Discussion of “No Firm Is an Island? How Industry Conditions Shape Firms’ Aggregate Expectations”
by Philippe Andrade, Olivier Coibion, Erwan Gautier, and Yuriy Gorodnichenko

Mirko Wiederholt
Sciences Po and CEPR

Heterogeneous Agents or Heterogeneous Information:
Which Route for Monetary Policy?
Banque de France
December 5-6, 2019
Important Question in Macro

- Why does the price level (or some other aggregate of firm choices) react slowly to shocks?
 - adjustment costs (Calvo, Rotemberg, menu cost)
The profit-maximizing price of firm i in period t:

$$p_{it}^* = p_{it}^A + p_{it}^l$$

The aggregate component, p_{it}^A, and the firm-specific component, p_{it}^l, follow independent, Gaussian AR(1) processes.

The actual price set by firm i in period t:

$$p_{it} = E[p_{it}^* | \mathcal{I}_{it}]$$

Optimal signal under rational inattention with the independence assumption:

$$s_{it} = \left(\begin{array}{c} p_{it}^A + \psi_{it}^A \\ p_{it}^l + \psi_{it}^l \end{array} \right)$$

The gaps $(p_{it}^* - p_{it}^A)$ and $(p_{it}^* - p_{it}^l)$ follow AR(1) processes. Size and persistence of each gap is decreasing in attention. Attention is increasing in importance and volatility.
The empirical model:

$$\pi_{jt} = \mu_j + A_j(L) \varepsilon_t + B_j(L) \varepsilon_{jt}$$

π_{jt} is inflation in sector j in period t. $A_j(L)$ is the lag-polynomial of an MA(q) process. $B_j(L)$ is the lag-polynomial of an AR(p) process.

This dynamic factor model of sectoral inflation is estimated on US data using Bayesian methods.
Figure 1: The Cross-Section of the Normalized Impulse Responses of Sectoral Price Indexes

Note: Figure 1 shows the posterior density of the normalized impulse responses of sectoral price indexes to sector-specific shocks (top panel) and to aggregate shocks (bottom panel). The posterior density takes into account variation across sectors and parameter uncertainty. The results reported in Figure 1 are discussed in Section 4.
The Speed of Response to Sector-Specific Shocks

The Speed of Response to Aggregate Shocks

Note: Figure 2 shows the posterior density of the speed of response of sectoral price indexes to sector-specific shocks (top panel) and to aggregate shocks (bottom panel). The posterior density takes into account variation across sectors and parameter uncertainty. The speed of response is defined in Section 4.
The first regression:

\[
\sum_{k=0}^h E_{t+k}^i [\pi_{t+k+1}^i] = \alpha_i + \beta_h \pi_t + \gamma_h \pi_t^j + \varepsilon_t^i
\]
FIRMS’ EXPECTATIONS OF OWN PRICES AND OUTPUT

- Reaction to **aggregate** and **industry** specific variables

 Own price expectation
 \[
 \Delta E_t^i \pi_{t+h}^i = \alpha_i + \beta_h \pi_t + \gamma_h \pi_t^j + \varepsilon_t^i
 \]

 Own output expectation
 \[
 \Delta E_t^i x_{t+h}^i = \alpha_i + \beta_h x_t + \gamma_h x_t^j + \varepsilon_t^i
 \]

Prices react more rapidly to industry shocks (Boivin et al, 2009, Mackowiak et al. 2008)
Fascinating result.

For comparison, it would be great to estimate the full-information rational expectations (FIRE) response of the LHS variable, as in Coibion and Gorodnichenko (2012).

Alternatively, one could report the outcome of a reverse engineering exercise. What would the process for π^i_t have to be for the estimated responses of $\sum_{k=0}^{h} E_{t+k}^i [\pi^i_{t+k+1}]$ to equal the FIRE responses?
The second regression for inflation expectations:

\[\sum_{k=0}^{h} E_{t+k}^{i} [\pi_{t+k+1}] = \alpha_{i} + \beta_{h} \pi_{t} + \gamma_{h} \pi_{t}^{j} + \varepsilon_{t}^{i} \]
FIRMS’ EXPECTATIONS OF AGGREGATE INFLATION

- Reaction to aggregate and industry (4 digits) specific inflation

\[\sum_{k=0}^{h} E_{t+k} \pi_{t+k+1} = \alpha_i + \beta h \pi_t + \gamma h \pi_t^j + \varepsilon_t^i \]
Suggestion II

- Interesting result because it is telling us something about which variables firms are looking at.

- Seems consistent with theoretical models in Lucas (1972), Angeletos-La’O (2009), Lorenzoni (2009), Maćkowiak-Wiederholt (2009) Section 8.2.

- In all these papers, agents learn about macro from observations of micro, but details differ across papers. It would be interesting to have a detailed discussion.
Let us return to the first regression:

$$\sum_{k=0}^{h} E_{t+k}^i [\pi_{t+k+1}^i] = \alpha_i + \beta_h \pi_t + \gamma_h \pi_t^j + \epsilon_t^i$$

From studying how estimated coefficients vary across sectors with \(\sigma (\pi_t^j)\), one could potentially learn something about the shape of the attention cost function.
Great paper!