Discussion of

Exchange Rate Movements, Firm-Level Exports and Heterogeneity
by Antoine Berthou (BdF) and Emmanuel Dhyne (NBB)

Tommaso Aquilante (BoE, CfM)

3rd BdF-BoE International Macroeconomics Workshop

Paris, 10 November 2017

The views expressed in this presentation are those of the authors and do not reflect those of the BoE
Summary

A well-thought paper on a topical theme: exchange rate elasticity (ERE) and exports

- **Macro.** Weak link (Goldstein and Khan, 1985; Hooper et al., 1998). There is a substantial cross-country heterogeneity of this elasticity (Morin and Schwellnus, 2014; IMF, 2015).

- **Micro.** Heterogenous firms: incomplete ER pass-through into export prices by large productive firms (Rodriguez-Lopez, 2011; Berman et al., 2012).

 1. **IM.** Greater concentration of aggregate exports into more productive firms is expected to attenuate the ERE;

 2. **EM.** Differences in the shape of productivity distribution among the population of exporters.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE.
Using *CompNet data* on 11 countries, this paper connects the micro and macro literatures on ERE and exports and shows that:

• the average ERE across firms is quite weak but highly heterogeneous;
• the least productive firms within each country and sector tend to react more to real ER movements.
 • This is common to all countries in the sample.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE.
General comments

A more systematic, “agnostic”, approach to the analyzing the effects of ER movements on trade margins:

\[EX_{ijt} = n_{ijt} \times \bar{x}_{ijt} \]

Exports from \(i \) to \(j \) EM=Number of exporters IM=Average value of exports

But if the destination country is unknown:

\[EX_{it} = n_{it} \times \bar{x}_{it} \]

Exports from \(i \) EM IM
A more systematic, “agnostic”, approach to analyzing the effects of ER movements on trade margins:

\[EX_{ijt} = n_{ijt} \times \bar{x}_{ijt} \]

Exports from i to j \quad EM=Number of exporters \quad IM=Average value of exports

But if the destination country is unknown:

\[EX_{it} = n_{it} \times \bar{x}_{it} \]

Exports from i \quad EM \quad IM

Estimating a gravity-like (log) linear model, the effect of the ER (or any other trade determinant) is equal to the sum of the coefficients on the two margins.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE.
General comments

A more systematic, “agnostic”, approach to the analyzing the effects of ER movements on trade margins:

\[EX_{ijt} = n_{ijt} \times \bar{x}_{ijt} \]

Exports from \(i \) to \(j \) \(\text{EM} = \text{Number of exporters} \) \(\text{IM} = \text{Average value of exports} \)

But if the destination country is unknown:

\[EX_{it} = n_{it} \times \bar{x}_{it} \]

Exports from \(i \) \(\text{EM} \) \(\text{IM} \)

Estimating a gravity-like (log) linear model, the effect of the ER (or any other trade determinant) is equal to the sum of the coefficients on the two margins. I would start from the decomposition above and let (your) data speak about:

- quantification: ER-induced contributions of each margin to TT;
- the “right” amount of lags.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE.
General comments

A more systematic, “agnostic”, approach to the analyzing the effects of ER movements on trade margins:

\[EX_{ijt} = n_{ijt} \times \bar{x}_{ijt} \]

Exports from \(i \) to \(j \)
EM=Number of exporters
IM=Average value od exports

But if the destination country is unknown:

\[EX_{it} = n_{it} \times \bar{x}_{it} \]

Exports from \(i \)
EM
IM

Estimating a gravity-like (log) linear model, the effect of the ER (or any other trade determinant) is equal to the sum of the coefficients on the two margins. I would start from the decomposition above and let (your) data speak about:

• quantification: ER-induced contributions of each margin to TT;
• the “right” amount of lags.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE
Phasing-in

I would probably avoid using “short” and “long” run.

Once the you have an idea of the “right” number of lags, using authors’ notation one can estimate (the analogy is with the literature on the phasing-in of trade agreements, e.g. Baier et al., 2014):

$$\Delta \ln EM_{fitk+m/t-n} = g[\Delta \ln \bar{REER}_{itk+m/t-n}] + ...$$
Phasing-in

I would probably avoid using ”short” and ”long” run.

Once the you have an idea of the “right” number of lags, using authors’ notation one can estimate (the analogy is with the literature on the phasing-in of trade agreements, e.g. Baier et al., 2014):

$$\Delta \ln EM_{fitk+m/t-n} = g[\Delta \ln REER_{itk+m/t-n}] + \ldots$$

but also

$$\Delta \ln IM_{fitk+m/t-n} = g[\Delta \ln REER_{itk+m/t-n}] + \ldots$$

This should help in coming up with a more precise picture of:

- *how long* the two margins take to react;
- *for how long* they react (when does the effect die out?);
- *how much* they react.

Perhaps, build a simple “counterfactual” to look at how large the shock must be for the EM to react more quickly.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE
Phasing-in

I would probably avoid using "short" and "long" run.

Once the you have an idea of the "right" number of lags, using authors’ notation one can estimate (the analogy is with the literature on the phasing-in of trade agreements, e.g. Baier et al., 2014):

$$\Delta \ln EM_{fitk+m/t-n} = g[\Delta \ln \overline{REER}_{itk+m/t-n}] + \ldots$$

but also

$$\Delta \ln IM_{fitk+m/t-n} = g[\Delta \ln \overline{REER}_{itk+m/t-n}] + \ldots$$

This should help in coming up with a more precise picture of:

- *how long* the two margins take to react;
- *for how long* they react (when does the effect die out?);
- *how much* they react.

Perhaps, build a simple “counterfactual” to look at how large the shock must be for the EM to react more quickly.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE
Dynamics

Exports affected by entry, survival and deepening (Besedeš and Prusa, 2011). Re-arrange their decomposition at the firm level (e.g. by productivity type) and check how the ER affects each component:

\[EX_t = n_t \times \bar{x}_t \]

Exports at time \(t \) \(\text{EM} \times \text{IM} \)

\(EX_{t+1} - EX_t = n_{t+1}ex_{t+1} - n_tex_t = s_{t+1}[ex_{t+1} - ex_t] - d_tex_t + \varepsilon_{t+1}ex_{t+1} = \)

\[= \sum_{\text{years}}[(1 - h_{t+1}^y)n_t][ex_{t+1}^y - ex_t^y] - \sum_{\text{years}}[(h_{t+1}^y n_{\theta,t})ex_t^y] + \varepsilon_{t+1} + ex_{t+1}^0 \]

- \(s_{t+1} \) is the number of surviving firms;
- \([ex_{t+1} - ex_t] \) is the export growth of surviving firms;
- \(d_t \) is the \# of exiters at time \(t \) (the value of their exports is \(d_tex_t \));
- \(\varepsilon_{t+1} \) is the number of new exporters; \(h \) is the hazard rate.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE
Dynamics

Exports affected by entry, survival and deepening (Besedeš and Prusa, 2011). Re-arrange their decomposition at the firm level (e.g. by productivity type) and check how the ER affects each component:

$$EX_t = n_t \times \bar{x}_t$$

Exports at time t, EM, IM

$$EX_{t+1} - EX_t = n_{t+1}ex_{t+1} - n_t ex_t = s_{t+1}[ex_{t+1} - ex_t] - d_t ex_t + \varepsilon_{t+1}ex_{t+1} =$$

$$= \sum_{years} [(1 - h^y_{t+1})n_t] [ex^y_{t+1} - ex^y_t] - \sum_{years} [(h^y_{t+1} n_{\theta,t}) ex^y_{t}] + \varepsilon_{t+1} + ex^0_{t+1}$$

- s_{t+1} is the number of surviving firms;
- $[ex_{t+1} - ex_t]$ is the export growth of surviving firms;
- d_t is the # of exiters at time t (the value of their exports is $d_t ex_t$);
- ε_{t+1} is the number of new exporters; h is the hazard rate.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE.
Firm productivity type

Three productivity groups within each country and sector:

\[P^z_{kt} : \text{Cat1} = \{1, 2\}; \quad \text{Cat2} = \{3, 4, 5, 6, 7, 8\}; \quad \text{Cat3} = \{9, 10\} \]

Where:

- Cat1 corresponds to the bottom 20% of firms;
- Cat2 corresponds to the 60% of firms with an intermediate productivity level;
- Cat3 corresponds to the top 20% of firms.

Digging in: 8626 firms, distributed across 11 countries, over 22 sectors. On average this means 35 firms within each 2-digit sector, 7 in Cat1 and Cat3 and 21 in Cat2. How much do you trust the within-group variation used to estimated interactions’ coefficients?

- Go at one digit?
- A breakdown of how many observations by country and sectors (only the latter is available in the paper) would help.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE.
Firm productivity type

Three productivity groups within each country and sector:

\[P_{kt}^z : \text{Cat1} = \{1, 2\}; \quad \text{Cat2} = \{3, 4, 5, 6, 7, 8\}; \quad \text{Cat3} = \{9; 10\} \]

Where:

- Cat1 corresponds to the bottom 20% of firms;
- Cat2 corresponds to the 60% of firms with an intermediate productivity level;
- Cat3 corresponds to the top 20% of firms.

Digging in: 8626 firms, distributed across 11 countries, over 22 sectors. On average this means 35 firms within each 2-digit sector, 7 in Cat1 and Cat3 and 21 in Cat2. How much do you trust the within-group variation used to estimated interactions’ coefficients?

- Go at one digit?
- A breakdown of how many observations by country and sectors (only the latter is available in the paper) would help.

The views expressed in this presentation are those of the authors and do not reflect those of the BoE
Miscellanea

More stories:

- Imports
- FDI
- Multiproduct firms

From micro to macro: any implication for macro modeling?

- Permanent/temporary/unticipated/unanticipated ER shock;
- Is a permanent shock to the ER equivalent to a ToT shock (Linde and Pescatori, 2017; Erceg, Prestipino and Raffo, 2017), or does the distribution have implications for this literature too?

The views expressed in this presentation are those of the authors and do not reflect those of the BoE.
Miscellanea

More stories:
- Imports
- FDI
- Multiproduct firms

From micro to macro: any implication for macro modeling?
- Permanent/temporary/unticipated/unanticipated ER shock;
- Is a permanent shock to the ER equivalent to a ToT shock (Linde and Pescatori, 2017; Erceg, Prestipino and Raffo, 2017), or does the distribution have implications for this literature too?

The views expressed in this presentation are those of the authors and do not reflect those of the BoE.
Thank you

The views expressed in this presentation are those of the authors and do not reflect those of the BoE