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Abstract:

The aim of this paper is to complement the MDE-SVAR approach when the tvaighatrix is not optimal. In
empirical studies, this choice is motivated by stochastic singularity or collingangtylems associated with the
covariance matrix of Impulse Response Functions. Consequently, thgptdic distribution cannot be used to
test the economic model’s fit. To circumvent this difficulty, we propose a simiplelation method to construct
critical values for the test statistics. An empirical application with US data illustthteproposed method.

Keywords: MDE, SVAR, DSGE models
JEL Classification: C15, C32, E32.

Résumé

L'objectif de ce papier est de compléter la méthodologie MDE-SVAR dansslé’cae matrice de pondération

sous—optimale. Dans les études empiriques, ce choix de matrice est motd&smngularités stochastiques ou
des problemes de colinéarité associés a la matrice de variance—covaeariéd=s. |l en découle souvent que la
distribution asymptotique des J—tests ne peut pas étre utilisée pour évaliggyugdion du modeéle aux données.
Pour circonvenir cette difficulté, nous proposons une méthode de simusittigute permettant de construire les
valeurs critiques de ces statistiques. Une application empirique est peopaiséonnées US pour illustrer la

méthode.

Mots—clés: MDE, SVAR, modéles DSGE
Classification JEL: C15, C32, E32.



. Introduction

The econometrics of Dynamic Stochastic General Equilibrium (DSGE) modslwitnessed substantial advances
over the recent years. It is nowadays more and more common to take DS@GHsrtmthe data using a variety of
formal statistical techniques. The present paper is concerned withtiimaitien and testing principles underlying
the popular Minimum Distance Estimation (see Rotemberg and Woodford, 298&to0 and Laubach, 2003,
Christiano, Eichenbaum and Evans, 2005, Giannoni and Woodfoed, Altig et al., 2005, Boivin and Giannoni,
2006, Sbordone, 2006, among others).

The Minimum Distance Estimation (MDE) technique consists of estimating the staligarameters of DSGE
models so as to minimize a weighted distance between theoretical impulse refuetgans (IRFs) of key
macroeconomic variables to structural shocks and those derived f&imctural Vector Autoregression (SVAR).
An attractive feature of the MDE—SVAR approach is that it does not impaggecific stochastic structure of the
DSGE model since attention is focused only on those shocks that arentdievthe question under study. This
method requires that an auxiliary SVAR model be estimated prior to estimating (B& P&ameters. In doing so,
a researcher has access to various types of identifying restrictions at@generally satisfied by broad classes of

DSGE models. From this perspective, SVARs constitute useful guidésifiding empirically plausible models.

The aim of this paper is to provide inference tools complementing the MDE-SxéRework. We propose a
simple simulation technique for testing DSGE models when the weighting matrix is tiostadbpAs a matter of
fact, empirical studies generally do not use the optimal weighting matrix. bhstesearchers resort to a diagonal
weighting matrix involving the reciprocal of each IRF variance on the mainogialg This choice is motivated by
practical considerations. Indeed, it is often the case that the covanmatix of IRFs is not invertible. This can
be a direct consequence of a stochastic singularity arising when the nofrdgeected IRFs exceeds the number
of estimated parameters in the SVAR. This problem can also result from @oltyyproblems, which appear when
parameter uncertainty in the SVAR is unlikely to significantly affect the comaganatrix of IRFs. In such a case,
using a diagonal covariance matrix is a legitimate choice when one seeks totestiD&GE model. However,

the asymptotic chi—square distribution cannot be used to test the model’s fit.

To circumvent this difficulty we propose a simple simulation method that complemenssathdard MDE-SVAR
toolkit. In a first step, the DSGE model is estimated so as to mimic the IRFs from thR.SVe compute the
overidentification test statistic as well as thstatistics. In a second step, we construct simulated versions of these
statistics by bootstrapping the SVAR residuals. For each replication, thd'spaemeters are re-estimated from

a centered version of the moment conditions and bootstrap analogs oftteatissics are computed. Replicating
this experiment a large number of times, we obtain a population for these stafigtinswvhich it is possible to
construct critical values oP—values for the relevant tests. The latter can be used to assess the D$IBEMO

various dimensions.



As a case study, we apply this method to a standard DSGE model with price aged stickiness. We first
estimate with US data a monetary SVAR model and compute the IRFs of output, mflatige inflation, and the
nominal interest rate to a monetary policy shock. We then estimate and test@te id8del from these IRFs for
two different horizons, one chosen to minimize the Redundant ImpulseoResBelection Criterion advocated
by Hall et al. (2008) and the other being arbitrarily imposed. In addition, we investigateehsitivity of our
estimation procedure to the choice of weighting matrix. In particular, we adepteighting matrix advocated by
Christianoet al. (2005), which is a diagonal matrix containing the inverse of each IRFnegialong its principal
diagonal, as well as an identity matrix, as in Rotemberg and Woodford (1990 empirical findings point to
the following conclusions: (i) given a weighting matrix, tests of parameteifgignce are not too sensitive to the
chosen IRFs harizon, (ii) given a weighting matrix, the test of overideatitia crucially depends on the selected
horizon, (iii) all these tests depend importantly on the chosen weighting mat(i@ using the (incorrect)

asymptotic distribution often leads to failure to reject the model.

The remainder of the paper is structured as follows. First, we review thE-MIYAR principle and discuss the
bootstrap approach to constructing critical values for test statistics.doand section, we present an application

with US data. A last section concludes.

. The MDE-SVAR approach

The minimum distance estimator

Assume that we seek to estimatesan x 1 vector of structural parametersthat characterize a DSGE model.
To do so, we focus on amy x 1 vector of empirical moment&, whose true value is denoted By, and which
the economic model is asked to match. In practice, an estiéaaﬁe substituted ford,. It is assumed that
VT (61 —6g) ~ N(0, 24), whereT denotes the sample size. The theoretical counterpértan be obtained from
1 through the mapping(-). The Minimum Distance Estimatakr; of ¢ is then

Yy = argmin(h(y) — 0p) Wr(h(y) — O7). 1)
Ppew

Here ¥ is the set of admissible values for the parameteend Wy is a definite positive weighting matrix that
may depend on the data. Under standard regularity conditions, it caroe shaty/7 (Yp — 1) ~ N(0, Yp)

wherevy is 1)’s true value and,, obeys
o' oh\ ' on oh (o0 oh\ !
Sp = —Wr=— | —WrSyWp—  —Wp—
o= (3ame) e (55
where the derivatives are evaluatedg@andyy. Let us defingy(y, ) = h(¢) — 6 and theJ-statisticJ(¢) =
9(1, 0) Wrg(¢,0).



When3, is invertible, an “optimal” Minimum Distance Estimator is available wh&np — 29‘1. This estimator
is optimal in the sense that it delivers the smallest variance)for the considered class of Minimum Distance
estimators (see Gourieroux and Monfort, 1995). In this case, it cahdwersthat. is asymptotically distributed

as ay? with degrees of freedom equaltg — n..

The MDE-SVAR approach and difficulties thereof

In the MDE-SVAR, the vector of empirical momerttss constituted of IRFs drawn from a SVAR. Suppose that

we are interested in awy x 1 vector of variable¥;, the dynamics of which is characterized by the canonical VAR
Zy=MZy 1+ + AZy o+ wy, ug ~iid(0,X), (2)

wheref > 1. Economic theory can be used to interpsgtas linear combinations of structural shoaks with
E{mn,} = I,,,,. More precisely, there exists a non singular masrsuch that,, = S»;. Without loss of generality,
we consider a single structural shogks € {1,...,nz}. Fork > 0, let us define the vectog, = 072, /0n;

andf = vec([o, C1,- - -, Ck)'), Wwhere thevec(-) operator stacks the columns of a matrix.

In order to implement the MDE-SVAR approach, a choice ahust be made. Here, we adopt the Redundant
Impulse Response Selection Criterion (RIRSC) advocated bydtlall (2008). Formally, the horizon of the IRFs
obeys

kr = arg I?en}; {log(det(Ew(k))) + ng(k):;og(T)} ; 3)

whereX, (k) is the variance-covariance matrix of the estimated parametarsing (k) is the number of elements

in the vector of stacked IRH& Notice that our notations make explicit the dependence of both quantitieg on th
selected horizot. Finally, # = {kmin, - - -, kmax } IS the set of admissible values fbr As explained by Halet

al. (2008), imposing the corresponding horizon helps to select the mostnafive IRFs about the DSGE model

parameters.

As explained above, the weighting matfiX; in eq. (1) should be equal to the inverse of the covariance matrix
of 8. In practice however, this choice is not always feasible. Indéedntains, at most, as many free elements as
the vector of VAR parameters, In many empirical applicationg,is larger thany. For example, what turns out

to be important for identifying an economic model is the persistence embedéedRF shape, which leads to
include a large number of momentsdnin addition, a business cycle student is often interested in the comovement
patterns of several aggregate variables in response to a structtkl 3tinis mechanically increases the sizé of

All these applied requirements preclude computing the inverd of he lack of invertibility of¥y can also arise

as a consequence of collinearity problems, which appear when samptirg¢ainty is the main source of IRFs

variability. This is even more stringent than the previous limitations.

As a consequence, a common and legitimate choice in the applied MDE-SVARuligeia to setV equal

to a matrix containing the inverse of the variances of the elememsatdng its diagonal and zeros elsewhere
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(Christianoet al,, 2005, Boivin and Giannoni, 2006). Such a diagonal weighting matrix allesvto eschew the
stochastic singularity problems discussed above. Another legitimate chaipteddn the literature is to use an
identity matrix (Rotemberg and Woodford, 1997, Amato and Laubach, 2003)

However this approach also entails a cost. Siliée is not the optimal weighting matrix, thé statistic is not
asymptotically distributed as @ with ng — n,, degrees of freedom. Yet we are interested in testing the model's
fit. Thus it is important to know hOW(QZ)T) is distributed. Here, we propose a simple simulation approach that

allows us to compute the critical values of this test statistic.

A bootstrap analog of the MDE-SVAR

We adapt the methodology advocated by Hall and Horowitz (1996) to the-MIVER and proceed as follows.
We start by computingV bootstrap replications of the structural VAR. Lt} denote the canonical VAR
residuals. We construcf new time series residuafgii}” ,, i = 1,..., N, where thetth element of{ @i}, is
drawn with replacement frorfu, }7_,. Using the estimated VAR coefficients and initial historical conditions, we
construct time series ofZ;, { Z{ }I_,. The canonical residuals beingl, no block-bootstrap methods are needed.

The temporal dependencef; is captured by the parametric SVAR model.

For each replication, the VAR specified in eq. (2) is estimated and the impupenses computed using the
bootstrap analog of the identifying matrix The resulting population of stacked IRFs is denoteq&?y}f\il and
their covariance matrix b¥y. Then, W is the inverse of the matrix containing the diagonal elementyailong

its diagonal and zeros elsewhere. At each bootstrap replicétiove estimateﬂi_',, S0 as to minimize
Tp = lg(v,6") — izl Wrlg($,6°) — fir],

wherejr = g(&T, 0) recenters the bootstrap analog of the moment conditions. As explainedl/anH&orowitz
(1996), without recentering, the bootstrap would implement a moment contlitdrioes not hold in the boot-

strapped sample.

We also compute
S, = (D"YWr DY)~ (DY WrSeWr D! (D" Wr DY),
where

i _ Oh
D= —
O | s

We thus obtain a bootstrap analog aftest of significance of each componentjofThe associated bootstrapped

t-statistic is defined by . R
7 77&%—‘7" - 1/1Tr

tr, = )
(X)) /2



whereyr, is therth component ofir, ¢, is therth component ofy%., and (%)), is the(r, r) element ofy::,.
This yields a population of-statistics,{#;, }¥,, and ofJ statistics,{.J;-}Y,, from which we obtain critical or

P-values associated with andt tests.

lll.  Empirical illustration with a New Keynesian DSGE model

Data and SVAR

We use data from the US Non Farm Business (NFB) sector over the saenjdd £960(1)-2002(4). The variables
used are the linearly detrended logarithm of per capita GhRhe growth rate of GDP’s implicit price deflator,
#;, and the growth rate of nominal hourly compensatitii,> The monetary policy instrument is assumed to be
the Fed Funds raté,. We also include two “information” variables in the SVAR model. First, the grawth of
the Commodity Research Bureau price index of sensitive commoditiess included to mitigate the so-called

price puzzle. Second, the growth rate of M2,is included to exploit information included in money growth.

We setZ; = (9¢, e, 713, 75, 2t 5})’ in eq. (2). Following Christianet al. (1999), we posit tha$ is the Cholesky
factor of X. Hence, the monetary policy shock is the fifth elemeny,cdindy,, 7;, 7;°, and#f, by construction,
do not respond contemporaneously to such a shock. In addition, thblesrof interest ar&’, = (g, 7y, 711", ).
The empirical responses of, are reported on figure 1, with = 25. The plain line is our point estimates of the
empirical responses of; and the shaded areas indicate the asymptotic 95% confidence intervattabpoint

estimates.

Our findings echo previous results reported by Christianal. (1999). Output initially responds very little,
and then sharply drops, with an inverted hump pattern. The responsfatibimdisplays a persistent U-shaped
profile, with a narrow confidence interval. Inflation’s lowest respdageached several quarters after output has
reached its trough. The response of wage inflation is qualitatively similarantithugh response slightly lagging
that of inflation. As discussed in Woodford (2003), the delayed respon inflation is a key stylized fact that
any monetary DSGE model should accurately mimic. The Federal Funds stdatameously increases, and then

gradually declines. These IRFs are the moments used to estimate the DSGEmMmctete next briefly expound.

A New Keynesian DSGE model

We consider a standard New Keynesian model with price and wage stiskat@myy the lines of Giannoni and
Woodford (2005) and Gali and Rabanal (2004) which embeds the samg tiesitnictions as the previous SVAR.

The civilian non-institutional population over 16 is used as our measyremflation. The data are extracted from the Bureau of Labor
Statistics website, except for the Fed Funds rate and M2 which are obfeanethe FREDII database.
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Figure 1. IRFs to a Monetary Policy Shock

To achieve this, we assume that output, inflation, and wage inflation areedgmihr to observing the monetary
shock.

The first equation is the New Keynesian Phillips curve:

(1 —ap)(1 = Bay)
ap(1 4 Opwp)

Amy =Eiq { (Wy + wpli) + ﬁAﬁtH} ;

whereA denotes the first-difference operatBg, is the conditional expectation operator, and the variableg:;,
andw, are the logdeviations of inflation, output, and real wage, respectidety{0, 1) is the subjective discount
factor,«y, € [0, 1) is the degree of nominal rigidity,, > 0 is the price elasticity of demand, aag is the elasticity
of the real marginal cost with respect to the level of production. In tleelequation, we implicitly assume that

non-reoptimized prices are fully indexed to past inflation, as in Christab (2005).



A second set of equations defines the IS curve:
Ee-1{Bb(fe+1 — bie) — (G — be-1) — (1 = Bb)(1 = b)A} =0,

At = i+ Ee{ N1 — T )

wherei,, and), are the logdeviations of the gross nominal interest rate, and the refas=household’s marginal

utility of wealth, respectivelyb € [0, 1) represents the degree of habit formation.
The wage setting equation is given by:

~w N (1_aw)(1_ﬁaw)
e ”TH:EH{ (1 + wepl)

(wWadGe — A — W) + BlAE — 7Aﬁt)}

where}’ is the logdeviation of wage inflationy,, € [0, 1) is the degree of nominal wage rigidit§,, > 0 is
the wage elasticity of labor demand,, > 0 is the elasticity of the marginal disutility of labor, agd> 1 is the
inverse elasticity of output with respect to the labor input. Here, we asswahadh-reoptimized wages are fully

indexed to past inflation, as in Christiaabal. (2005). Finally,7; and7;" are linked together through
7 = Wy — We—1 + Ty,
The model is closed by postulating the monetary policy rule
it = pili—1 + (1 = pi)[azme + ayye] + ocer

wherea, anda, govern the responsiveness of the policy rule to the logdeviations of imflatid outputp; is the

degree of nominal interest rate smoothing,> 0, ande; is aniid(0, 1) monetary policy shock.

Empirical results

Some parameters are calibrated prior to estimation, either because theygigerbealues based on great ratios

or because they raise specific econometric difficulties (see Canovaadm®806).

First, 3 = 0.99. As in Christianoet al. (2005) and Altiget al. (2005),w,, is set tol. The valuep = 1.333
corresponds to a steady-state share of labor inconié%f after correcting for the markup. Assuming that the
production function is Cobb-Douglas yieldg = ¢ — 1. The elasticity of demand for goodsg is 11, as suggested
by Basu and Fernald (1997). We ggtto 21 as in Christianet al. (2005). Finally,a, = 1.5 anda, = 0.125.

We regroup the remaining parameters/in= (b, oy, auy, pi, 0c)’. The latter is estimated using the MDE-SVAR
framework laid out above, using different IRF horizdrsand different weighting matricé®”. As in the literature,
we consider two weighting matrices. The first one corresponds to thtdinomg zeros everywhere except for the
principal diagonal which contains the inverse of the IRF’s variancegraposed by Christianet al. (2005).

This will be referred to as the CEE-type weighting matrix. The second orimysthe identity matrix, as in

9
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Figure 2. Redundant Impulse Response Selection Criterion

Rotemberg and Woodford (1997). For each choice of weighting matridsehlext the optimat according to the
criterion (3). Notice that since the impact response of the first threebkasian X ; are degenerate random variables
equal to zerok = 2 is the minimal horizon for which an overidentification test can be implemente@ethdve
need at least the IRFs for= 0, 1, 2 to get more than five moments. Alternatively, we impose arbitrarity 20,

which corresponds to the horizon that has been considered in the liegratgr Christianet al. (2005).

Figure 2 reports the RIRSC for both weighting matrices. For the CEE—tyfgghtireg matrix, we obtairk; = 7,
which means that we consider the IRFsXf from ¢ = 0 tot = 7, excluding the first three elements, so that

ng = 29. For the identity matrix, we obtail%tr =5, so that in this casey = 21.

Table 1 reports estimated values for the structural parameters, togethePwilues obtained from the boot-
strapped distribution. The table also reportsfh&tatistic for the test of overidentifying restrictions, together with

P-values computed from the bootstrapped distribution. In each caset We=se000.?

The table suggests the following conclusions. First, given a weighting m#igxparameters estimates do not
depend too much oh. With both weighting matrices, we obtain significant parameter estimates eithelmith
with k£ = 20. Second, given a weighting matrix, ti&-value of the overidentification test crucially depends on the
chosenk. With either weighting matrices, the model does not pass the identification teativb set tok, while

we fail to reject the model when we set= 20. Third, when we set = 20, our parameter estimates do not depend
too much on the weighting matrix and we also reach similar conclusions in terms ef'snfid However, when
we adopt the horizon minimizing the RIRSC, the choice of weighting matrix sisvienpacts on the parameters
estimates and the model is rejected in both cases. For each of the foucaasielered in our analysis, the results
of the overidentification tests are illustrated in figure 3, which reports the lativeidistribution function of the

The correspondind®-value is obtained as follows. We first apply a Gaussian kernel with pesitipport to the simulated statistics

{JEYY . The P-value is then simply obtained by a piecewise cubic spline interpolation puoeed
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TABLE 1

Estimation Results

Selected Horizon

CEE-Type Identity
kr =17 k = 20 kr =5 k =20
Parameters
b 0.809 0.860 0.917 0.846
[0.000] (0.000] [0.000] [0.000]
ap 0.842 0.811 0.933 0.803
[0.000] [0.000] [0.000] [0.100]
Oty 0.824 0.855 0.913 0.830
[0.599] (0.300] [0.000] [8.791]
D 0.925 0.952 0.970 0.955
[0.000] [0.000] [0.000] [0.000]
oy 0.157 0.139 0.132 0.129
[0.000] [0.000] [0.000] [0.000]
Overidentification Test
J(@T) 27.995 59.876 36015.973 80192.180
[1.322] [6.668] [0.588] [16.252]

Notes: The P—values, in brackets, are in percentage. In the “Parampgerél, the null hy-
pothesis being tested is that the corresponding paranseserd. In the “Overidentification
Test” panel, the null hypothesis being tested is thatilsgatistic is zero.

J statistic. Finally, notice that our estimation are in line with previous findings in thelitex: the model is

characterized by high degrees of halbitsand nominal rigiditiega,,, a, ).

We now propose to assess the importance of carefully deriving a simulatedudion of J statistics as opposed to
resorting to an incorrect asymptotié distribution (e.g., Boivin and Giannoni, 2006). We compare the outcome of
the overidentification test when we use the CEE-type weighting matrix. As talgdests, the model is rejected
for kr = 7. Using the same horizon but incorrectly resorting t@%424), we would obtain aP-value 0f26%.
Incorrectly resorting to the asymptoti¢ distribution would unambiguously lead to non—rejection of the model.
Whenk = 20, the data are barely supportive of the model, given thafthealue is smaller thah0%. However,

using the incorrect asymptotj¢(76) distribution, we would obtain &—value 0f91.3%.

11
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Figure 3. Bootstrapped CDF df. The vertical line corresponds to the estimafestatistic.

I\V. Conclusion

This paper has proposed a simple simulation method for computing criti¢adhaalues of test statistics based on
the MDE-SVAR approach. The method is especially suitable when the weigh#tri is not optimal. In empir-
ical studies, this choice is essentially motivated by stochastic singularity dliiteadty problems that preclude
using the covariance matrix of IRFs. A diagonal weighting matrix allows aareker to solve the invertibility
problem, but the asymptotic distribution of the MDE-SVAR for the test of oesttiflying restrictions can no
longer be used. Consequently, the DSGE model’s fit cannot be prapeallyated. The use of bootstrap methods,
still maintaining diagonal weighting matrix, gives us the opportunity to condatistical inference. Bootstrap

simulations of the SVAR models and repeated estimation of the model using MDEsalbto compute critical

12



values for test statistics and to conduct a proper evaluation of DSGE mydeiiustrate the potential usefulness

of the proposed approach with US data.

13



References

Altig, D., Christiano, L.J., Eichenbaum, M. and Lindé, J. (2005). ‘Firme#fizcapital, nominal rigidities and
the business cycle’, Working Paper No. 11034, NBER.

Amato, J. and Laubach, T. (2003). ‘Estimation and control of an optimizdtam®d model with sticky prices and
wages’,Journal of Economic Dynamics and Conirdbl. 27, pp. 1181-1215.

Basu, S. and Fernald, J.G. (1997). ‘Returns to scale in U.S. produéistimates and implicationsJournal of
Political Economyol. 105, pp. 249-283.

Boivin, J. and Giannoni, M. (2006). ‘Has monetary policy become mdextfe’, Review of Economics and
Statistics Vol. 88, pp. 445-462.

Canova, F. and Sala, L. (2006). ‘Back to the square one: Identificesnoes in DSGE models’, mimeo UPF.

Christiano, L.J., Eichenbaum, M. and Evans, C.L. (1999). ‘Monetaligypshocks: What have we learned and
to what end?’, in J.B. Taylor and M. Woodford (eddandbook of Macroeconomic¥ol. 1A. Elsevier,
Amsterdam, pp. 65-148.

Christiano, L.J., Eichenbaum, M. and Evans, C. (2005). ‘Nominal rigiditresthe dynamic effects of a shock
to monetary policy’ Journal of Political Economy\ol. 113, pp. 1-45.

Gali, J. and Rabanal, P. (2004). ‘Technology shocks and aggriggetigations: how well does the RBC model
fit Postwar U.S. data?’ in M. Gertler and K. Rogoff (edBIBER Macroeconomics Annyaip. 225-288.

Giannoni, M. and Woodford, M. (2005). ‘Optimal inflation targeting rujes’B.S. Bernanke and M. Woodford
(eds.),Inflation Targeting University of Chicago Press.

Gourieroux, C. and Monfort, A. (1995%tatistics and Econometric ModefS8ambridge University Press.

Hall, A., Inoue, A., Nason, J.M. and Rossi, B. (2008). ‘Information ciddor impulse response function
matching estimation of DSGE models’. Working Paper No. 2007-10a, Hegesarve Bank of Atlanta.

Hall, P. and Horowitz, J. (1996). ‘Bootstrap critical values for testetiam generalized-method-of-moments
estimators’ EconometricaVol. 64, pp. 891-916.

Rotemberg, J.J. and Woodford, M. (1997). ‘An optimization-basedauetric framework for the evaluation of
monetary policy’, in B.S. Bernanke and J.J. Rotemberg (eN8ER Macroeconomics AnnudliT Press,
Cambridge, pp. 297-346.

Sbordone, A.M. (2006). ‘U.S. wage and price dynamics: A limited-infornmedijoproach’jnternational Journal
of Central Banking\Vol. 2, pp. 155-191.

Woodford, M. (2003).Interest and Prices: Foundation of a Theory of Monetary Poli€yinceton University
Press, Princeton.

14



229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

2309.

240.

241.

242.

243.

244,

Documents de Travail

Ph. Aghion, Ph. Askenazy, R. Bourlés, G. Cette and N. Dromel, “Education, Market
Rigidities and Growth,” January 2009

G. Cette and M. de Jong, “The Rocky Ride of Break-even-inflation rates,” January
2009

E. Gautier and H. Le Bihan, “Time-varying (S,s) band models: empirical properties
and interpretation,” January 2009

K. Barhoumi, O. Darné and L. Ferrara, “Are disaggregate data useful for factor
analysis in forecasting French GDP ? ” February 2009

R. Cooper, H. Kempf and D. Peled, “Monetary rules and the spillover of regional
fiscal policies in a federation” February 2009

C. Jardet, A. Monfort, and F. Pegoraro, “No-arbitrage Near-Cointegrated VAR(p)
Term Structure Models, Term Premia and GDP Growth” June 2009

C. Jardet, A. Monfort, and F. Pegoraro, “New Information Response Functions,”
June 2009

S. Adjemian, C.Cahn, A.Devulder et N.Maggiar, « Variantes en Univers
Incertain », Juin 2009

P-A. Chevalier, R. Lecat et N.Oulton, « Convergence de la productivité des
entreprises, mondialisation, technologies de I’information et conccurence », Juin
2009

S. Avouyi-Dovi, M. Bardos, C. Jardet, L. Kendaoui and J. Moquet, “Macro stress
testing with a macroeconomic credit risk model: Application to the French
manufacturing sector,” June 2009

O. Darné and L. Ferrara, “ldentification of slowdowns and accelerations for the
euro area economy,” June 2009

H. Kempf and G. Rota Graziosi, “Leadership in Public Good Provision: a Timing
Game Perspective”, July 2009

S. Avouyi-Dovi et J.-G. Sahuc, « Comportement du banquier central en
environnement incertain », Juillet 2009

J. Coffinet, S. Lin and C. Martin, “Stress testing French banks' income
subcomponents,” August 2009

P. Féve, J. Matheron and J.-G. Sahuc, “Inflation Target Shocks and Monetary Policy
Inertia in the Euro Area”, August 2009

P. Féve, J. Matheron et J.-G. Sahuc, « La TVA sociale : bonne ou mauvaise idée? »,
Ao(t 2009



245. P. Feve, J. Matheron and J.-G. Sahuc, *“ Minimum Distance Estimation and Testing
of DSGE Models from Structural VARs ”, August 2009

Pour accéder a la liste compléte des Documents de Travail publiés par la Banque de

France veuillez consulter le site :
http://www.banque-france.fr/fr/publications/documents de travail/documents de travail 09.htm

For a complete list of Working Papers published by the Banque de France, please visit the

website:
http://www.banque-france.fr/fr/publications/documents de travail/documents de travail 09.htm

Pour tous commentaires ou demandes sur les Documents de Travail, contacter la
bibliotheque de la Direction Générale des Etudes et des Relations Internationales a
I'adresse suivante :

For any comment or enquiries on the Working Papers, contact the library of the Directorate
General Economics and International Relations at the following address :

BANQUE DE FRANCE

49- 1404 Labolog

75049 Paris Cedex 01

tél : 0033 (0)1 42 92 49 55 ou 62 65 ou 48 90 ou 69 81

fax :0033 (0)1 42 92 62 92

email : thierry.demoulin@banque-france.fr
jeannine.agoutin@banque-france.fr
veronique.jan-antuoro@banque-france.fr
nathalie.bataille-salle@banque-france.f




