Exploratory Trading
Theory and Evidence

Adam Clark-Joseph
University of Illinois at Urbana-Champaign

November 8, 2013
The views expressed in this presentation are my own and do not constitute an official position of the U.S. Commodity Futures Trading Commission, its Commissioners or staff.
What do high-frequency traders (HFTs) actually do?

I.e., how/why do their strategies work?
Difficult to analyze HFTs’ effects on markets without first understanding this

Some HFTs basically act like market-makers

What are the other HFTs doing?

If you don’t provide liquidity/immediacy, bear systematic risk, or look at something besides market data, how do you make money?
Concrete Empirical Details

- Empirical context: E-mini S&P 500 futures market
- The E-mini market operates as an order-driven market
 - Order that initiates a transaction called the “aggressive” order
 - “Aggressive” = shorthand for “transaction-initiating”
- How do HFTs manage to profit from their aggressive orders?
- I identify 30 HFTs in the E-mini market (more details shortly)
 - Earn a combined avg of ≈ 1.51 million per trading day
 - Participate in $\approx 46.7\%$ of total E-mini trading volume
Profits on Aggressive Orders

- As a group, HFTs earn 41% of their profits on aggressive orders.
- Individually, eight HFTs (“A-HFTs”) profit on aggressive orders.
 - A-HFTs: 52.7% of HFT profits, 67.8% of HFT aggressive volume.
- *How do the A-HFTs profit from their aggressive orders?*
- Clue: all eight A-HFTs lose money on their smallest aggressive orders.
Basic strategy:

- Learn about supply elasticity using small “exploratory” orders
- Trade in front of foreseeable demand when supply is inelastic

In the E-mini market, demand is extremely predictable

- *On average*, trading in front of predictable demand is not profitable

Exploratory trading helps to identify when trading in front will be profitable
Why Explore At All?

- Looking at the orderbook isn't enough
 - The (static) levels of resting depth in the orderbook are not very informative
- Need info about the *dynamic* state of the orderbook
 - Specifically, how resting depth responds to the arrival of aggressive orders
Why Explore, Yourself?

- Looking at the response to other traders’ orders isn’t as informative
 - Endogeneity between aggressive orders and orderbook activity
 1. \([\text{AggressiveOrder}] \rightarrow \text{causes} \rightarrow [\text{OrderbookActivity}]\)
 2. \([\text{OtherEvent}] \rightarrow \text{causes} \rightarrow [\text{AggressiveOrder}] \rightarrow \text{causes} \rightarrow [\text{OrderbookActivity}]\)
- My exploratory orders are placed for exogenous reasons
- Anonymity: this exogeneity is private information
Market response to an A-HFT’s small aggr orders provides information that is:

- Valuable
 - Explains significant component of that A-HFT’s performance
 - I.e., incidence, earnings of larger aggr orders placed after

- Private
 - Does not explain other traders’ performance

I’ll call the private part of the market-response signal, “exploratory information”
Description of the Data

- All E-mini “business messages” from 9/17/2010 through 11/1/2010
- Transactions, as well as order entries, cancellations, modifications
 - Price, quantity, order ID, millisecond time-stamp, etc.
 - Account ID (!)
Defining “HFT” in the E-Mini Market

- Minimal accumulation of directional positions
- High turnover in inventory
- High levels of trading activity
 - Rank accounts that meet the first two criteria, using total trading volume
 - “HFTs”: top 30 of these accounts by total volume
 - Results unchanged using (e.g.) top 15, 45, or 60
HFTs’ Aggressive Order Profitability

- Estimate aggressive order profits via subsequent price changes
 - Expected profit equals favorable price change, minus:
 - Half the bid-ask spread ($6.25)
 - Trading/clearing fees (≈ 0.12 for HFTs)
 - Eight HFTs clear the $6.25 + fees$ hurdle
 - These 8 are the “A-HFTs”
 - A-HFT aggressive order avg. gross earnings: $7.65/contract$
Empirical Predictions (Recall)

- Market response to an A-HFT’s small aggr orders provides info that is both valuable and private, i.e.,
 - Explains significant component of that A-HFT’s performance
 - Does not explain other traders’ performance
- Make “small” precise by specifying a cutoff, \bar{q}, for order-size
- Also need to make precise:
 - “Market response”
 - “Explaining performance”
Market Response Measure

Use change in resting depth, but just its *direction* (for simplicity)

- Define indicator variable Ω for a given \bar{q} by

$$
\Omega_k = \begin{cases}
1 & \text{if } DC (k; \text{any}, \bar{q}) > 0 \\
0 & \text{otherwise}
\end{cases}
$$

- $DC (k; \text{any}, \bar{q})$: depletion after last small aggr order by anyone
- Define Ω^A likewise, but use depth depletion after last small aggr order *placed by the specified A-HFT*
- Ω should contain all the public info in Ω^A
Explaining Aggressive Order Performance

- Forecast y_k, cumulative price change after aggressive order k:

$$y_k = \gamma_1 \Delta d_{k-1}^1 + \ldots + \gamma_6 \Delta d_{k-1}^6$$
$$+ \gamma_7 \text{sign}_{k-1} + \ldots + \gamma_{10} \text{sign}_{k-4}$$
$$+ \gamma_{11} q_{k-1} + \ldots + \gamma_{14} q_{k-4} + \epsilon_k$$
$$: = z_{k-1} \Gamma + \epsilon_k$$

- Δd_{k-1}^r: change in orderbook depth at price level r
 - $r = 3$ is best bid, $r = 4$ is best ask

- $\text{sign}_l = \text{sign of aggressive order } l$

- $q_l = \text{signed quantity of aggressive order } l$
Empirical Strategy: Overview

- Augment the baseline regression \(y_k = z_{k-1} \Gamma + \varepsilon_k \) using:
 - 1) Market response info from last small aggr order by anybody
 - i.e., partition just using \(\Omega \)
 - 2) Also using market response info from last small aggr order placed by a specified A-HFT
 - i.e., partition using \(\Omega \) and \(\Omega^A \)

- Find the additional component of performance on larger aggressive orders explained by (2) relative to (1)
 - This is the performance explained by private info in \(\Omega^A \)
 - Compare this between the specified A-HFT and everyone else
Results: Additional Explained Performance
A-HFT and Everyone Else

Average Additional Performance Explained (95% Confidence Intervals)

- A-HFT
- Everyone Else

Cents per Contract

q-Bar

0 5 10 15 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Adam Clark-Joseph Exploratory Trading
Difference in Additional Explained Performance
A-HFT vs. Everyone Else

[A-HFT Addt'l Explained] - [Everyone Else Addt'l Explained] (95% CIs)
Bootstrap [sic] Simulations

Bootstrapping with Trading Robots

- Goal: assess gains from explo info, including avoided bad aggressive orders
- Construct feasible trading strategies based on baseline regression
 - Place aggressive order iff $|\hat{y}_k|$, $DC(k; any)$ large enough, and
 - 1) Nothing else
 - 2) $DC(k; AHFT)$ above 50th percentile
 - 3) $DC(k; AHFT)$ above 99th percentile
- Simulate performance using market data
Broader Opportunities for Exploratory Gains

- A-HFTs’ *small* aggressive orders need not be the sole source of exploratory information
- Repeat the earlier analysis for $\bar{q} = 25, \ldots, 90$
 - Find exploratory effects larger than those for $\bar{q} = 1, 5, \ldots, 20$
 - The A-HFTs’ added orders past $\bar{q} = 20$ are directly profitable
- Natural economies of scale for the A-HFTs
 - Potential barrier to entry
Broader Opportunities for Exploratory Gains

[A-HFT Addt'l Explained] - [Everyone Else Addt'l Explained] (95% Conf. Bands)
Conclusion: Market Quality Implications

- Most important point: A-HFTs engage in costly information acquisition via exploratory trading
 - I.e., not just reacting to public information first
 - Unique contribution to the price-discovery process (?)

- Our exploration continues...
Simplified Model

- Order-driven market, two periods $t = 1, 2$
- Three possible states for future aggressive order flow, φ:
 - $\varphi \in \{-1, 0, +1\}$
- Two possible liquidity states, Λ:
 - Accommodating ($\Lambda = A$) or unaccommodating ($\Lambda = U$)
- Liquidity and future aggressive order flow determine price-change after period 2, y:
 - Unaccommodating ($\Lambda = U$): $y = \varphi$
 - Accommodating ($\Lambda = A$): $y = 0$, regardless of the value of φ
Model Timeline

- Consider a single trader ("HFT")
 - Places only aggressive orders, size \(\leq N \)
 - Pays constant trading costs \(\alpha \in (0.5, 1) \) per contract

- \(t = 1 \)
 - HFT can submit an aggressive order (or not)
 - If HFT submits an aggressive order, he learns liquidity state

- \(t = 2 \)
 - HFT observes signal of future aggressive order flow \(\varphi \)
 - HFT can submit an aggressive order (or not)

- HFT’s profits on the aggressive order placed in period \(t \):

\[
\pi_t = yq_t - \alpha |q_t|
\]
Incidence of A-HFTs’ Large Orders

- Additional prediction: exploratory information will help to explain the incidence of A-HFTs’ large orders
 - Expect signed order-size to be an increasing function of forecast price-change
 - Predict stronger response for an A-HFT’s order-size when $\Omega^A = 1$ than when $\Omega^A = 0$

- Regress A-HFTs’ signed order-size on public-info price-change forecast:
 $$ q_k = \beta_0 \left(1 - \Omega^A_k \right) \hat{y}_k + \beta_1 \Omega^A_k \hat{y}_k + \varepsilon_k $$
Incidence of A-HFTs’ Large Orders

Incidence Coefficient Estimates (95% CIs)

- beta_0 (Elastic)
- beta_1 (Inelastic)

Contracts per Forecast Dollar Change

q-Bar

Adam Clark-Joseph Exploratory Trading