Production Networks, Nominal Rigidities and the Propagation of Shocks

Ernesto Pasten
Central Bank of Chile
and Toulouse School of Economics

Raphael Schoenle
Brandeis

Michael Weber
Chicago Booth

December 17th, 2015
Motivation 1/2

Fact 1: Economic sectors are heterogeneous in their input-output relationships with other sectors within the 'production network'.

Fact 2: Economic sectors are heterogeneous in their degree of price rigidities.

This paper studies the interaction of these two forms of heterogeneity on the propagation of shocks.

But which shocks?
Motivation

- Fact 1: Economic sectors are heterogeneous in their input-output relationships with other sectors within the 'production network'.

- Fact 2: Economic sectors are heterogeneous in their degree of price rigidities.

- This paper studies the interaction of these two forms of heterogeneity on the propagation of shocks.

- But which shocks?
Motivation

- Fact 1: Economic sectors are heterogeneous in their input-output relationships with other sectors within the 'production network'.

- Fact 2: Economic sectors are heterogeneous in their degree of price rigidities.

- This paper studies the interaction of these two forms of heterogeneity on the propagation of shocks.

- But which shocks?
Literature

- **Monetary policy shocks**: Basu (AER 1996), Carvalho (Frontiers, 2006), Nakamura and Steinsson (QJE, 2010), Carvalho and Lee (mimeo, 2011)

Setup

Households’ utility:

\[
\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma} - 1}{1 - \sigma} - \sum_{k=1}^{K} g_k \frac{L_{kt}^{1+\varphi}}{1 + \varphi} \right) \quad \text{s.t.} \quad BC
\]

where

\[
C_t \equiv \left[\sum_{k=1}^{K} \omega_c^{k} C_k^{1-\eta} \right]^{\eta/(\eta-1)}
\]

\[
C_{kt} \equiv \left[n_k^{-1/\theta} \int_{\mathbb{S}_k} C_k^{1-\theta} d\mu \right]^{\theta/(\theta-1)}
\]
Setup

Firms’ production function:

\[Y_{kjt} = A_{kt} L_{kjt}^{1-\delta} Z_{kjt}^{\delta}, \]

where

\[Z_{kjt} \equiv \left[\sum_{r=1}^{K} \omega_{kr} Z_{kjt} (r)^{1-\frac{1}{\eta}} \right]^{\frac{\eta}{\eta-1}}, \]

\[Z_{kjt} (r) \equiv \left[n_r^{-1/\theta} \int_{\mathcal{S}_r} Z_{kjt} (r, j')^{1-\frac{1}{\theta}} \, dj' \right]^{\frac{\theta}{\theta-1}}. \]

Benchmark model: \(\delta = 0, \) so \(\omega_{ck} = n_k. \)
Setup

Demands for sector \(k \), firm \(k, j \):

<table>
<thead>
<tr>
<th>from households:</th>
<th>from some firm (k'j'):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{kt} = \omega_{ck} \left(\frac{P_{kt}}{P_{ct}} \right)^{-\eta} C_t),</td>
<td>(Z_{k'j't} (k) = \omega_{k'k} \left(\frac{P_{kt}}{P_{k't}} \right)^{-\eta} Z_{k'j't}),</td>
</tr>
<tr>
<td>(C_{kjt} = \frac{1}{n_k} \left(\frac{P_{kjt}}{P_{kt}} \right)^{-\theta} C_{kt}).</td>
<td>(Z_{k'j't} (k, j) = \frac{1}{n_k} \left(\frac{P_{kjt}}{P_{kt}} \right)^{-\theta} Z_{k'j't} (k)).</td>
</tr>
</tbody>
</table>

where price aggregators are:

<table>
<thead>
<tr>
<th>for households:</th>
<th>for other firms:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{ct} = \left[\sum_{r=1}^{K} \omega_{cr} P_{rt}^{1-\eta} \right]^{\frac{1}{1-\eta}}),</td>
<td>(P_{k't} = \left[\sum_{r=1}^{K} \omega_{k'r} P_{rt}^{1-\eta} \right]^{\frac{1}{1-\eta}}),</td>
</tr>
<tr>
<td>(P_{kt} = \left[\frac{1}{n_k} \int_{\mathbb{S}k} P{rjt}^{1-\theta} dj \right]^{\frac{1}{1-\theta}}).</td>
<td>(P_{kt} = \left[\frac{1}{n_k} \int_{\mathbb{S}k} P{kjt}^{1-\theta} dj \right]^{\frac{1}{1-\theta}}).</td>
</tr>
</tbody>
</table>
Setup

Equilibrium conditions:

\[Y_{kjt} = C_{kjt} + \sum_{k' = 1}^{K} \int_{\Omega_{k'}} Z_{k'j't}(k, j) \, dj', \]

\[Y_t = C_t + Z_t \]

+ the usual equations:

- sectoral Calvo pricing,
- sectoral labor supply,
- production efficiency condition,
- Taylor rule, and
- standard equilibrium conditions.
The log-linear system

We solve for value-added output c_t and sectoral prices $\{p_{kt}\}_{k=1}^{K}$.

- The IS+ Taylor rule:
 $$\sigma E_t c_{t+1} - (\sigma + \phi_c) c_t + E_t p_{t+1}^c - (1 + \phi_\pi) p_t^c + \phi_\pi p_{t-1}^c = \mu_t$$

- K equations for sectoral prices:
 $$\beta E_t p_{kt} - (1 + \beta) p_{kt} + p_{kt-1} = \kappa_k (p_t - mc_{kt})$$

where $\kappa_k (1 - \alpha_k) (1 - \beta \alpha_k) / \alpha_k$.
The role of I/O linkages: The Channels

Aggregate prices:

\[p^c_t = \sum_{k=1}^{K} \omega_{ck} p_{kt}, \]

\[p^k_t = \sum_{k'=1}^{K} \omega_{kk'} p_{k't} \]

Sectoral participation in total production (note: \(\psi = Z/Y \)):

\[n_k = (1 - \psi) \omega_{ck} + \psi \sum_{k'=1}^{K} n_{k'} \omega_{k'k} \zeta_k \] for all \(k \).
The role of I/O likages: The effects

- Direct effect on marginal costs:

\[mc_{kt} = (1 - \delta) w_{kt} + \delta p^k_t - a_{kt} \]

so lower \(p_{k't} \) implies lower \(mc_{kt} \) as \(\omega_{kk} \) is larger.

- Effect on sectoral wages:

\[w_{kt} = \frac{1}{1 + \delta \phi} \left[\varphi (y_{kt} - a_{kt}) + \sigma c_t + \delta \phi \left(p^k_t - p^c_t \right) \right] + p^c_t \]

so lower \(p_{k't} \) implies lower \(w_{kt} \) when as \(\omega_{kk'} > \omega_{ck'} \) is larger.
Effect on sectoral demand:

\[y_{kt} = y_t - \eta \left(p_{kt} - \left((1 - \psi) p_t^c - \psi \tilde{p}_t \right) \right) \]

so lower \(p_{k't} \) implies smaller \(y_k \) relative to \(y_t \) as \(\zeta_{k'} > \omega_{ck'} \) is larger since

\[\tilde{p}_t = \sum_{k=1}^{K} \zeta_k p_{kt} \]
The role of I/O likages: The effects 3/3

- Effect on total demand:

\[y_t = (1 - \psi) c_t + \psi z_t \]

such that

\[y_t = c_t + \psi \left[\Gamma_c (\delta) c_t - \Gamma_a \sum_{k'=1}^{K} n_{k'} a_{k't} - \Gamma_p (\tilde{p}_t - p_t^c) \right] \]

so lower \(p_{k't} \) implies higher \(z_t \), so higher \(y_t \) as \(\zeta_{k'} > \omega_{ck'} \) is larger.
The role of heterogeneous price rigidity

Sectoral prices:

\[\beta \mathbb{E}_t [p_{kt+1}] - (1 + \beta) p_{kt} + p_{kt-1} = \kappa_k (p_{kt} - mc_{kt}) \]

Consumption aggregate prices:

\[\beta \mathbb{E}_t [p^c_{t+1}] - (1 + \beta) p^c_t + p^c_{t-1} = \sum_{k=1}^K \kappa_k \omega_{ck} (p_{kt} - mc_{kt}) \equiv x_t \]

where

\[\kappa_k = \frac{(1 - \alpha_k)(1 - \beta \alpha_k)}{\alpha_k} \]
Monetary shocks: Building intuition

\[-x_t = \Lambda_0 (\delta) \sum_{k=1}^{K} (\bar{\kappa} - \kappa_k) \omega_{ck} p_{kt} + \delta \Lambda_1 (\delta) \sum_{k=1}^{K} \kappa_k \omega_{ck} (p_t^k - p_t^c) + \psi \Lambda_2 (\delta) \bar{\kappa} \sum_{k=1}^{K} (\zeta_k - \omega_{ck}) p_{kt} + \Lambda_3 (\delta) \bar{\kappa} c_t \]

Monetary non-neutrality is stronger when

- Production needs intermediate inputs (Basu, 1995)
- Prices have heterogeneous price rigidities (Carvalho, 2006)
- Stickiest sectors are large suppliers of the most flexible sectors.
- Stickiest sectors are large suppliers in the economy.
Monetary shocks: Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = .9975$</td>
<td>Monthly disc factor to get 3% annual riskless int. rate</td>
</tr>
<tr>
<td>$\sigma = 1$</td>
<td>Relative risk aversion</td>
</tr>
<tr>
<td>$\varphi = 2$</td>
<td>Inverse of Frisch elasticity</td>
</tr>
<tr>
<td>$\delta = .5$</td>
<td>Average int inputs share in production function</td>
</tr>
<tr>
<td>$\eta = 2$</td>
<td>Elasticity of substitution across sectors</td>
</tr>
<tr>
<td>$\theta = 6$</td>
<td>Elasticity of substitution across firms within sectors</td>
</tr>
<tr>
<td>$\phi_{\pi} = 1.24$</td>
<td>Responsiveness of monetary policy to consumption infl.</td>
</tr>
<tr>
<td>$\phi_c = .33/12$</td>
<td>Responsiveness of monetary policy to GDP variations</td>
</tr>
<tr>
<td>$\rho = .9$</td>
<td>Persistence of shocks (the same to all of them)</td>
</tr>
</tbody>
</table>

Monetary shock: IRF for $\mu_t = 1$
Monetary shocks: Micro data

- I-O data: From the Input-Output tables (BEA) which reports the input share industry by industry.

- Prices data: From microdata underlying the PPI Index (BLS) matching goods in the BEA’s industry category.
Monetary shocks: Quantitative assessment

case1: flex prices; case0: hom. with $\delta = 0$, case2: hom. with $\delta = .5$, case3: het Calvo, Others: combinations of heterogeneity
Monetary shocks: Why?

Black: Term 1; Blue: Term 2; Red: Term 3.
Making the Taylor rule more sensitive to inflation

case1: flex prices; **case0**: hom. with $\delta = 0$, **case2**: hom. with $\delta = .5$, **case3**: het Calvo, **Others**: combinations of heterogeneity
Idiosyncratic shocks: A sketch

- Aggregate volatility depends on the distribution of \(\{ \omega_{ck} \}_{k=1}^K \)

- Aggregate volatility depends on the distribution of \(\{ \zeta_k \}_{k=1}^K \)

- These two dimensions interact with the distribution of price stickiness.

- Quantitative result: The effect of \(\{ \omega_{ck} \}_{k=1}^K \) dominates.
Final remarks

- Monetary non-neutrality: Everything is about heterogeneity of price stickiness (in an economy where intermediate inputs are needed for production.)

- Monetary non-neutrality: I/O linkages have bolder role when monetary policy reacts strongly to inflation.

- Aggregate volatility from idiosyncratic shocks: Everything is about the distribution of $\{\omega_{ck}\}_{k=1}^{K}$