Strategic Opaqueness: A Cautionary Tale on Securitization

Ana Babus
Chicago Fed & CEPR

Maryam Farboodi
Princeton University

July 2015
Motivation

- Enormous rise in securitization in the banking sector
- Increase in banks’ interconnectedness
 - Overlapping portfolios
 - Interbank exposures
- Run on banks
 - Information asymmetry
Research Questions

- *Why* do banks securitize their assets?
Research Questions

- Why do banks securitize their assets?
- How much do they choose to securitize?
Our framework:

- **Banks**
 - Issue debt to invest in risky projects
 - Can securitize their assets

- **Investors**
 - Have access only to local information about the state of the project
 - Decide whether to liquidate prematurely or continue
Why do banks securitize their assets?

- Securitization creates information asymmetry
- Traditionally: information asymmetry leads to securitization

Securitization is welfare reducing and leads to banking crisis

Bailouts further increase probability of banking crisis
Why do banks securitize their assets?

- Securitization creates information asymmetry
- Traditionally: information asymmetry leads to securitization

How much do they choose to securitize?

- Optimal portfolio: optimal opaqueness
- Securitization is welfare reducing and leads to banking crisis
Why do banks securitize their assets?
- Securitization *creates* information asymmetry
- Traditionally: information asymmetry leads to securitization

How much do they choose to securitize?
- Optimal portfolio: *optimal* opaqueness
- Securitization is welfare reducing and leads to banking crisis

Bailouts further increase probability of banking crisis
Outline

Model

Equilibrium

Welfare, optimal securitization and financial crises

Conclusion
The Model

The environment

- Three dates \(t = 0, 1, 2 \)
- Two banks \(i = 1, 2 \)
- Two investors \(I = 1, 2 \)
The Model

The environment

- Three dates $t = 0, 1, 2$
- Two banks $i = 1, 2$
- Two investors $I = 1, 2$
- Bank i raises one unit of funds from investor I:
 - Issues debt contracts at face value D with maturity at date $t = 2$
 - Invests in a risky project that returns \tilde{R}_i per unit of investment at date $t = 2$

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
<th>Return $t = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_i = L$</td>
<td>p_L</td>
<td>0</td>
</tr>
<tr>
<td>$\theta_i = M$</td>
<td>p_M</td>
<td>R_M</td>
</tr>
<tr>
<td>$\theta_i = H$</td>
<td>p_H</td>
<td>$F_H(.) = R_H$</td>
</tr>
</tbody>
</table>

$R_H > R_M > 0$
At date 0, banks choose whether to securitize a fraction of their project

- Bank i, chosen at random, proposes to exchange a fraction $(1 - \phi)$ of her project for a fraction $(1 - \phi)$ of bank j’s project
At date 0, banks choose whether to securitize a fraction of their project

- Bank i, chosen at random, proposes to exchange a fraction $(1 - \phi)$ of her project for a fraction $(1 - \phi)$ of bank j’s project
- Bank j can accept or reject
 - If she reject, no exchange takes place
 - If she accepts, bank i’s portfolio is
 \[
 V_i(\phi) = \phi \tilde{R}_i + (1 - \phi) \tilde{R}_j
 \]
 while bank j’s portfolio is
 \[
 V_j(\phi) = \phi \tilde{R}_j + (1 - \phi) \tilde{R}_i
 \]
At date 1, perfectly revealing signal $\theta_i \in \{L, M, H\}$ is realized about state of project i

- Investor I observes signal θ_i
- Bank i observes both signals θ_i and θ_j if $\phi \in (0, 1)$
At date 1, after observing θ_i, investor I chooses to liquidate or continue

$$s_I(\theta_i) = \begin{cases}
1 & \text{if investor } I \text{ continues bank } i \\
0 & \text{if investor } I \text{ liquidates bank } i
\end{cases}$$
The Model

Actions and payoffs

At date 1, after observing θ_i, investor I chooses to liquidate or continue

$$s_I(\theta_i) = \begin{cases}
1 & \text{if investor } I \text{ continues bank } i \\
0 & \text{if investor } I \text{ liquidates bank } i
\end{cases}$$

- **Liquidate**
 - Investor receives an early liquidation value, $r < R_M$.
 - Bank receives 0
The Model
Actions and payoffs

At date 1, after observing θ_i, investor I chooses to liquidate or continue

$$s_I(\theta_i) = \begin{cases}
1 & \text{if investor } I \text{ continues bank } i \\
0 & \text{if investor } I \text{ liquidates bank } i
\end{cases}$$

- **Liquidity**
 - Investor receives an early liquidation value, $r < R_M$.
 - Bank receives 0

- **Continue**
 - Investor receives D at date 2, if $V_i \geq D$ and zero otherwise
 - Bank is the residual claimant and receives at date 2
 \[\max\{V_i - D, 0\}\]
 - Note: if $V_i < D$, bankruptcy wipes out V_i and both the bank and the investor receive 0.
The Model

Timing

- Date 0:
 - Banks borrow from investors and invest in projects
 - Banks choose their portfolio \((\phi, 1 - \phi)\)
 - Face value of debt \(D\) set to maximize expected lender surplus
The Model

Timing

- **Date 0:**
 - Banks borrow from investors and invest in projects
 - Banks choose their portfolio \((\phi, 1 - \phi)\)
 - Face value of debt \(D\) set to maximize expected lender surplus

- **Date 1**
 - Signals are realized
 - Investors decide whether to continue or liquidate
The Model
Timing

- **Date 0:**
 - Banks borrow from investors and invest in projects
 - Banks choose their portfolio \((\phi, 1 - \phi)\)
 - Face value of debt \(D\) set to **maximize expected lender surplus**

- **Date 1**
 - Signals are realized
 - Investors decide whether to continue or liquidate

- **Date 2, for the bank(s) continued**
 - The project(s) matures
 - The debt is paid back, or the bank is destroyed
Outline

Model

Equilibrium

Welfare, optimal securitization and financial crises

Conclusion
Equilibrium

A symmetric equilibrium is given by

- A portfolio allocation \((\phi^*, 1 - \phi^*)\) and a face value of debt \(D^*\)
- A continuation decision \(s^*_i(\theta_i)\) of each investor \(I\) given signal \(\theta_i\)

such that
Equilibrium

A symmetric equilibrium is given by

- A portfolio allocation \((\phi^*, 1 - \phi^*)\) and a face value of debt \(D^*\)
- A continuation decision \(s^*_I(\theta_i)\) of each investor \(I\) given signal \(\theta_i\)

such that

- Investor \(I\)'s decision is optimal:
 - Each investor \(I\)'s expected payoff is maximized at date 1
 \[
 \max_{s_I} \{ s_I(\theta_i) \cdot D^* \cdot \Pr(D^* \leq V_i(\phi^*) | \theta_i) + (1 - s_I(\theta_i)) \cdot r \}
 \]
 - Face value of debt maximizes investors expected surplus at date 0
 \[
 \max_D \mathbb{E}_{\theta_i} \{ s^*_I(\theta_i) \cdot D \cdot \Pr(D \leq V_i(\phi^*) | \theta_i) + (1 - s^*_I(\theta_i)) \cdot r \}
 \]
A symmetric equilibrium is given by

- A portfolio allocation \((\phi^*, 1 - \phi^*)\) and a face value of debt \(D^*\)
- A continuation decision \(s_i^* (\theta_i)\) of each investor \(i\) given signal \(\theta_i\)

such that

- Investor \(i\)'s decision is optimal:
 - Each investor \(i\)'s expected payoff is maximized at date 1
 \[
 \max_{s_i} \{ s_i (\theta_i) \cdot D^* \cdot \Pr(D^* \leq V_i(\phi^*) | \theta_i) + (1 - s_i(\theta_i)) \cdot r \}
 \]
 - Face value of debt maximizes investors expected surplus at date 0
 \[
 \max_D \mathbb{E}_{\theta_i} \{ s_i^* (\theta_i) \cdot D \cdot \Pr(D \leq V_i(\phi^*) | \theta_i) + (1 - s_i^* (\theta_i)) \cdot r \}
 \]
- Bank \(i\)'s decision is optimal:
 - Portfolio allocation maximizes bank' expected surplus at date 0
 \[
 \max_{\phi} \mathbb{E}_{\theta_i, \theta_j} \{ \max[(V_i(\phi) - D^*), 0] | s_i^* (\theta_i) \}
 \]
Equilibrium

2 Steps

1. Solve for investors’ optimal decisions, given ϕ.

2. Solve for banks’ optimal decisions.
Investors’ Decisions

Face value of debt

Given a continuation decision \(s_i (\theta_i) \), the face value of debt is

\[
D^*_i = \arg \max \mathbb{E}_{\theta_i} \{ s_i^* (\theta_i) \cdot D \cdot \Pr(D \leq V_i (\phi^*) | \theta_i) + (1 - s_i^* (\theta_i)) \cdot r \}
\]
Example 1: $\phi = 1$.

\triangleright $s_I(H) = 1$, and $s_I(M) = s_I(L) = 0$

$$D^*_H = \text{arg max} \left[p_H \cdot D \cdot \Pr(D \leq \tilde{R}_i | \theta_i = H) \right]$$

$$= R_H.$$

\triangleright $s_I(H) = s_I(M) = 1$, and $s_I(L) = 0$

$$D^*_{HM} = \text{arg max} \left[p_H \cdot D \cdot \Pr(D \leq \tilde{R}_i | \theta_i = H) + p_M \cdot D \cdot \Pr(D \leq \tilde{R}_i | \theta_i = M) \right]$$

$$= R_M.$$
Investors’ Decisions

Face value of debt

Example 1: $\phi = 1$.

\blacktriangleright $s_I(H) = 1$, and $s_I(M) = s_I(L) = 0$

$$D^*_H = \arg \max \left[p_H \cdot D \cdot \Pr (D \leq \tilde{R}_i | \theta_i = H) \right]$$

$$= R_H,$$

\blacktriangleright $s_I(H) = s_I(M) = 1$, and $s_I(L) = 0$

$$D^*_{HM} = \arg \max \left[p_H \cdot D \cdot \Pr (D \leq \tilde{R}_i | \theta_i = H) + p_M \cdot D \cdot \Pr (D \leq \tilde{R}_i | \theta_i = M) \right]$$

$$= R_M.$$

Example 2: $\hat{\phi} = \frac{R_M}{\frac{R_H}{p_H + p_M} - (R_H - R_M)}$.

\blacktriangleright $s_I(H) = 1$, and $s_I(M) = s_I(L) = 0$

$$D^*_H = \arg \max \left[p_H \cdot D \cdot \Pr (D \leq (\phi \tilde{R}_i + (1 - \phi) \tilde{R}_j) | \theta_i = H) \right]$$

$$= \phi R_H,$$

\blacktriangleright $s_I(H) = s_I(M) = 1$, and $s_I(L) = 0$

$$D^*_{HM} = R_M.$$
Investors’ Decisions

Face value of debt

\[D^*_{s} I \]

\[D^*_{H} \]
Investors’ Decisions

Face value of debt

The graph shows the relationship between D_{SI}^* and ϕ, with two lines denoted by D_H^* and D_{HM}^*. The graph indicates how the face value of debt changes with respect to ϕ. The x-axis represents ϕ ranging from 0 to 1, and the y-axis represents D_{SI}^* ranging from 2.5 to 7.
Investors’ Decisions

Face value of debt
Investors’ Decisions

Investors’ surplus

Given a continuation decision $s_l(\theta_i)$ and $D^*_{s_l}$, then investor I’s surplus is

\[
\begin{align*}
D^*_{s_l} \cdot \Pr(D^*_{s_l} \leq V_i(\phi) | \theta_i = H) \cdot s_l(H) + r \cdot (1 - s_l(H)) \quad & \text{with prob } p_H \\
D^*_{s_l} \cdot \Pr(D^*_{s_l} \leq V_i(\phi) | \theta_i = M) \cdot s_l(M) + r \cdot (1 - s_l(M)) \quad & \text{with prob } p_M \\
D^*_{s_l} \cdot \Pr(D^*_{s_l} \leq V_i(\phi) | \theta_i = L) \cdot s_l(L) + r \cdot (1 - s_l(L)) \quad & \text{with prob } p_L
\end{align*}
\]
Investors’ Decisions

Example 1 (cont): \(\phi = 1. \)

- \(s_I(H) = 1, \text{ and } s_I(M) = s_I(L) = 0 \)
 \[p_H \cdot R_H + (p_M + p_L) \cdot r \]

- \(s_I(H) = s_I(M) = 1, \text{ and } s_I(L) = 0 \)
 \[(p_H + p_M) \cdot R_M + p_L \cdot r \]

Example 2 (cont): \(\hat{\phi} = \frac{R_M}{R_H - (R_H - R_M)} \cdot \frac{R_H}{p_H + p_M}. \)

- \(s_I(H) = 1, \text{ and } s_I(M) = s_I(L) = 0 \)
 \[p_H \cdot \hat{\phi}R_H + (p_M + p_L) \cdot r \]

- \(s_I(H) = s_I(M) = 1, \text{ and } s_I(L) = 0 \)
 \[p_H \cdot (p_H + p_M) \cdot R_M + p_M \cdot (p_H + p_M) \cdot R_M + p_L \cdot r \]
Investors’ Decisions

Investors’ surplus

![Graph showing the relationship between investor surplus and \(\phi\). The graph illustrates the function \(IS_H^*\) indicating how investor surplus changes with respect to \(\phi\).]
Investors’ Decisions

Investors’ surplus

\[IS^*_{H} \]

\[IS^*_{HM} \]
Investors’ Decisions

Investors’ surplus

\[\text{Investor Surplus} \]

\[IS^* \]

\[IS^*_{HM} \]

\[IS^*_{HML} \]

\[\phi \]
Investors’ Decisions

Continuation decision

\[\text{Investor Surplus} \]

\[IS^* \]

\[H \]

\[IS^*_{HM} \]

\[IS^*_{HML} \]

\[IS_{Optimal} \]
Intuition: for each ϕ, the investor chooses over compound lotteries

- The inner lotteries: the choice of D for each continuation decision
 - Small D is a safe lottery;
 - High D is a risky lottery.
Intuition: for each ϕ, the investor chooses over compound lotteries

- The inner lotteries: the choice of D for each continuation decision
 - Small D is a safe lottery;
 - High D is a risky lottery.
- The outer lotteries: the continuation decision
 - Continuation in $H&M$: smaller expected payoffs in each state;
 - Continuation in H: higher expected payoff in state H, but only r in state M.
Given a continuation decision $s_l(\theta_i)$, then bank i’s surplus

$$
\begin{align*}
\mathbb{E}_{\theta_j}\{\max[(\phi_{s_l} R_H + (1 - \phi_{s_l}) \tilde{R}_j - D^*_{s_l}), 0]\} \cdot s_l(H) \quad &\text{with prob } p_H \\
\mathbb{E}_{\theta_j}\{\max[(\phi_{s_l} R_M + (1 - \phi_{s_l}) \tilde{R}_j - D^*_{s_l}), 0]\} \cdot s_l(M) \quad &\text{with prob } p_M \\
\mathbb{E}_{\theta_j}\{\max[(0 + (1 - \phi_{s_l}) \tilde{R}_j - D^*_{s_l}), 0]\} \cdot s_l(L) \quad &\text{with prob } p_L
\end{align*}
$$
Example 1 (cont): $\phi = 1$

- If $(p_H + p_M) R_M > p_H R_H + p_M r$

 $s^*_I (H) = s^*_I (M) = 1$, $s^*_I (L) = 0$, and $D^* = R_M$.

 $$p_H (R_H - R_M).$$

Example 2 (cont): $\hat{\phi} = \frac{R_M}{R_H - (R_H - R_M)}.$

- If $\phi p_H R_H + p_M r > (p_H + p_M)^2 R_M$

 $s^*_I (H) = 1$, $s^*_I (M) = s^*_I (L) = 0$, and $D^* = \phi R_H$

 $$p_H \cdot (1 - \phi) (p_H R_H + p_M R_M)$$
Banks’ Decisions

Banks surplus

\[\phi \]

Borrower Surplus

\[BS_H^* \]
Banks’ Decisions

Banks surplus

![Graph showing Borrower Surplus (BS*) vs. \(\phi \)](image)

- **BS**
 - \(BS_{H}^{*} \)
 - \(BS_{HM}^{*} \)
Banks’ Decisions

Banks surplus

\[\frac{B \phi^* H}{B H^{**}} \]

\[\frac{B \phi^* H}{B H^{**}} \]

\[\frac{B \phi^* H}{B H^{**}} \]

\[\frac{B \phi^* H}{B H^{**}} \]
Banks’ Decisions

Optimal securitization

\[
\phi
\]

Borrower Surplus

\[BS^*_H, BS^*_HM, BS^*_HML\]

Optimal

\[H, HM, HML\]
Outline

Model

Equilibrium

Welfare, optimal securitization and financial crises

Conclusion
Proposition 1

Securitization decreases welfare.

Note: Welfare = Investors’ + Banks’ surplus
Proposition 1

Securitization decreases welfare.

Note: Welfare = Investors’ + Banks’ surplus

- Ineffective liquidation and continuation
 - Lender cannot effectively liquidate bad projects
Proposition 1

Securitization decreases welfare.

Note: Welfare = Investors’ + Banks’ surplus

- Ineffective liquidation and continuation
 - Lender cannot effectively liquidate bad projects
 - (Potential) countervailing force: downward adjustment in face value by investor → not enough
Welfare

Proposition 1

Securitization decreases welfare.

Note: Welfare = Investors’ + Banks’ surplus

- Ineffective liquidation and continuation
 - Lender cannot effectively liquidate bad projects
 - (Potential) countervailing force: downward adjustment in face value by investor → not enough

- Too-frequent liquidation
 - With perfect info, the investor is able to set a face value he obtains with high probability if his bank is in state H or M.
 - With less info, he cannot do that: he obtains the same face value with lower probability when his bank is in state M, or H.
 - Liquidate more often to break the tie: choose the riskier lottery
Welfare

![Graph showing the relationship between Total Surplus (TS) and a variable labeled as \(\phi \).](image-url)

- The y-axis represents Total Surplus, ranging from 0 to 5.5.
- The x-axis represents the variable \(\phi \), ranging from 0 to 1.
- The graph illustrates the behavior of Total Surplus as \(\phi \) changes, showing distinct steps or jumps in the surplus value.
Proposition 2

The banks always have an incentive to securitize and set $\phi \in (0, 1)$.

Intuition: division of the surplus favors the bank
Proposition 2

The banks always have an incentive to securitize and set $\phi \in (0, 1)$.

Intuition: division of the surplus favors the bank

- Full securitization ($\phi = 0$) and no securitization ($\phi = 1$) are identical: the bank obtains surplus $(R_H - R_M)$ only in state H;
- Total surplus decreases when $\phi < 1$, but the share of investors’ decreases more.
Proposition 2

The banks always have an incentive to securitize and set $\phi \in (0, 1)$.

Intuition: division of the surplus favors the bank

- Full securitization ($\phi = 0$) and no securitization ($\phi = 1$) are identical: the bank obtains surplus $(R_H - R_M)$ only in state H;
- Total surplus decreases when $\phi < 1$, but the share of investors' decreases more.
- Compound lottery
 - Conditional on signal: dispersion
 - Revision in face value of debt
Optimal Securitization

Division of Surplus over ϕ:
- T_S
- LS
- BS

Legend:
- T_S
- LS
- BS
Proposition 3

There exist equilibria in which securitization increases the probability of financial crises.

Intuition: the bank chooses over a continuum of compound lotteries to offer the investor (one for each ϕ)
Proposition 3

There exist equilibria in which securitization increases the probability of financial crises.

Intuition: the bank chooses over a continuum of compound lotteries to offer the investor (one for each ϕ)

- Each compound lottery translates to two outcomes for the bank:
 - Continued in both state H and M, but with smaller expected payoffs;
 - Continued in state H, with higher expected payoff in state H (because of lower D^*), but only 0 in state M and L.
Proposition 3

There exist equilibria in which securitization increases the probability of financial crises.

Intuition: the bank chooses over a continuum of compound lotteries to offer the investor (one for each ϕ)

- Each compound lottery translates to two outcomes for the bank:
 - Continued in both state H and M, but with smaller expected payoffs;
 - Continued in state H, with higher expected payoff in state H (because of lower D^*), but only 0 in state M and L.

- Banks solves a max-min problem
 - *Twist*: total surplus is also affected
Outline

Model

Equilibrium

Welfare, optimal securitization and financial crises

Conclusion
Conclusions

- Model of optimal choice of securitization
- Securitization determines surplus division between investors and banks
- Banks securitize to maximize their share
- *Excessive runs*
 - Lenders *act* on their information more aggressively
 - Bank *chooses* to be run on
Related Literature

- Gorton and Pennacchi (1990)
- DeMarzo (2005), Duffie (2008)
- Stanton, Walden, Wallace (2014)