The End of the American Dream? Inequality and Segregation in US Cities

Alessandra Fogli and Veronica Guerrieri

Social Mobility Conference
Paris, November 2019
Motivation

Data

Model

Quantitative Analysis

Conclusions

Question

- over last 40 years large increase in US income inequality
- simultaneous rise in residential income segregation

Question:

has residential segregation contributed to amplify inequality response to underlying shocks?

This paper:

model of human capital accumulation and local spillovers disciplined with new micro estimates by Chetty-Hendren
Some Literature

- recent use of administrative data: Chetty, Hendren and Katz (2016) and Chetty et Hendren (2018) estimate effects of childhood exposure to better neighborhoods

- we bridge the two literatures and use recent micro estimates to discipline a quantitative GE model

Preview

1. Data: correlation between inequality and segregation

2. Model: GE OGM with human K and residential choice
 - key ingredient: neighborhood spillover
 - peer effects, public schools, social norms, learning …
 - endogenous response of house prices \rightarrow feedback between inequality and segregation

3. Counterfactual: calibrate model to representative US MSA
 - main exercise: MIT shock to skill premium in 1980
 - segregation contributes to 28% of the increase in inequality
Data and Indexes

• data sources:

 1. Census tract data on family income 1980 - 2010
 • geographic unit and sub-unit: metro and tracts (according to Census 2000)
 2. restricted-access geocoded version of National Longitudinal Survey of Youth (NLSY79)

• inequality measure = Gini coefficient

• segregation measure = dissimilarity index
 • it measures how uneven is the distribution of two mutually exclusive groups across geographic subunits
 • groups: rich and poor as above and below the 80th percentile
Inequality and Segregation Across Time

Motivation

Data

Model

Quantitative Analysis

Conclusions
Inequality and Segregation Across Space
Inequality and Segregation Across Space and Time
Intergenerational Mobility Matrices

(a) Low Segregation Metros
(b) High Segregation Metros

High/low: above/below median Dissimilarity p50 in 1980
Set Up

• overlapping generations of agents who live for 2 periods: children and parents

• a parent at time t:
 • earns a wage $w_t \in [\underline{w}, \bar{w}]$
 • has a child with ability $a_t \in [\underline{a}, \bar{a}]$

• assume $\log(a)$ follows an AR1 process with correlation ρ

• $F_t(w, a) =$ joint distribution of w and a at time t
Geography and Housing Market

- two neighborhoods: \(n \in \{A, B\} \)
- each agent live in a house of same size and quality
- \(R^n_t = \) rent in neighborhood \(n \) at time \(t \)
- extreme assumptions on supply:
 - fixed supply \(H \) in neighborhood \(A \);
 - fully elastic supply of houses in neighborhood \(B \);
- marginal cost of construction in \(B = 0 \) \(\Rightarrow R^B_t = 0 \) for all \(t \)
Education and Wage Dynamics

- parents can directly invest in education $e \in \{e_L, e_H\}$
- cost of $e_L = 0$, cost of $e_H = \tau$
- wage of child with ability a_t, education e, growing up in n:

$$w_{t+1} = \Omega(w_t, a_t, e, S_t^n, \epsilon_t)$$

where ϵ_t is iid noise and S_t^n is neighborhood n spillover
- $S_t^n = \text{average human capital in neighborhood } n \text{ at time } t$

$$S_t^n = E[w_{t+1}(w, a, \epsilon)|n_t(w, a) = n]$$
Parents’ Optimization Problem

parent \((w_t, a_t)\) at time \(t\) solves

\[
U(w_t, a_t) = \max_{c_t, e_t, n_t} u(c_t) + E_t[g(w_{t+1})]
\]

subject to

\[
c_t + R_t^{nt} + \tau e_t \leq w_t
\]

\[
w_{t+1} = \Omega(w_t, a_t, e_t, S_t^{nt}, \varepsilon_t)
\]

taking as given \(R_k^t\) and \(S_k^t\) for \(k = A, B\)
Equilibrium

For given $F_0(w, a)$, an equilibrium is a sequence
\[\{ n_t(w, a), e_t(w, a), R_t^A, S_t^A, S_t^B, F_t(w, a) \}_t \]
satisfying

- **agents optimization**: for any t given R_t^A, S_t^A, S_t^B
- **spillover consistency** for any t and $k = A, B$
- **housing market clearing**: for any t
 \[H = \int \int_{n_t(w,a)=A} F_t(w,a) dw da \]
- **wage dynamics**: for any t
 \[w_{t+1}(w, a, \varepsilon) = \Omega(w, a, e_t(w, a), S_t^{nt(w,a)}, \varepsilon) \]
Assumptions

Focus on equilibria with $R_t^A > 0$ for all $t \Rightarrow S_t^A > S_t^B$ for all t

Assumption A1
The function $\Omega(a, e, S, \varepsilon)$ is

- constant in S and a if $e = e_L$
- increasing in S and a if $e = e_H$

Assumption A2
The composite function $g(\Omega(a, e, S, \varepsilon))$ has increasing differences in a and S, a and e, w and S, and w and e
Cut-Off Characterization

\[w_t(n=A, e=e^H) \]
\[\hat{w}_t(a_t) \]
\[n=B, e \geq e^H \]
\[\hat{w}_t(a_t) \]
\[\hat{w}_t(a_t) \]
\[n=B, e \geq e^L \]

\[w_t \]
\[a_t \]
Response to Skill Premium Shock

Ω(\(w, a, e, S^n, \varepsilon\)) = (b + e\(\eta(\beta_0 + \beta_1 S^n_\varepsilon)\))w^\alpha \varepsilon
Extended Model

Two new ingredients:

1. **continuous educational choice**:
 - higher dispersion in investment in human capital

2. **residential preference shock**:
 - this generates more mixing in the initial steady state
Calibration

<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
<th>Model</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gini coefficient</td>
<td>0.366</td>
<td>0.365</td>
<td>Census 1980, family income</td>
</tr>
<tr>
<td>Dissimilarity index</td>
<td>0.318</td>
<td>0.318</td>
<td>Census 1980, family income</td>
</tr>
<tr>
<td>H^R index</td>
<td>0.100</td>
<td>0.094</td>
<td>Census 1980, family income</td>
</tr>
<tr>
<td>B/A average income</td>
<td>0.516</td>
<td>0.459</td>
<td>Census 1980</td>
</tr>
<tr>
<td>$R^A - R^B$ normalized</td>
<td>0.073</td>
<td>0.074</td>
<td>Census 1980</td>
</tr>
<tr>
<td>Rank-rank correlation</td>
<td>0.341</td>
<td>0.330</td>
<td>Chetty et al. (2014)</td>
</tr>
<tr>
<td>Return to spillover 25th p</td>
<td>0.104</td>
<td>0.104</td>
<td>Chetty and Hendren (2018b)</td>
</tr>
<tr>
<td>Return to spillover 75th p</td>
<td>0.064</td>
<td>0.070</td>
<td>Chetty and Hendren (2018b)</td>
</tr>
<tr>
<td>Return to college 1980</td>
<td>0.304</td>
<td>0.306</td>
<td>Valletta (2018)</td>
</tr>
<tr>
<td>Return to college 1990</td>
<td>0.449</td>
<td>0.449</td>
<td>Valletta (2018)</td>
</tr>
</tbody>
</table>
Response to Skill Premium Shock

Panel a: Inequality
- Model data
- Values: 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44

Panel b: Segregation
- Model data
- Values: 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44
Main Counterfactual: Random Re-Location

Motivation

Data

Model

Quantitative Analysis

Conclusions

- Graph showing trend from 1980 to 2010 with model and random relocation lines.
No Spillover and No Spillover Feedback

Panel a: inequality
- Model
- Fixed spillover
- No spillover

Panel b: segregation
- Model
- Fixed spillover
- No spillover
Decomposing the Spillover Feedback

GE effect: as R^A increases, the degree of sorting by income increases
To conclude

- GE model with human capital accumulation, residential choice and local externalities

- local externalities generate segregation by income across neighborhoods

- segregation contributed to roughly 28% of the increase in inequality in response to a skill premium shock

- for the future:
 - use the model to think about differential response of inequality and segregation across metros
 - normative analysis