Servicing Securitisation through Inefficient Foreclosure

John Kuong \(^1\) Jing Zeng \(^2\)

\(^1\)INSEAD

\(^2\)Frankfurt School of Finance & Management

BdT-TSE conference on Securitization
Banque de France

- Foreclosure is relevant
 - 1.8 million US properties foreclosed in 2012 (RealtyTrac)
 - 10.9 million homeowners (26% of all homes with an outstanding mortgage) were at least 25% underwater in January 2013 (FT, 17 Jan 2013)

- Foreclosure is costly
 - Lenders: lost $\approx 50\%$ of their investment (Levitin and Goodman, 2009)
 - Negative spillovers to the neighbourhood (Campbell et al., 2011)

- Public involvement: Home Affordable Modification Program in U.S.
 - developed by US Treasury in 2009 to reduce foreclosures
Motivation

Observations about recent wave of foreclosures

1. Securitised loans foreclosed more often than bank-held loans
 - Agarwal et al. (2011a, b); Piskorski et al. (2010); Kruger (2014)

2. Foreclosures seem to be ‘excessive’
 - PV of foreclosure < PV of modification (Li & Garrison, 2011)

3. Mortgage servicers have biased incentives towards foreclosures
 - Kruger (2014): get reimbursed for foreclosure but not modification costs; Robo signing; Renegotiation problem with dispersed investors

Questions

- Where is the link: securitisation ↔ foreclosures?
- Why inefficient foreclosures?
- Why such incentive contracts for servicers?
Motivation

Observations about recent wave of foreclosures

1. Securitised loans foreclosed more often than bank-held loans
 - Agarwal et al. (2011a, b); Piskorski et al. (2010); Kruger (2014)

2. Foreclosures seem to be ‘excessive’
 - PV of foreclosure < PV of modification (Li & Garrison, 2011)

3. Mortgage servicers have biased incentives towards foreclosures
 - Kruger (2014): get reimbursed for foreclosure but not modification costs; Robo signing; Renegotiation problem with dispersed investors

Questions

- Where is the link: securitisation ↔ foreclosures?
- Why inefficient foreclosures?
- Why such incentive contracts for servicers?
This model and key ingredients

- Securitisation under adverse selection (security design)
 - Securitiser more informed about credit risk of borrowers than investors
 - Costly signal of quality via junior tranche retention (DeMarzo & Duffie 1999)

- Strategic decision of foreclosure policy (moral hazard)
 - Foreclosure policy is not contractible, i.e. at servicer’s discretion
 - Potentially costly. Limit exposure to future aggregate risk

This paper does NOT have strategic defaults of borrowers
Results preview

- **Ex post** inefficient foreclosures to reduce **ex ante** signalling cost
 - An endogenous novel link between securitisation and foreclosure
 - Too much (little) foreclosure for bad (good) mortgage pools ex-post

- Third-party servicing to enforce commitment
 - Servicing contracts contain endogenously ‘biased’ incentives

- Bad states feature observations in recent crisis
 - with some (new) empirical implications
A framework of mortgage securitisation

- Impatient banks (discount factor $\delta < 1$ between $t = 1$ and $t = 3$)
- Competitive and patient investors

$t = 0$
- Originator endowed with mortgages

$t = 1$
- Originator receives private information θ_i
- Securitiser designs and sells MBS F_i

$t = 2$
- Some mortgages become delinquent
- Servicer foreclose λ_i fraction and sells properties

$t = 3$
- Delinquent mortgages recover with prob. θ_i
- All agents paid off

- In-house servicing: Securitiser = servicer (= originator)
- Third-party servicing: Securitiser \neq servicer (= originator)
 - Originator sells cash flow right to the securitiser, but remains as a third-party servicer
A framework of mortgage securitisation

- Impatient banks (discount factor $\delta < 1$ between $t = 1$ and $t = 3$)
- Competitive and patient investors

$t = 0$
- Originator endowed with mortgages

$t = 1$
- Originator receives private information θ_i
- Securitiser designs and sells MBS F_i

$t = 2$
- Some mortgages become delinquent
- Servicer foreclose λ_i fraction and sells properties

$t = 3$
- Delinquent mortgages recover with prob. θ_i
- All agents paid off

- In-house servicing: Securitiser = servicer (= originator)
- Third-party servicing: Securitiser \neq servicer (= originator)
 - Originator sells cash flow right to the securitiser, but remains as a third-party servicer

Servicing Securitisation

Kuong & Zeng

October 2015
Foreclosure changes mortgage pool cash flow

Suppose $\lambda_i \in [0, 1]$ delinquent mortgages foreclosed at $t = 2$

\[V_G = \pi \]

\[V_B + L(\lambda_H) + (1 - \lambda_H)X \]

\[V_B + L(\lambda_L) + (1 - \lambda_L)X \]

\[L(\lambda) \in [0, X) \] is the total proceeds from sales of foreclosed properties
- assumed to be increasing and concave

Key property: Foreclosure reduces exposure to borrowers’ re-default risk and aggregate risk in economy (e.g. unemployment, house prices)
Foreclosure changes mortgage pool cash flow

Suppose $\lambda_i \in [0, 1]$ delinquent mortgages foreclosed at $t = 2$

$\pi \rightarrow V_G$

$\pi \rightarrow \theta_H \rightarrow V_B + L(\lambda_H) + (1 - \lambda_H)X$

$\pi \rightarrow \gamma \rightarrow V_B + L(\lambda_H)$

$\pi \rightarrow \gamma \rightarrow \theta_L \rightarrow V_B + L(\lambda_L) + (1 - \lambda_L)X$

$\pi \rightarrow \gamma \rightarrow \theta_L \rightarrow V_B + L(\lambda_L)$

$L(\lambda) \in [0, X)$ is the total proceeds from sales of foreclosed properties

- assumed to be increasing and concave

Key property: Foreclosure reduces exposure to borrowers’ re-default risk and aggregate risk in economy (e.g. unemployment, house prices)
Foreclosure and securitisation under full information

- At $t = 1$, type i securitiser chooses a security
 - Given full information, any security is correctly priced
 - Optimal security is full equity (pass-through securitisation)

- At $t = 0$, S chooses to commit a foreclosure policy (λ_L, λ_H)
 - As the equity is always issued at fair price, S chooses foreclosure policy to maximise the mortgage pool expected cashflow

$$
(FOC_{i}^{FB}) : \frac{\partial L(\lambda_{i}^{FB})}{\partial \lambda_{i}} - \theta_{i}X = 0 \quad \forall \ i \in \{H, L\}
$$

- $\{\lambda_{L}^{FB}, \lambda_{H}^{FB}\}$ is the ex-post efficient benchmark
- This is also the foreclosure policy for bank-held mortgages.
- $\lambda_{L}^{FB} > \lambda_{H}^{FB}$: pools with lower recovery value should be foreclosed more
Foreclosure and securitisation under full information

At $t = 1$, type i securitiser chooses a security
- Given full information, any security is correctly priced
- Optimal security is **full equity** (pass-through securitisation)

At $t = 0$, S chooses to commit a foreclosure policy (λ_L, λ_H)
- As the equity is always issued at fair price, S chooses foreclosure policy to maximise the mortgage pool expected cashflow

\[
(FOC_{i}^{FB}) : \quad \frac{\partial L(\lambda_i^{FB})}{\partial \lambda_i} - \theta_i X = 0 \quad \forall \ i \in \{H, L\}
\]

- $\{\lambda_L^{FB}, \lambda_H^{FB}\}$ is the ex-post efficient benchmark
- This is also the foreclosure policy for bank-held mortgages.
- $\lambda_L^{FB} > \lambda_H^{FB}$: pools with lower recovery value should be foreclosed more
Next, we turn to securitisation under asymmetric information.

We will first study the case with third-party servicing
Securitisation with third-party servicing

Timeline

At $t = 0$, Bank 2 offers Bank 1 a menu of contracts to buy the cash-flow rights

- If Bank 1 declines, he securitises the pool at $t = 1$ and services it in-house
- Otherwise, he becomes third-party servicer. Bank 2 becomes securitiser

At $t = 1$, both banks become informed of the pool quality

- Servicer chooses a contract from the menu (need IC)
- Securitiser designs MBS and sells it to investors

At $t = 2$, in the bad state some loans become delinquent

- Servicer makes foreclosure decisions (also need IC)
Securitisation with third-party servicing

Timeline

At $t = 0$, Bank 2 offers Bank 1 a menu of contracts to buy the cash-flow rights

- If Bank 1 declines, he securitises the pool at $t = 1$ and services it in-house
- Otherwise, he becomes third-party servicer. Bank 2 becomes securitiser

At $t = 1$, both banks become informed of the pool quality

- Servicer chooses a contract from the menu (need IC)
- Securitiser designs MBS and sells it to investors

At $t = 2$, in the bad state some loans become delinquent

- Servicer makes foreclosure decisions (also need IC)
Securitisation with third-party servicing

Timeline

At $t = 0$, Bank 2 offers Bank 1 a menu of contracts to buy the cash-flow rights

- If Bank 1 declines, he securitises the pool at $t = 1$ and services it in-house
- Otherwise, he becomes third-party servicer. Bank 2 becomes securitiser

At $t = 1$, both banks become informed of the pool quality

- Servicer chooses a contract from the menu (need IC)
- Securitiser designs MBS and sells it to investors

At $t = 2$, in the bad state some loans become delinquent

- Servicer makes foreclosure decisions (also need IC)
Assumption and equilibrium concept

Backwards induction and PBE at the securitisation stage

- Investors use security design F to form belief about θ
- focus on least-cost separating equilibrium

Assumption: the choice of servicing contract is NOT a signal

- Investors observe the menu offered at $t = 0$
- But not the choice by the servicer at $t = 1$
- This assumption allows direct comparison to security design literature
The servicing contract \(\{ \alpha, \beta, \tau \} \) specifies payments contingent on cash flow realisations:

- \(\alpha \): percentage fee based on repayment cash flows
- \(\alpha\beta \): percentage fee based on foreclosure cash flows
- \(\tau \): flat sales transfer at \(t = 1 \)

At \(t = 2 \), servicer chooses \(\lambda_i \) to maximise

\[
\max_{\lambda_i \in [0,1]} \alpha[\beta L(\lambda_i) + (1 - \lambda_i)\theta_i X]
\]
Third-party servicing allows commitment in foreclosure

\[\beta \text{ determines equilibrium foreclosure chosen by the servicer} \]

\[\beta \frac{\partial L(\lambda_i)}{\partial \lambda} = \theta_i \chi \]

- If and only if \(\beta_i = 1 \), servicer chooses \(\lambda_i^{FB} \)
- \(\lambda_i^s(\beta) \) increases in \(\beta \)

Result: Securitiser can commit to foreclosure policy \(\lambda_i \) by offering different \(\beta \)

- separation of ownership and decision
- assuming no renegotiation of servicers’ contract ex post, which seems to be true in practice
Security design: the result

With a pre-committed foreclosure policy \((\hat{\lambda}_L, \hat{\lambda}_H)\):
- low type securitises all cash flows
- high type sells the optimal security \(\mathcal{F}_H\) that resembles debt in the bad state
- in line with Leland and Pyle (1977), DeMarzo and Duffie (1999)
Securitisation with third-party servicing achieves the same outcome as if the securitiser can commit to a foreclosure policy *ex ante*.

\[
\max_{\lambda_H, \lambda_L} \gamma \left(\delta \mathbb{E}_H[\tilde{C} - \mathcal{F}_H(\tilde{C})] + p(\mathcal{F}_H) \right) + (1 - \gamma) \mathbb{E}_L[\tilde{C}]
\]

s.t. optimal security \(\mathcal{F}_H \) given \(\lambda_i \)

- The original problem solves for optimal \(\{\alpha_i, \beta_i, \tau_i\} \)
- \(\beta_i \) determines equilibrium foreclosure
- \(\alpha_i \) and \(\tau_i \) ensures participation and incentive compatibility
Ex-ante foreclosure policy design

Securitisation with third-party servicing achieves the same outcome as if the securitiser can commit to a foreclosure policy \textit{ex ante}

\[
\max_{\lambda_H, \lambda_L} \gamma \left(\delta \mathbb{E}_H[\tilde{C} - \mathcal{F}_H(\tilde{C})] + p(\mathcal{F}_H) \right) + (1 - \gamma) \mathbb{E}_L[\tilde{C}]
\]

\[\text{s.t. optimal security } \mathcal{F}_H \text{ given } \lambda_i\]

- The original problem solves for optimal \(\{\alpha_i, \beta_i, \tau_i\}\)
- \(\beta_i\) determines equilibrium foreclosure
- \(\alpha_i\) and \(\tau_i\) ensures participation and incentive compatibility
Foreclosure with third-party servicing

The equilibrium foreclosure with third-party servicing distorts towards the extremes, i.e.

\[\lambda_{tp}^H \leq \lambda_{H}^{FB} < \lambda_{L}^{FB} \leq \lambda_{L}^{tp} \]

Third-party servicers are given endogenously biased incentives

\[\beta_{H} \leq 1 \leq \beta_{L} \]

The inequality is strict when \(\pi \) is low, i.e. information asymmetry is more relevant
Foreclosure with third-party servicing

- The equilibrium foreclosure with third-party servicing distorts towards the extremes, i.e.
 \[\lambda_{tp}^{H} \leq \lambda_{H}^{FB} < \lambda_{L}^{FB} \leq \lambda_{L}^{tp} \]

- Third-party servicers are given endogenously biased incentives
 \[\beta_{H} \leq 1 \leq \beta_{L} \]

The inequality is strict when \(\pi \) is low, i.e. information asymmetry is more relevant.
Main results

Mechanism: *Ex ante* optimal foreclosure policy

\[\lambda_{tp}^H < \lambda_{FB}^H < \lambda_{FB}^L < \lambda_{tp}^L \]

- **Trade-off:** total cash flow of the portfolio v.s. signalling cost
- **Deviate from** \(\lambda_{FB}^i \) to reduce low type’s mimicking incentives

\[
\text{Mimicking payoff} = p(F_H) + \text{retained claim} \leq U_L(\lambda_L)
\]

- **Key forces:** Foreclosure decreases the riskiness of the cash flow
 - \(\lambda_{tp}^H < \lambda_{FB}^H \): ↑ riskiness, ↓ value of risky debt due to concavity
 - \(\lambda_{tp}^L > \lambda_{FB}^L \): ↓ riskiness, ↓ value of levered equity due to convexity

Result: two-sided distortions in foreclosures facilitate securitisation
Main results

Mechanism: Ex ante optimal foreclosure policy

\[\lambda_{tp}^{H} < \lambda_{H}^{FB} < \lambda_{L}^{FB} < \lambda_{L}^{tp} \]

- **Trade-off:** total cash flow of the portfolio v.s. signalling cost
- **Deviate from** \(\lambda_{i}^{FB} \) to reduce low type’s mimicking incentives

\[
\text{Mimicking payoff} = \underbrace{p(F_{H})}_{\text{High type risky debt}} + \underbrace{\text{retained claim}}_{\text{Low type levered equity}} \leq U_{L}(\lambda_{L})
\]

- **Key forces:** Foreclosure decreases the riskiness of the cash flow
 - \(\lambda_{H}^{tp} < \lambda_{H}^{FB} \): ↑ riskiness, ↓ value of risky debt due to concavity
 - \(\lambda_{L}^{tp} > \lambda_{L}^{FB} \): ↓ riskiness, ↓ value of levered equity due to convexity

Result: two-sided distortions in foreclosures **facilitate** securitisation
Securitisation with in-house servicing

If the mortgages are serviced in-house, the servicer is also the holder of the residual claims:

- This potentially creates conflict of interests
- Foreclosure policy is chosen at $t = 2$ to maximise his own profit. Can’t commit ex ante.
Comparing to securitisation with in-house servicing

Inefficiency of in-house servicing

Optimal security design is similar

- \mathcal{F}_H resembles debt and \mathcal{F}_L is full pass-through equity
- Note: although the game is quite different because of the timing

Foreclosure decision at $t = 2$

- L type chooses first best foreclosure $\lambda_{ih}^L = \lambda_{FB}^L$
- H type holds levered equity \rightarrow chooses zero foreclosure $\lambda_{ih}^H = 0$

Excessive forbearance as risk-shifting. Classic equity holder-creditor conflict
Inefficiency of in-house servicing

Optimal security design is similar
- \mathcal{F}_H resembles debt and \mathcal{F}_L is full pass-through equity
- Note: although the game is quite different because of the timing

Foreclosure decision at $t = 2$
- L type chooses first best foreclosure $\lambda_{ih}^L = \lambda_{FB}^L$
- H type holds levered equity \rightarrow chooses zero foreclosure $\lambda_{ih}^H = 0$

Excessive forbearance as risk-shifting. Classic equity holder-creditor conflict
Comparing to securitisation with in-house servicing

Value of commitment and the role of servicer

Value of commitment the ex ante expected payoff under in-house is strictly less than that under third-party servicing

$$\gamma U_H(\lambda_H^{tp}, \lambda_L^{tp}) + (1 - \gamma) U_L(\lambda_L^{tp}) > \gamma U_{ih}^H + (1 - \gamma) U_{ih}^L$$

The role of servicer here is to allow commitment

- If there is some cost of contracting, e.g. legal, bargaining or indirect agency cost, then some in-house servicing can arise in equilibrium
- In the paper we currently assume an exogenous cost κ
Value of commitment and the role of servicer

Value of commitment: the ex ante expected payoff under in-house is strictly less than that under third-party servicing

\[\gamma U_H(\lambda_H^{tp}, \lambda_L^{tp}) + (1 - \gamma) U_L(\lambda_L^{tp}) > \gamma U_H^{ih} + (1 - \gamma) U_L^{ih} \]

The role of servicer: here is to allow commitment

- If there is some cost of contracting, e.g. legal, bargaining or indirect agency cost, then some in-house servicing can arise in equilibrium
- In the paper we currently assume an exogenous cost \(\kappa \)
Servicing securitisation through inefficient foreclosures

- Securitisation under asymmetric information
 - Costly retention of levered equity as signal

- Strategic foreclosure of delinquent mortgages
 - Without commitment, excessive forbearance as risk-shifting
 - Committing *ex post* inefficient foreclosure reduces *ex ante* signalling cost
 - Two-sided distortion in foreclosure towards extremes

- The role played by third-party servicers
 - Allows the securitiser to commit by separation of decision and ownership
 - Biased incentives arise endogenously

- Policy: regulating in foreclosure policy and servicers’ incentives may obstruct securitisation
Incentive problems of securitisation
- *Ex post* liquidation: This paper

Inefficient loan foreclosures
- Typically excessive foreclosures
 - Asymmetric information between lender and borrower (Wang et al. 2002, Riddiough and Wyatt 1994)
 - Free-rider problem among creditors (Gertner and Scharfstein 1991)
- This paper: Two-sided inefficiency arises even when servicer has discretion

Role of the servicer in mortgage securitisation
- Pooling improves servicer’s incentive (Mooradian and Pichler 2014)
- This paper: Optimal contracting with servicer mitigates frictions in the tranching problem
Empirical predictions

- Foreclosure rate (conditional on borrowers’ defaults)
 - Third-party servicing $>$ In-house servicing
 - Low quality (ex post) securitised $>$ Bank-held [vice versa]
 - Variation in foreclosure rate: Securitised $>$ Bank-held

- Marginal foreclosure with third-party servicer
 - Negative NPV in low quality (ex post) securitised pool [vice versa]

- Third-party servicer’s contract
 - Biased towards foreclosures in low-quality mortgage pools [vice versa]