Impact of the Liquidity Coverage Ratio on Security Prices

Lucas Fuhrer Benjamin Müller† Luzian Steiner

12th Annual Central Bank Workshop on the Microstructure of Financial Markets

Paris, 29 September 2016

† Swiss National Bank and University of Basel. The views expressed in this presentation are those of the authors and do not necessarily represent those of the Swiss National Bank.
Agenda

1. Introduction
2. Background
3. Theoretical considerations
4. Empirical analysis
 - Descriptive statistics
 - Measuring the HQLA-premium
 - Discussion
5. Conclusion
Motivation

- **Introduction of the Basel III Liquidity Coverage Ratio (LCR)**

- LCR requires banks to hold sufficient High Quality Liquid Assets (HQLA) relative to the expected Net Cash Outflows (NCOF)

- **Research Question**: What is the added value for a security which qualifies as HQLA (HQLA-premium)?
What we do...

- Quantify the HQLA-premium for securities denominated in Swiss francs (CHF) making use of a unique quasi-natural experiment
- Theoretical analysis to identify the determinants of the HQLA-premium
...and what we find

- Theoretical analysis: HQLA-premium depends on...
 - ...how strict the LCR is and on the elasticity of the HQLA supply
 - ...monetary policy environment (level of central bank reserves and interest rates)

- Empirical analysis: we find weak evidence for the existence of a HQLA-premium of 4 bps for securities denominated in CHF

- Assessment: estimation of the lower bound HQLA-premium primarily due to the current monetary policy environment
Liquidity regulation under Basel III

Basel III introduces internationally harmonized regulatory frameworks for banks’ liquidity risks

Two concepts:

- **Liquidity Coverage Ratio (LCR)**
- **Net Stable Funding Ratio (NSFR)**
LCR requires banks to hold sufficient unencumbered HQLA relative to the expected NCOF for a 30 days stress scenario

\[LCR = \frac{HQLA}{NCOF} \geq 1 \] \hspace{1cm} (1)

- Implementation: 4-year phase-in starting January 2015
- Publication of detailed requirements for securities to qualify as HQLA by FINMA on 7 July 2014
HQLA consist of Level 1 and Level 2 assets:

- Level 1: central bank (CB) reserves and securities; government and supranational debt with highest credit quality (regulatory haircut: 0%)
- Level 2: Level 1 category securities with lower credit quality; covered bonds and corporate debt (regulatory haircut: 15%; 40% threshold)

Non-HQLA: all other assets (regulatory haircut: 100%)
Former liquidity regulation in Switzerland

- Coverage of short-term liabilities with “liquid assets”
- Definition of liquid assets less strict than definition of HQLA
 - SNB-eligible securities were deemed to be liquid assets
 - No regulatory haircut
- With the announcement of the LCR, formerly liquid assets were classified as either Level 1, Level 2 and non-HQLA (on SNB-website)
- Regulatory value of formerly liquid assets changed as follows

\[
\text{Regulatory value} = \begin{cases}
\text{Level 1} & \text{unchanged} \\
\text{Level 2} & \text{regulatory downgrade} \\
\text{non-HQLA} & \text{regulatory exclusion}
\end{cases}
\]
HQLA-premium

- **Definition:** change in the pricing of a security triggered by the different regulatory treatment under the LCR

- **Measurement:** change in the yield spread between Level 1 and Level 2 (non-HQLA) securities
Hypotheses for empirical analysis

- **Hypothesis 1:** Without LCR, the pricing of HQLA securities and non-HQLA securities differs due to credit and liquidity risk considerations.

- **Hypothesis 2:** If the LCR is a binding constraint and the supply of HQLA securities is not fully elastic, a HQLA-premium is added to the existing yield differentiation between HQLA and non-HQLA. The size of the HQLA-premium depends on how strict the LCR is, whether there is a shortage of HQLA and the degree to which banks can reduce their NCOF.

- **Hypothesis 3:** If the yield on HQLA securities and the interest rate the CB pays on reserves are identical and there are sufficient reserves, the HQLA-premium is zero as banks are indifferent between holding reserves or HQLA securities in order to fulfill the LCR.
Dataset

- CHF- and EUR-denominated SNB-eligible securities (i.e. liquid assets under the former liquidity regulation)

- Observation period 6 January 2014 until 17 December 2014

- Only securities with maturity date \geq 1 February 2015 and no new issuances (fixed dataset)

- In total 1,628 securities
Development of securities denominated in CHF and EUR (const. maturity yield)
Difference-in-Difference (DiD) methodology

- Compare yield changes of CHF-denominated securities (treated group) with EUR-denominated securities (non-treated group)

- Use the fact that LCR was announced three months later in EU

- Dependent variable: difference between pre- and post-period average for each ISIN
 - SE do not suffer from serial correlation Bertrand et al. (QJE, 2004)
 - Number of observations = Number of ISINs

- Independent variables:
 - Dummy variables for the treated and non-treated groups, ...
 - HQLA attributes as well as interaction terms (HQLA attributes of the treated group)...
 - while controlling for the yield curves.
DiD methodology (cont’d)

- Treatment and control group...
 - include fairly homogeneous securities (fulfill SNB-eligibility criteria)
 - behave similar without treatment (parallel trend assumption; see e.g. placebo regression results)

- HQLA classification was publicly available

- Announcement of LCR details “exogenous” (FINMA/SNB)

⇒ Quasi-natural experiment (very nice and clean set-up)
DiD regression results

Table 2: Difference-in-difference regression results (coefficient are in percentage points)

<table>
<thead>
<tr>
<th></th>
<th>(1) Baseline</th>
<th>(2) Liquidity</th>
<th>(3) CH-issuer</th>
<th>(4) LiqV</th>
<th>(5) Placebo</th>
<th>(6) Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF x non-HQLA</td>
<td>0.0387**</td>
<td>0.0436***</td>
<td>0.0446***</td>
<td>0.0342**</td>
<td>0.00527</td>
<td>0.0130</td>
</tr>
<tr>
<td></td>
<td>(2.53)</td>
<td>(2.83)</td>
<td>(2.53)</td>
<td>(2.22)</td>
<td>(0.66)</td>
<td>(0.90)</td>
</tr>
<tr>
<td>non-HQLA</td>
<td>-0.0576***</td>
<td>-0.0576***</td>
<td>-0.0576***</td>
<td>-0.0559***</td>
<td>0.00372</td>
<td>-0.0338***</td>
</tr>
<tr>
<td></td>
<td>(-4.52)</td>
<td>(-4.51)</td>
<td>(-4.51)</td>
<td>(-4.38)</td>
<td>(0.95)</td>
<td>(-2.92)</td>
</tr>
<tr>
<td>CHF</td>
<td>0.150***</td>
<td>0.155***</td>
<td>0.183***</td>
<td>0.159***</td>
<td>0.0167*</td>
<td>0.0902***</td>
</tr>
<tr>
<td></td>
<td>(9.31)</td>
<td>(9.86)</td>
<td>(7.51)</td>
<td>(9.71)</td>
<td>(1.84)</td>
<td>(8.18)</td>
</tr>
<tr>
<td>CHF x Level 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0167**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.07)</td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.0307***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-7.19)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0678***</td>
<td>-0.0678***</td>
<td>-0.0678***</td>
<td>-0.0739***</td>
<td>-0.0444***</td>
<td>-0.0220***</td>
</tr>
<tr>
<td></td>
<td>(-5.89)</td>
<td>(-5.88)</td>
<td>(-5.87)</td>
<td>(-6.29)</td>
<td>(-11.14)</td>
<td>(-3.27)</td>
</tr>
<tr>
<td>Observations</td>
<td>822</td>
<td>735</td>
<td>589</td>
<td>822</td>
<td>822</td>
<td>1660</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.857</td>
<td>0.884</td>
<td>0.858</td>
<td>0.852</td>
<td>0.471</td>
<td>0.863</td>
</tr>
<tr>
<td>Duration (CHF/EUR)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Duration2 (CHF/EUR)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

t statistics in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Robustness checks

- Placebo regressions
- Modelling of the yield curve (slope, curvature)
- Different sample periods
- DiD with constant maturities
- DiD with daily observations but time and ISIN fixed effects
- CHF securities only, as well as VIX as control group
- Controlling for illiquid securities
- ...

⇒ No discrepancies from our baseline results
Discussion of results

- Evidence for a HQLA-premium of up to 4 bp

- Empirical findings are consistent with Hypotheses 1, 2 and 3
 - Low interest rate environment
 - Large excess reserves due to FX interventions (creation of HQLA; CHF 500 bn in 2016 versus about CHF 5 bn in 2007)

- Methodological issues
 - Exogeneity of policy announcement (underestimation)
 - Short post-period sample (underestimation)
Conclusion

- We quantify the impact of the LCR on security prices

- Empirical analysis: evidence for a HQLA-premium of up to 4 bps for securities denominated in CHF

- Theoretical analysis: HQLA-premium depends on whether the LCR is binding, on how strict the LCR is and on the monetary policy environment

- Various implications:
 - Monetary policy implementation
 - Bond markets (issuance conditions)
 - Central bank collateral policies
 - Financial stability