Convertible Bonds and Bank Risk-taking

Natalya Martynova¹ Enrico Perotti ²

Bailouts, bail-in, and financial stability
Paris, November 28 2014

¹De Nederlandsche Bank
²University of Amsterdam, CEPR
Motivation

- In the credit boom, high leverage drove excess risk shifting.
- Basel III calls for more bank capital in order to
 - force more risk absorption (bail in at default)
 - reduce risk shifting (early conversion as going concern)
- Contingent capital has been proposed as an alternative to equity. CoCo (convertible bonds) is a debt instrument which automatically converts into equity if the bank is doing poorly.
- While not adopted under Basel III, CoCos are admitted as a component of additional capital buffers (EBA, Switzerland).
Optimal design for going-concern contingent capital to prevent endogenous risk shifting.

Main results:
- An appropriate trigger reduces risk shifting by converting in high leverage states, when risk incentives are higher.
- There is an optimal amount of contingent capital, beyond which incentives deteriorate.
- A larger amount of contingent capital is required to substitute pure equity. The ratio depends critically on trigger efficiency.
- CoCos may be safer and thus cheaper than a conventional bond.
- A market trigger produces more frequent conversion (type I error), a regulatory trigger is subject to forbearance (type II error).
Plan of the Presentation

1 Motivation

2 Model set up
 • Optimal CoCo design

3 Extensions
 • Private choice to issue CoCos
 • CoCo versus Conventional Bonds
 • CoCo versus Equity
 • Market versus Regulatory Trigger

4 Conclusion
Model

- Three dates: $t = 0, 1, 2$
- Everybody is risk-neutral, no discounting
- Active agents: the banker
- Passive agents: shareholders, depositors
The value of assets at $t = 0$ is $V_0 = 1$

At $t = 1$, exogenous shock $\zeta \sim U[-\delta, \delta]$ changes interim assets value to $V_1 = 1 + \zeta$, denoted by v

Realization of v is initially observed only by the banker

The banker owns all bank shares and chooses its lending strategy

The asset value v may be revealed with probability φ.
Depending on the risk choice at \(t = 1 \), the asset value at \(t = 2 \) is:

- **safe** asset choice has a gross rate of return 1 in this case the bank never defaults for \(\forall V_1 : V_1 - D \geq 0 \)
- **risky** asset has a payoff \(v + \varepsilon \), where \(\varepsilon \) follows \(F(\varepsilon) \) with pdf \(f(\varepsilon) \), mean \(-z\) and standard deviation \(\sigma \).
- Thus the risky choice has negative NPV.
Agents:

- The banker chooses whether to control assets risk:

\[
\max_e e \cdot (v - D) + (1 - e) \cdot \text{Prob}(V_2 > D) \cdot E(V_2 - D | V_2 > D)
\]

Safe return

Banker's return from risky asset

s.t. \(e = \{0, 1\} \)

- intuitively, risk incentives are suboptimal under high leverage, as the banker benefits from risk-shifting
Conversion terms

- An amount C of Coco bonds substitute an equal amount of deposits D
- CoCos are converted into equity at a fixed conversion ratio when the asset value falls below the trigger asset value v_T
- CoCo holders break even if $v_T = v$, else they do not get full face value.
- Shareholders are fully wiped out only when equity value is zero after conversion.
Game structure

- **t=0**
 - Shareholder invests 1-D raising D in deposits and CoCos

- **t=1**
 - Banker receives a precise signal about interim asset value.
 - Banker chooses risk.
 - Information is revealed with probability φ.
 - Conversion may occur.

- **t=2**
 - Value of assets is realized.
 - Payoffs are distributed.
Lemma

CoCos improves risk choice for banks with $v^*_C \leq v \leq v_T$. Banks with extremely high leverage $v < v^*_C$ do not change their risk choice. Banks with $v > v_T$ are not affected.

Figure: Risk incentives
Lemma

*CoCos improves risk choice for banks with $v^*_C \leq v \leq v^*$. Banks with extremely high leverage $v < v^*_C$ do not change their risk choice. Banks with $v > v^*$ are not affected.*

- The optimal trigger asset value v_T equal to v^*.

Figure: Risk incentives with restricted trigger price $v_T = v^*$
For bank with low interim asset values $v \leq v^*$, conversion has two effects: a direct equity dilution effect and a CoCo dilution effect.

- Equity dilution effect decreases the upside gains and thus reduces the benefits from risk-shifting. This is strongest for highly levered banks.
- CoCo dilution effect: conversion leads to a value transfer from CoCo to equity due to the fixed conversion ratio. This may encourage risk shifting.
Model: Equity and CoCo dilution effects

Figure: Equity and CoCo dilution effects
Proposition

Risk control improves with the amount of CoCos up to a threshold C^*, and then declines. There exists an optimal amount of CoCos.

$$\Delta'_C(v + C^*)(C^* + v_T - D) - \Delta(v + C^*) + z = 0$$
The banker never chooses to issue CoCos instead of deposits, since CoCos are not insured and so have a higher funding cost.

Figure: Price of CoCos as a percentage of face value
Are CoCos cheaper than conventional bonds?

- There are two main effects:
 - CoCo holders face less protection when converted than traditional debt holders.
 - CoCos induce safer asset choices.
- The price of CoCos may be higher than for a traditional bond, when asset risk and trigger precision are high and the amount of CoCos is chosen optimally.
CoCo versus Equity

Proposition

The effect of CoCos on risk is weaker than equity, unless the trigger is perfectly informative ($\varphi = 1$).

Figure: Substitution ratio between CoCos and equity for trigger price v^*

Martynova, Perotti
Convertible Bonds and Bank Risk-taking
We now restate the model to compare market and book equity triggers.

- Bankers prefer to underreport leverage, so regulatory intervention is needed to force reporting high book leverage.

- Market prices and regulatory assessments are equally noisy indicators of asset values.

- A market price triggers automatic conversion while an accounting trigger depends on regulatory choice.
Assumptions:

- at $t = 1$, banker chooses risk as before
- at $t = 1$, the regulator observes a noisy signal of the interim asset value $\tilde{a} = v + \tilde{r}$ (\tilde{r} has zero mean and st dev σ_r)
- at $t = 1$, the market price is a noisy measure of true asset value $\tilde{p} = v + \tilde{m}$ (\tilde{m} has zero mean and st dev σ_m)
- conversion at $t = 1$ causes a cost to the regulator k (loss of reputation)
- in case of bank failure at $t = 2$ (when $V_2 < D - C$), a larger social cost K is incurred.
Market versus Regulatory Trigger

Figure: Conversion under market and regulatory triggers

Figure: Risk incentives under market and regulatory triggers
A market trigger produces more frequent conversion, including some states when it is not necessary (type 1 error). Conversely, a regulatory trigger will not be activated for banks with leverage just below v^* (type 2 error), and will lead to more risk taking for banks around this range. The net effect of a market trigger may be more risk reduction (and more equity in general) but some unnecessary conversion.
Private choice to issue CoCos
CoCo versus Conventional Bonds
CoCo versus Equity
Market versus Regulatory Trigger

Literature on regulatory vs market trigger

- Note: all existing theoretical work assumes exogenous risk
- Squam Lake Report (2009): Conversion should be triggered when regulator decides that there is a financial crisis.
- McDonald (2011): Dual trigger - both a market price and a financial index. This ensures recapitalization in crisis times, else allows bank default with bail in.
- Hart and Zingales (2010): The trigger should be based on CDS prices, upon which the regulator can dictate conversion.
Properly designed CoCos can induce risk reduction.

There exists an optimal CoCo amount that minimizes risk. The trade-off is between equity dilution and CoCos dilution effect.

The banker never willingly chooses CoCos over deposits.

When asset risk and trigger precision are high, CoCos may be safer and thus cheaper than traditional bonds.

A higher amount of contingent capital is required to provide the same effort incentives as equity.

A dual trigger may be optimal, to filter out market manipulation while challenging forbearance.