \]
Comment 2

- Repeated cross-section regressions vs. dynamic panel regression
 - Dynamic spatial panel model, (see, e.g., Elhorst, 2012)
 \[y_t = \rho W_t y_t + \gamma Y_{t-1} + X_t \beta + e_t, \]
 - Time-varying spillover strength (see Blasques et al. 2014)
 \[y_t = \rho_t W_t y_t + X_t \beta + e_t, \]

- Advantages of panel approach:
 - more efficient
 - take information from previous periods into account
 - use data on loans with longer maturities

- Challenge: Missing data (loans between two banks may not exist in each period)
Other questions/comments

- Include aggregate shocks, e.g. via overall market variables?
- Sample sizes over time?
- Residual diagnostics?
- Robustness of other coefficients when network measures are included?
- Amount and length of footnotes (and appendices).
Conclusion

▶ Very interesting paper on a highly relevant topic!

▶ Spatial autoregressive model is a simple and parsimonious choice to incorporate network effects.

▶ Methodology could be extended to exploit the panel structure of the data.

▶ Robustify findings (even further) with respect to the specification of the spatial weights matrix.