“The Fall of the Labor Share and the Rise of Superstar Firms”
by Autor, Dorn, Katz, Patterson, Van Reenen

Discussion by Matthias Kehrig

Duke University, NBER & CEPR

“Monetary Policy Challenges”
June 21/22, 2018
What this paper does

Empirical contributions:

1. The labor share decline at aggregate/sectoral/industry level stems from reallocation of value added between firms, not a decline of firm-level labor shares.

2. Sales concentration within industries rises over time.

3. Increasing concentration and declining labor shares seem related.

Theoretical interpretation: A model of 'superstar firms' that are highly productive, charge a relatively higher markup, are large producers ⇒ have a big weight in the aggregate labor share.
What this paper does

Empirical contributions:

1. The labor share decline at aggregate/sectoral/industry level stems from reallocation of value added between firms, not a decline of firm-level labor shares.
2. Sales concentration within industries rises over time.
3. Increasing concentration and declining labor shares seem related.

Theoretical interpretation: A model of ‘superstar firms’ that are

1. highly productive,
2. charge a relatively higher markup,
3. are large producers ⇒ have a big weight in the aggregate labor share.
Comment 1: On the implications of fixed costs

Two model variants: First has fixed input costs à la Melitz (2003).

- Production: \(Y_i = z_i (N_i - F)^{\alpha K_i^{\beta}} \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \alpha + \frac{w_i F}{P_i Y_i} \).

- The last term will be small for highly productive firms that are large (big \(P_i Y_i \)) and have a low labor share.

- The aggregate labor share may decline if...

...the productivity distribution widens (highly productive firms expand thus lowering their labor share while marginal surviving firm almost unaffected).
Comment 1: On the implications of fixed costs

Two model variants: First has fixed input costs à la Melitz (2003).

- Production: \(Y_i = z_i (N_i - F^\alpha) K_i^\beta \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m} + \frac{w F}{P_i Y_i} \).
- The last term will be small for highly productive firms that are large (big \(P_i Y_i \)) and have a low labor share.
- The aggregate labor share may decline if...
 1. ... \(F \uparrow \) (only highly productive, large, low-labor share firms survive)
Comment 1: On the implications of fixed costs

Two model variants: First has fixed input costs à la Melitz (2003).

- Production: \(Y_i = z_i (N_i - F)^\alpha K_i^\beta \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{\mu} + \frac{w F}{P_i Y_i} \).

- The last term will be small for highly productive firms that are large (big \(P_i Y_i \)) and have a low labor share.

- The aggregate labor share may decline if...
 1. \(F \uparrow \) (only highly productive, large, low-labor share firms survive)
 2. the productivity distribution widens (highly productive firms expand thus lowering their labor share while marginal surviving firm almost unaffected).
Comment 1: On the implications of fixed costs

Two model variants: First has fixed input costs à la Melitz (2003).

- **Production:** \(Y_i = z_i (N_i - F)^{\alpha} K_i^{\beta} \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m} + \frac{w F}{P_i Y_i} \).
- The last term will be small for highly productive firms that are large (big \(P_i Y_i \)) and have a low labor share.
- The aggregate labor share may decline if...
 1. \(F \uparrow \) (only highly productive, large, low-labor share firms survive)
 Should lead to attrition, but exit appears to play a small role for the labor share decline.
 2. The productivity distribution widens (highly productive firms expand thus lowering their labor share while marginal surviving firm almost unaffected).
Comment 1: On the implications of fixed costs

Two model variants: First has fixed input costs à la Melitz (2003).

- Production: $Y_i = z_i (N_i - F^\alpha) K_i^\beta$ implies labor share $S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m} + \frac{w F}{P_i Y_i}$.
- The last term will be small for highly productive firms that are large (big $P_i Y_i$) and have a low labor share.
- The aggregate labor share may decline if...
 1. $F \uparrow$ (only highly productive, large, low-labor share firms survive)
 Should lead to attrition, but exit appears to play a small role for the labor share decline.
 2. the productivity distribution widens (highly productive firms expand thus lowering their labor share while marginal surviving firm almost unaffected).
 ⇒ How does the dispersion of productivity evolve over time?
Comment 1: On the implications of fixed costs

- Estimate TFP using establishment-level data (manufacturing only) and study cross-sectional dispersion $\text{Var}(\log z)$:

Figure 1: Secular run-up in TFP dispersion

Note: From Kehrig (2011): “The Cyclicality of Productivity Dispersion,” Appendix C.2, Fig. 14
Comment 1: On the implications of fixed costs

- Estimate TFP using establishment-level data (manufacturing only) and study cross-sectional dispersion $\text{Var}(\log z)$:

 Figure 1: Secular run-up in TFP dispersion

 ![Figure 1](image)

 Note: From Kehrig (2011): “The Cyclicality of Productivity Dispersion,” Appendix C.2, Fig. 14

⇒ Calculate how much of a labor share decline this increase in productivity dispersion yields.
Comment 2: On markups

Two model variants: Second has linear-quadratic preferences à la Melitz/Ottaviano (2008).

- Demand curve: \(q(\omega) = \frac{1}{A} - \frac{1}{\gamma p(\omega)} \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m_i} \).

Highly productive firms have a higher markup ⇒ a lower labor share.

Measuring markups: notoriously difficult,

James Treina (2018): Markup over total cost is mostly constant ⇒ Construct total cost (including cost for advertising, HQ functions, ...) which Census starts to collect in 2002. What does sales/total cost do?
Two model variants: Second has linear-quadratic preferences à la Melitz/Ottaviano (2008).

- Demand curve: $q(\omega) = \frac{1}{A} - \frac{1}{\gamma p(\omega)}$ implies labor share $S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m_i}$.
- Highly productive firms have a higher markup \Rightarrow a lower labor share.
Comment 2: On markups

Two model variants: Second has linear-quadratic preferences à la Melitz/Ottaviano (2008).

- **Demand curve**: \(q(\omega) = \frac{1}{A} - \frac{1}{\gamma p(\omega)} \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m_i} \).

- Highly productive firms have a higher markup \(\Rightarrow \) a lower labor share.

Measuring markups:
Comment 2: On markups

Two model variants: Second has linear-quadratic preferences à la Melitz/Ottaviano (2008).

- Demand curve: \(q(\omega) = \frac{1}{A} - \frac{1}{\gamma p(\omega)} \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m_i} \).
- Highly productive firms have a higher markup \(\Rightarrow\) a lower labor share.

Measuring markups:
- notoriously difficult,
Comment 2: On markups

Two model variants: Second has linear-quadratic preferences à la Melitz/Ottaviano (2008).

- Demand curve: $q(\omega) = \frac{1}{A} - \frac{1}{\gamma p(\omega)}$ implies labor share $S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m_i}$.
- Highly productive firms have a higher markup \Rightarrow a lower labor share.

Measuring markups:

- notoriously difficult,
Comment 2: On markups

Two model variants: Second has linear-quadratic preferences à la Melitz/Ottaviano (2008).

- Demand curve: \(q(\omega) = \frac{1}{A} - \frac{1}{\gamma p(\omega)} \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m_i} \).
- Highly productive firms have a higher markup ⇒ a lower labor share.

Measuring markups:

- notoriously difficult,
- James Treina (2018): Markup over total cost is mostly constant
Comment 2: On markups

Two model variants: Second has linear-quadratic preferences à la Melitz/Ottaviano (2008).

- Demand curve: \(q(\omega) = \frac{1}{A} - \frac{1}{\gamma p(\omega)} \) implies labor share \(S_i = \frac{w_i N_i}{P_i Y_i} = \frac{\alpha}{m_i} \).
- Highly productive firms have a higher markup \(\Rightarrow \) a lower labor share.

Measuring markups:

- notoriously difficult,
- James Treina (2018): Markup over total cost is mostly constant

\(\Rightarrow \) Construct total cost (including cost for advertising, HQ functions, ...) which Census starts to collect in 2002. What does sales/total cost do?
Comment 3: Concentration – in outputs and inputs?

- ADKPV show concentration go up in sales. They say it is “good news” because most concentrated industries are also the most dynamic ones.
Comment 3: Concentration – in outputs and inputs?

- ADKPV show concentration go up in sales. They say it is “good news” because most concentrated industries are also the most dynamic ones.

⇒ Standard models imply that productive firms also draw most resources.
Comment 3: Concentration – in outputs and inputs?

- ADKPV show concentration go up in sales. They say it is “good news” because most concentrated industries are also the most dynamic ones.

⇒ Standard models imply that productive firms also draw most resources.

- Is that really the case? Do large producers become large employers as well?
Comment 3: Concentration – in outputs and inputs?

- ADKPV show concentration go up in sales. They say it is “good news” because most concentrated industries are also the most dynamic ones.

- Standard models imply that productive firms also draw most resources.

- Is that really the case? Do large producers become large employers as well?

Figure 2: Employment and output become less and less correlated

\[\text{Note: Own calculations based on establishment-level data from the Annual Survey of Manufactures} \]
Comment 3: Concentration – in outputs and inputs?

In this context:

- Ilut et al. (2014, Table 5) show that the relationship between productivity and net hiring in U.S. manufacturing weakens since the 1980s.

Figure 3: High-productivity establishments don't hire (any more)

Matthias Kehrig (Duke, NBER & CEPR)
Discussion of “The labor share and superstar firms”
Comment 3: Concentration – in outputs and inputs?

In this context:

- Do producers that are large because they are highly productive (low labor share) become large employers as well?

Ilut et al. (2014, Table 5) show that the relationship between productivity and net hiring in U.S. manufacturing weakens since the 1980s.
Comment 3: Concentration – in outputs and inputs?

In this context:

- Do producers that are large because they are highly productive (=low labor share) become large employers as well?
- Ilut et al. (2014, Table 5) show that the relationship between productivity and net hiring in U.S. manufacturing weakens since the 1980s.
Comment 3: Concentration – in outputs and inputs?

In this context:

- Do producers that are large because they are highly productive (=low labor share) become large employers as well?

- Ilut et al. (2014, Table 5) show that the relationship between productivity and net hiring in U.S. manufacturing weakens since the 1980s.

Figure 3: High-productivity establishments don’t hire (any more)
Comment 3: Concentration – in outputs and inputs?

In this context:
- Do producers that are large because they are highly productive (=low labor share) become large employers as well?
- Ilut et al. (2014, Table 5) show that the relationship between productivity and net hiring in U.S. manufacturing weakens since the 1980s.

Figure 3: High-productivity establishments don’t hire (any more)
Comment 3: Concentration – in outputs and inputs?

- The TFP shock-hiring asymmetry is particularly true for high-TFP establishments
 ⇔ esp. for low-labor share establishments

⇒ Suggest to check the following:
 ▶ Did Cov(sales growth, employment growth) fall outside manufacturing as well?
 ▶ Are firms in CR4(Sales) the same as CR4(Employment)?
 If not:
 ▶ Is the production function we all use still the right one?
 ▶ Are “superstar firms” systematically different?
Comment 3: Concentration – in outputs and inputs?

- The TFP shock-hiring asymmetry is particularly true for high-TFP establishments ⇔ esp. for low-labor share establishments
- Decker et al. (2017a,b) show that business dynamism/job reallocation fell throughout the economy.

⇒ Suggest to check the following:
▶ Did Cov(sales growth, employment growth) fall outside manufacturing as well?
▶ Are firms in CR4(Sales) the same as CR4(Employment)?
If not:
▶ Is the production function we all use still the right one?
▶ Are “superstar firms” systematically different?
Comment 3: Concentration – in outputs and inputs?

- The TFP shock-hiring asymmetry is particularly true for high-TFP establishments ⇔ esp. for low-labor share establishments

- Decker et al. (2017a,b) show that business dynamism/job reallocation fell throughout the economy.

⇒ Suggest to check the following:
 - Did Cov(sales growth, employment growth) fall outside manufacturing as well?
 - Are firms in CR4(Sales) the same as CR4(Employment)?
Comment 3: Concentration – in outputs and inputs?

- The TFP shock-hiring asymmetry is particularly true for high-TFP establishments ⇐ esp. for low-labor share establishments
- Decker et al. (2017a,b) show that business dynamism/job reallocation fell throughout the economy.

⇒ Suggest to check the following:
 ▶ Did Cov(sales growth, employment growth) fall outside manufacturing as well?
 ▶ Are firms in CR4(Sales) the same as CR4(Employment)?

If not:
 ▶ Is the production function we all use still the right one?
 ▶ Are “superstar firms” systematically different?
Comment 4: Concentration and labor share declines

- Write aggregate labor share and its change as:

\[S_{\text{agg}} = \frac{\sum_i w_i L_i}{\sum_i Y_i} = \sum_i \frac{w_i L_i}{Y_i} \frac{Y_i}{\sum_i Y_i} = \sum_i S_i \omega_i \]

\[\Delta S_{\text{agg}} = \Delta \bar{S}_i - \Delta Cov(S_i, \omega_i) \]
Comment 4: Concentration and labor share declines

- Write aggregate labor share and its change as:

\[S^{agg} = \frac{\sum_i w_i L_i}{\sum_i Y_i} = \frac{\sum_i w_i L_i}{Y_i} \frac{Y_i}{\sum_i Y_i} = \sum_i S_i \omega_i \]

\[\Delta S^{agg} = \Delta \overline{S}_i - \Delta Cov(S_i, \omega_i) \]

Figure 4: What does \(S^{agg} \) do and what does distribution of \(S_i \) do?

Note: From Kehrig/Vincent (2017): “Growing productivity without growing wages...,” Fig. 3.
Comment 4: Concentration and labor share declines

- Distribution of S_i does almost nothing
 ADKPV find that the within term plays a small role $\iff \Delta \bar{S} \approx 0$
- Importantly,
Comment 4: Concentration and labor share declines

- Distribution of S_i does almost nothing
 ADKPV find that the within term plays a small role $\Leftrightarrow \Delta \overline{S} \approx 0$

- Importantly,
 \Rightarrow Any change in S^{agg} must come from weights (changing distribution of ω_i)
Comment 4: Concentration and labor share declines

- Distribution of S_i does almost nothing
 ADKPV find that the within term plays a small role $\Leftrightarrow \Delta \overline{S} \approx 0$

- Importantly,
 \Rightarrow Any change in S^{agg} must come from weights (changing distribution of ω_i)
 Then, $S^{agg} \downarrow \Leftrightarrow Cov(S_i, \omega_i) \downarrow$, i.e. more concentration of value added in low labor shares.

Figure 5: Aggr. labor share decline \approx increasing concentration

Note: From Kehrig/Vincent (2017): “Growing productivity without growing wages...,” Fig. 1.
Comment 4: Concentration and labor share declines

- Distribution of S_i does almost nothing
 ADKPV find that the within term plays a small role $\iff \Delta \bar{S} \approx 0$
- Importantly,
 \Rightarrow Any change in S^{agg} must come from weights (changing distribution of ω_i)
- Then, $S^{agg} \downarrow \iff Cov(S_i, \omega_i) \downarrow$, i.e. more concentration of value added in low labor shares.

Figure 5: Aggr. labor share decline \approx increasing concentration

Note: From Kehrig/Vincent (2017): “Growing productivity without growing wages...,” Fig. 1.

\Rightarrow Statements about the changes in concentration and changes in the aggregate labor share are two sides of the same coin.