Flight to Liquidity and Systemic Bank Runs

Roberto Robatto, University of Wisconsin-Madison

Previously circulated as “Financial Crises and Systemic Bank Runs in a Dynamic Model of Banking”
Banking crises (U.S. 2008, Great Depression)

1. Many financial intermediaries insolvent, and subject to runs
 - This paper: panics, multiple equilibria

2. Flight to liquidity
 - Friedman-Schwartz hypothesis:
 Fed did not increase money supply in the ’30s ⇒ great depression
 - 2008: Fed injected liquidity ⇒ mitigated the crisis
 - What are the effects of monetary injections?
 Can the central bank rule out self-fulfilling panics?
A new macroeconomic model of banking

- General equilibrium, monetary model
- 3-period (motivated by infinite horizon, different from typical bank run model)

Two main contributions:

- New channel, multiplicity of equilibria
 - Good equilibrium
 - Bad equilibrium:
 1. many banks insolvent and subject to runs (*systemic crisis*)
 2. flight to liquidity, deflation

- Monetary policy analysis:
 - How to eliminate the bad equilibrium
 - Effects of monetary injections that do not eliminate bad equilibrium
The model in one slide

- Two assets in fixed supply: money, capital
- Consumption ≤ money in wallet + money withdrawn from bank
- Good equilibrium: all banks are solvent, no runs
- Bad equilibrium:
 - Fear of runs: precautionary money hoarding (flight to liquidity)
 - money demand ↑, demand for capital ↓ ⇒ price of capital ↓
 - Some money held for precautionary reasons
 → unspent money → deflation

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
<th>Weakest banks: insolvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of capital ↓</td>
<td>Deposits (nominal)</td>
<td>run on insolvent banks</td>
</tr>
<tr>
<td></td>
<td>Net worth ↓</td>
<td></td>
</tr>
</tbody>
</table>

5 / 29
The model in one slide

- Two assets in fixed supply: money, capital
- Consumption \leq money in wallet + money withdrawn from bank
- Good equilibrium: all banks are solvent, no runs
- Bad equilibrium:
 - **Fear of runs**: precautionary money hoarding (*flight to liquidity*)
 - money demand ↑, demand for capital ↓ \Rightarrow price of capital ↓

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of capital ↓</td>
<td>Deposits (nominal)</td>
</tr>
<tr>
<td></td>
<td>Net worth ↓</td>
</tr>
</tbody>
</table>

- Weakest banks: *insolvent* \Rightarrow *run* on insolvent banks
- Some money held for precautionary reasons
 - \Rightarrow unspent money \Rightarrow deflation
Preview of the results

• Model: flight to liquidity
 - \downarrow $M1 = \text{money held by households} + \text{deposits}$
 - \downarrow Deposits
 - \uparrow Money held by households

• Monetary policy
 1. What policy commitment eliminates the bad equilibrium?
 “Large” monetary injections
 2. Effects of ”small” monetary injections. In some cases:
 nominal prices \downarrow, flight to liquidity \uparrow, losses of depositors \uparrow
Comparison with literature

- Panic, multiplicity of equilibria: Diamond and Dybvig (1983)
 Not applicable to monetary injections; exogenous returns

 This paper: Money, interactions between runs and monetary policy

 Endogenous drop in asset prices (systemic crises)

 Multiplicity of equilibria: new channel

- Bank runs with money: Diamond and Rajan (2006), Allen et al. (2013)
 Exogenous shocks to money demand (policy-invariant)

 This paper: Flight to liquidity is endogenous

 Monetary injections amplify flight to liquidity (in some cases)
Comparison with literature

• Panic, multiplicity of equilibria: Diamond and Dybvig (1983)
 Not applicable to monetary injections; exogenous returns

 This paper: Money, interactions between runs and monetary policy

 Endogenous drop in asset prices (systemic crises)

 Multiplicity of equilibria: new channel

• Bank runs with money: Diamond and Rajan (2006), Allen et al. (2013)
 Exogenous shocks to money demand (policy-invariant)

 This paper: Flight to liquidity is endogenous

 Monetary injections amplify flight to liquidity (in some cases)

• Deflation and banking crises: Carapella (2012), Brunnermeier and Sannikov (2015) “I-Theory”: banks are intermediaries, no runs

 Companion paper: Real model (no deflation), multiple equilibria

 Source of multiplicity: flight to liquidity
Outline

• Model without policy intervention

• Equilibria:
 • Good equilibrium
 • Bad equilibria (up to two bad equilibria)

• Monetary policy

• Robustness
• Model without policy intervention

• Equilibria:
 • good equilibrium
 • bad equilibria (up to two bad equilibria)

• Monetary Policy
Timing, agents, assets

- 3 periods: $t = 0, 1, 2$

- Agents:
 - Banks: continuum $b \in [0, 1]$, perfect competition
 - Households: double continuum $h \in [0, 1] \times [0, 1]$
 (continuum $[0, 1]$ of households per bank)
 - Central bank

- Assets:
 - money (numeraire): fixed supply M
 - capital: fixed supply K
 - deposits
Preferences

- Banks: linear utility from consumption C_{2}^{h}

- Households: consumption C_{1}^{h} and C_{2}^{h}:

$$
\mathbb{E} [\tilde{u} (C_{1}^{h})] + \beta C_{2}^{h}
$$

where:

$$
\tilde{u} (\cdot) = \begin{cases}
\bar{u} (\cdot) & \text{(impatient) probability } \kappa \\
0 & \text{(patient) probability } 1 - \kappa
\end{cases}
$$

- private information

- realized at $t = 1$

- i.i.d. across agents, LLN at each bank
Utility of impatient households, \(t = 1 \)

- Concavity: risk aversion
- Linearity (almost everywhere): tractability
Technology and markets

- **t = 0**: Walrasian market, price of capital Q_0

- **t = 1**:
 - 1 unit of capital $\to A$ units consumption good
 - Purchases of C^h at price P_1, s.t. cash-in-advance
 - Capital cannot be traded at $t = 1$ (illiquid)

- **t = 2**:
 - 1 unit money $\to \frac{1}{P_2}$ units of consumption good
 - 1 unit capital $\to \frac{Q_2}{P_2}$ units of consumption good

P_2 and Q_2 exogenous, motivated by infinite horizon
Technology and markets

Production: $A \overline{K}$

$t = 0$

Walrasian market

Q_0: price of capital

Preference shocks realized

$t = 1$

Market for consumption good

(cash-in-advance constraint)

P_1: price of consumption

$t = 2$

1 unit money $\rightarrow \frac{1}{P_2}$ units consumption good

1 unit capital $\rightarrow \frac{Q_2}{P_2}$ units consumption good

• P_2 and Q_2 exogenous, motivated by infinite horizon
Technology and markets

Production: $A \overline{K}$

$t = 0$
- Walrasian market
- Q_0: price of capital
- Preference shocks realized

$t = 1$
- Market for consumption good (cash-in-advance constraint)
- P_1: price of consumption

$t = 2$
- 1 unit money $\rightarrow \frac{1}{\overline{P}_2}$ units consumption good
- 1 unit capital $\rightarrow \frac{\overline{Q}_2}{\overline{P}_2}$ units consumption good

\overline{P}_2 and \overline{Q}_2 exogenous, motivated by infinite horizon

Trade-off:
- Preference shock known at $t = 1$ & no trading of capital at $t = 1$
- Opportunity cost of holding money (return from holding capital)
Endowments at $t = 0$

Bank b

\[
\begin{pmatrix}
M_{-1}^b, K_{-1}^b, D_{-1}^b
\end{pmatrix}
\]

money, capital, deposits

Household h

\[
\begin{pmatrix}
M_{-1}^h, K_{-1}^h, D_{-1}^h
\end{pmatrix}
\]

money, capital, deposits

- Deposits
 - Bank: obligation to pay money, on demand
 - Household: claim redeemable for money (on demand)

- Banks are heterogeneous in $K_{-1}^b \in \{K^H, K^L\}$, $K^H > K^L$

Private information at $t = 0$, common knowledge at $t = 1$

- All households are alike
Net worth (beginning of $t = 0$)

- Household h: $N^h_0 \equiv K^h_{-1} Q_0 + M^h_{-1} + D^h_{-1}$
 - value of capital
 - money
 - deposits

- Bank b, balance sheet:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital $K^b_{-1} Q_0$</td>
<td>Deposits D^b_{-1}</td>
</tr>
<tr>
<td>Money M^b_{-1}</td>
<td>Net worth N^b_0</td>
</tr>
</tbody>
</table>

Net worth of bank b: $N^b_0 \equiv K^b_{-1} Q_0 + M^b_{-1} - D^b_{-1}$

- Q_0 high $\Rightarrow N^b_0 \geq 0$ for all b (all banks are solvent)

- Q_0 low $\Rightarrow \begin{cases} N^b_0 \geq 0 & \text{for banks with large endowment, } K^b_{-1} = K^H \\ N^b_0 < 0 & \text{for banks with low endowment, } K^b_{-1} = K^L \end{cases}$
Banking

- **Households**
 - $t = 0$, portfolio choice:
 \[
 M^h_0 + D^h_0 + Q_0 K^h_0 \leq M^h_{-1} + D^h_{-1} + Q_0 K^h_{-1}
 \]

 - $t = 1$, withdrawal:
 \[
 W^h_1 \leq \begin{cases} 0 & \text{if run & last in line} \\ D^h_0 & \text{otherwise} \end{cases}
 \]

 and consumption C^h_1 s.t. $P_1 C^h_1 \leq M^h_0 + W^h_1$

- $t = 2$: get return on deposits not withdrawn at $t = 1$

- **Banks, $t = 0$**:
 - hold money $= \kappa \times \text{deposits}$
 (to pay withdrawals by fraction κ of impatient households, at $t = 1$)
 - other resources invested capital
 (return on capital utilized to pay return on deposits at $t = 2$)
One good equilibrium, up to 2 bad equilibria

- **Good equilibrium:** high price capital Q_0
 - banks: all solvent; households: money $M_h^0 = 0$, deposits $D_h^0 = D^*$
 - impatient households, $t = 1$: withdraw, consume
 patient households, $t = 2$: deposits + return

- **Bad equilibrium:** low price of capital Q_0
 - some banks are insolvent, nobody knows which one
 (asymmetric information about banks’ balance sheet at $t = 0$)
 - $t = 0$: fear of runs \rightarrow flight to liquidity, $M_h^0 > 0$, $D_h^0 < D^*$
 - $t = 1$: run on insolvent banks
 - households last in line in a run:
 consumption expenditure $= M_h^0$ (less than households who withdraw)
 losses on deposits
Outline

Introduction

Model

Monetary policy

Conclusions
Monetary policy during the recent crisis

- Temporary increase in money supply

 \[M_0 = \bar{M} (1 + \mu) \]

 \[M_1 = \bar{M} (1 + \mu) \]

 \[M_2 = \bar{M} \]

- Increase money supply in two ways

 - Asset purchases

 - Central bank buys capital at \(t = 0 \)

 - Capital “sold” at \(t = 2 \)

 - Loans to banks

 - Central bank offers loans to private banks at \(t = 0 \)

 - Loan + return: repaid at \(t = 2 \)

- Profits/losses of central bank: lump-sum transfers to households
The effects of monetary injections

- **Small monetary injection:**

<table>
<thead>
<tr>
<th></th>
<th>in one bad equilibrium</th>
<th>in the other bad equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>price capital</td>
<td>(\frac{dQ_0}{d\mu})</td>
<td>> 0</td>
</tr>
<tr>
<td>price level</td>
<td>(\frac{dP_1}{d\mu})</td>
<td>> 0</td>
</tr>
<tr>
<td>deposits</td>
<td>(\frac{dD_0^h}{d\mu})</td>
<td>(\leq 0)</td>
</tr>
</tbody>
</table>

- **Large monetary injection:** eliminate the bad equilibria
The effects of “small” monetary injections

Two forces:

1. Direct effect pushes endogenous variables closer to good equilibrium

 More money \Rightarrow nominal prices \uparrow

2. Indirect effect exacerbates strategic complementarity and flight to liquidity

\[
\left(\frac{\text{nominal price of capital, } Q_0}{\text{capital}} \right) \uparrow \Rightarrow \left(\text{return on capital} \right) \downarrow \Rightarrow \left(\text{return on deposits, } r^D_2 \right) \downarrow \Rightarrow \left(\text{deposits, } D^h_0 \right) \downarrow
\]

Banks use return on capital to pay r^D_2
Conclusions

- Monetary, general equilibrium model of banking:
 - New channel produces bank runs, flight to liquidity, deflation
 - Systemic crisis

- Policy:
 - Monetary injection \rightarrow interest rates \downarrow \rightarrow may worsen crisis
 Contrary to conventional wisdom (reducing rates, or spreads, is good)
 - How to eliminate bad equilibria: large monetary injections
 - Same forces robust to (slightly) richer specification

- Future work:
 - Companion paper: real model; equity injections
 - Take a dynamic version of the model to the data
Comparison with literature

- Panic, multiplicity of equilibria: Diamond-Dybvig (1983)
 Not applicable to monetary injections; exogenous returns

 This paper: Money (monetary policy)

 Endogenous drop in asset prices (systemic crises)

 Exogenous shocks to money demand (policy-invariant)

 This paper: Flight to liquidity is endogenous;

 Monetary injections amplify flight to liquidity (in some cases)

- Deflation and banking crises: Carapella (2012),
 Brunnermeier-Sannikov (2015) “I-Theory”: banks are intermediaries

 This paper: Banks insure against preference shocks, runs;

 Deflation is not necessary to have bad equilibrium, companion paper: fire-sales, no deflation (multiple equilibria)
Outline

Appendix
Monetary injections

- Money supply $\overline{M} (1 + \mu)$, $t = 0$:

 $\mu \overline{M} = B_0^{CB} + Q_0 K_0^{CB}$

 - monetary injection
 - loans to banks
 - asset purchases

- Budget constraint of banks at $t = 0$:

 $M^b_0 + Q_0 K^b_0 \leq D^b_0 + B^b_0 (M^b_{-1} + Q_0 K^b_{-1} - D^b_{-1})$

 - money
 - capital
 - deposits
 - loans from central bank
 - net worth

- Real profits (or losses) at $t = 2$:

 $T_2 = \frac{1}{P_2} \left[Q_0 K_0^{CB} (1 + r^K_2) + \int B^b_0 (1 + \max \{ r^{CB}_2, r^b_2 \}) \, db - \mu \overline{M} \right]$

 (lump-sum transfers to households)
Bank problem

\[\max C_2^b \quad \text{subject to:} \]

\[t = 0: \quad \begin{array}{l}
M_0^b + Q_0 K_0^b \\
\text{money}\quad \text{capital (private info)}
\end{array} \leq \begin{array}{l}
D_0^b + \left(M_{-1}^b + Q_0 K_{-1}^b - D_{-1}^b \right) \\
\text{money}\quad \text{capital}\quad \text{deposits}
\end{array} \]

\[\text{net worth (endowment and price } Q_0) \]

\[t = 1: \quad \begin{array}{l}
W_1^b \leq M_0^b \\
\text{withdrawals}
\end{array} \quad \text{(feasibility, with "=" in equilibrium)} \]

\[t = 2: \quad C_2^b = \max \left\{ 0; \frac{1}{P_2} \left[Q_0 K_0^b (1 + r_2^K) - (D_0^b - W_1^b) (1 + r_2^D) \right] \right\} \]

\[1 + r_2^D: \text{promised return on deposits (taken as given by banks)} \]
Bank problem: solution

- \(t = 0 \): for every $ of deposits
 - fraction \(\kappa \) invested in money (to serve withdrawals at \(t = 1 \))
 - fraction \(1 - \kappa \) invested in capital

- \(t = 2 \):
 - return = \((1 - \kappa) \left(1 + r_2^K\right) \)
 return on capital
 - repayment to depositors = \((1 - \kappa) \left(1 + r_2^D\right) \)
 promised return on deposits
 - profit per $ of deposits = \((1 - \kappa) \left[\left(1 + r_2^K\right) - \left(1 + r_2^D\right)\right] \)

- In equilibrium: zero profits \(\Rightarrow r_2^D = r_2^K \)
banks indifferent among any amount of deposits
Actual return on deposits

\[C_2^b = \max \left\{ 0; \frac{1}{P_2} \left[Q_0 K_0^b (1 + r_2^K) - (D_0^b - W_1^b) (1 + r_2^D) \right] \right\} \]

Define actual return on deposits \(1 + r_2^b \)

\[
1 + r_2^b = \begin{cases}
1 + r_2^D & \text{if } C_2^b > 0 \quad (\text{assets} > \text{liabilities}) \\
\frac{Q_0 K_0^b (1 + r_2^K)}{D_0^b - W_1^b} & \leq 1 + r_2^D \quad \text{if } C_2^b = 0 \quad (\text{assets} \leq \text{liabilities})
\end{cases}
\]

Bad equilibrium: \(r_2^b < r_2^D \) if \(b = L \) (bank with endowment \(K^L \))
Household problem

\[
\max \ E \left[\tilde{u} \left(C_1^h \right) \right] + \beta C_2^h \quad \text{subject to:}
\]

\[t = 0 : \quad \begin{aligned}
M_0^h + & \quad D_0^h + Q_0 K_0^h \\
\text{money} & \quad \text{deposits,} \\
\text{at one bank} & \quad \text{capital}
\end{aligned} \leq \left(M_{-1}^h + D_{-1}^h + Q_0 K_{-1}^h \right) \quad \text{wealth (endowment and price } Q_0) \]

\[t = 1 : \quad W_1^h \leq \begin{cases}
D_0^h \\
0
\end{cases} \quad \text{if run & last in line} \]

\[P_1 C_1^h \leq M_0^h + W_1^h \quad \text{(cash-in-advance)} \]

\[t = 2 : \quad C_2^h = \frac{1}{P_2} \left[\begin{aligned}
Q_0 K_0^h (1 + r_2^K) + (D_0^h - W_1^h) (1 + r_2^b) \\
\text{capital + return } r_2^K & \quad \text{deposits not withdrawn} \\
\text{+ actual return } r_2^b & \quad \text{unspent money}
\end{aligned} \right]
\]

\[+ \left(M_0^h + W_1^h - P_1 C_1^h \right) \]

\[\#35 / 29 \]
Household problem

$$\max \mathbb{E} [\tilde{u}(C_1^h)] + \beta C_2^h$$

subject to:

$$t = 0 : \quad \underbrace{M_0^h}_{\text{money}} + \underbrace{D_0^h}_{\text{deposits, at one bank}} + Q_0 K_0^h \leq \underbrace{(M_{-1}^h + D_{-1}^h + Q_0 K_{-1}^h)}_{\text{wealth (endowment and price } Q_0)}$$

$$t = 1 : \quad \underbrace{W_1^h}_{\text{withdrawals}} \leq \begin{cases} D_0^h \\ 0 \text{ if run & last in line} \end{cases}$$

$$P_1 C_1^h \leq M_0^h + W_1^h \quad \text{(cash-in-advance)}$$

$$t = 2 : \quad C_2^h = \frac{1}{P_2} \left[\underbrace{Q_0 K_0^h (1 + r_2^K)}_{\text{capital + return } r_2^K} + \underbrace{(D_0^h - W_1^h) (1 + r_2^b)}_{\text{deposits not withdrawn} + \text{actual return } r_2^b} \leq \underbrace{\text{promised return } r_2^D}_{\text{unspent money}} \right]$$
Household problem

\[
\max \ E \left[\tilde{u} \left(C_1^h \right) \right] + \beta C_2^h \\
\text{subject to:}
\]

\[t = 0 : \quad \begin{aligned}
& \underbrace{M_0^h} \quad + \underbrace{D_0^h} + \underbrace{Q_0 K_0^h} \\
& \quad \text{money} \quad \text{deposits, at one bank} \quad \text{capital} \\
& \leq \underbrace{M_{-1}^h + D_{-1}^h + Q_0 K_{-1}^h} \quad \text{wealth (endowment and price } Q_0) \\
\end{aligned} \]

\[t = 1 : \quad \begin{aligned}
& \underbrace{W_1^h} \\
& \quad \text{withdrawals} \\
& \leq \begin{cases}
D_0^h \\
0 & \text{if run & last in line}
\end{cases}
\end{aligned} \]

\[P_1 C_1^h \leq M_0^h + W_1^h \quad \text{(cash-in-advance)} \]

\[t = 2 : \quad C_2^h = \frac{1}{P_2} \left[\begin{aligned}
& \underbrace{Q_0 K_0^h (1 + r_2^K)} + \underbrace{(D_0^h - W_1^h) \left(1 + r_2^b\right)} \\
& \quad \text{capital + return } r_2^K \quad \text{deposits not withdrawn} \\
& \quad + \text{actual return } r_2^b \leq \text{promised return } r_2^d \\
& \underbrace{M_0^h + W_1^h - P_1 C_1^h} \quad \text{unspent money}
\end{aligned} \right] \]
Market clearing conditions

\[t = 0 \]

Capital: \[\int K_0^b \, db + \int K_0^h \, dh = \overline{K} \]

Money: \[\int M_0^b \, db + \int M_0^h \, dh = \overline{M} \]

Deposits: \[\int D_0^b \, db = \int D_0^h \, dh \]

\[t = 1 \]

Goods: \[\int C_1^h \, dh = A\overline{K} \]
Equilibrium: definition

- Prices Q_0, P_1 and promised return on deposits r_2^D
- Actual return on deposits r_t^b for each b
- Households:
 - beliefs $(t = 0)$ about r_2^b and probability of “run & last in line”
 - choices: M_0^h, D_0^h, K_0^h $(t = 0)$ and W_1^h, C_1^h $(t = 1)$
- Banks’ choices: M_0^b, D_0^b, K_0^b
- Set of households “last in line” during a run

Such that:

- **households have rational beliefs** and maximize utility
- banks maximize utility
- markets clear
Good equilibrium

- A good equilibrium exists (under some restrictions on banks’ endowment)

- Each bank pools the liquidity risk of its depositors
 - households: money $M^h_0 = 0$, deposits $D^h_0 = D^*$, capital $K^h_0 > 0$
 - banks: money $M^b_0 = \kappa D^*$
 (hold money to finance withdrawals by impatient households)
 all banks are solvent, pay promised return $(r^D_2)^* $; no runs
 - prices $Q_0 = Q^* , P_1 = P^*$

The good equilibrium achieves the first-best
Bad equilibria with deflation

PROPOSITION. If:

- utility patient households: \(u \left(C^h_1 \right) = 0 \)
- some other parameter restrictions hold

there exists either one or two bad equilibria, characterized by:

- \(t = 0 \):
 - households: money \(M^h_0 > 0 \), deposits \(D^h_0 < D^* \) (flight to liquidity)
 - price of capital: \(Q_0 < Q^* \) (good equilibrium)

- banks:
 - if \(K_{-1}^b = K^L \): insolvent (net worth \(t=0 < 0 \))
 - if \(K_{-1}^b = K^H \): solvent (net worth \(t=0 \geq 0 \))
Bad equilibria with deflation

- \(t = 1 \):
 - \(K^b_- \) becomes common knowledge, run on insolvent banks
 - withdrawals:

\[
W^h_1 = \begin{cases}
D^h_0 & \text{if patient} \\
0 & \text{if impatient}
\end{cases}
\]

- insolvent bank, run

\[
W^h_1 = \begin{cases}
D^h_0 & \text{if first in line} \\
0 & \text{if last in line}
\end{cases}
\]

- deflation: \(P_1 < \underbrace{P^*}_{\text{good equilibrium}} \) (money held by impatient is not spent)

- \(t = 2 \): actual return on deposits of insolvent banks

\[
r^b_2 < 0 \quad (\text{loose money if you don’t run})
\]

Two bad equilibria: qualitatively identical, but fundamentally different
PROPOSITION. Under some restrictions on endowment:

1. good equilibrium:

\[K_0^b = K_{-1}^b \text{ for all } b \in \mathbb{B} , \quad K_0^h = K_{-1}^h \text{ for all } h \in \mathbb{H}. \]

2. bad equilibrium (with deflation or fire-sales):

\[K_0^b < K_{-1}^b \text{ for all } b \in \mathbb{B} , \quad K_0^h > K_{-1}^h \text{ for all } h \in \mathbb{H}. \]

- Bad equilibrium with deflation: debt-deflation
 - *nominal* endowment of deposits \(D_{-1}^h \) and \(D_{-1}^b \)
 - wealth transferred from debtor (banks) to creditors (households)
Multiplicity of equilibria

Strategic complementarity in households’ deposits holdings

1. Fix deposits \(D_0 \)

2. Solve for other equilibrium objects (dropping household’s deposit FOC)

3. Using prices computed at (2): allow one agent to choose \(D_0^h \)
Multiplicity of bad equilibria

1. Fix actual return on deposits of insolvent bank $= \bar{r}_{2L}$ (Low endowment)

2. Solve for other equilibrium objects (dropping definition of r_{2L}^L)

3. Use objects from (2) and definition of r_{2L}^L: $r_{2L} = \text{function} (\bar{r}_{2L})$
The effects of monetary injections

1. Fix actual return on deposits of insolvent bank $= \bar{r}_2^L$

2. Solve for other equilibrium objects (dropping definition of r_2^L)

3. Use objects from (2) and definition of r_2^L: $r_2^L = function (\bar{r}_2^L)$
The effects of monetary injections

1. Fix actual return on deposits of insolvent bank $= \bar{r}_2^L$

2. Solve for other equilibrium objects (dropping definition of r_2^L)

3. Use objects from (2) and definition of r_2^L: $r_2^L = function (\bar{r}_2^L)$
The effects of monetary injections

Fix actual return on deposits of insolvent bank r^L_2

- Money supply $\mu \uparrow$

- FOCs depend only on r^L_2 (fixed), and prices Q_0, P_1
 \[\rightarrow Q_0 \text{ and } P_1 \text{ unchanged} \]

- P_1 unchanged and $\mu \uparrow \Rightarrow M_0^h \uparrow$, $D_0^h \downarrow$ (due to deposit multiplier)

- $\frac{\partial r^L_2}{\partial D_0^h} > 0$ (strategic complementarity)

 \Rightarrow equilibrium best response $r^L_2 \downarrow$
Asset Purchases vs Loans to Banks

Asset purchases

Loans to banks

- Loans to banks
 - central bank bears some of the losses of insolvent banks
 - best response $\mu \uparrow$ (partially)
- Large monetary injections: eliminate bad equilibrium
Monetary policy and multiple bad equilibria

- Assume only one bad equilibrium exists without monetary injection
- With monetary injection: a second bad equilibrium might arise
How general is the result?

- Utility of impatient: piecewise-log-linear

\[\bar{u}(C) = \begin{cases}
\theta \log C & \text{if } C < \bar{C} \\
\theta \log \bar{C} + (C - \bar{C}) & \text{if } C \geq \bar{C}
\end{cases} \]

Utility of patients: \(u(C) = 0 \)

- No policy intervention: one or two bad equilibria (with deflation)

- Policy affects marginal utility (numerical simulations)
 - equilibrium best response “bent” in more complicated fashion
 - \(\frac{dD_0^h}{d\mu} < 0 \) quite robust (in some cases, for both bad equilibria)
 - \(\frac{dQ_0}{d\mu}, \frac{dP_1}{d\mu}, \frac{dr_2^L}{d\mu} < 0 \) (only for few parameterization)
 - even if prices \(\uparrow \): quantitative difference between equilibria
Monetary injections: bad equilibrium with fire-sale

PROPOSITION. If:

- a bad equilibrium with fire-sales exists
- central bank changes \(\overline{M} (1 + \mu) \) (either asset purchases or loans to banks)

\[
\frac{dQ_0}{d\mu} > 0 \quad \frac{dP_1}{d\mu} > 0
\]

\[
\frac{dr^L_2}{dK^L} < 0 \quad \frac{dD^h_0}{d\mu} < 0
\]

- Large monetary injection: eliminate bad equilibrium
Price of capital Q_0 and banks’ net worth

Net worth N_0^b

Bank b with endowment K^H

Bank b with endowment K^L

High Q_0, $N_0^b \geq 0$ for all b (all banks are solvent)

Low Q_0, N_0^b

$$N_0^b \equiv \underbrace{K_{-1}^b Q_0}_{\text{value of capital}} + \underbrace{M_{-1}^b}_{\text{money}} - \underbrace{D_{-1}^b}_{\text{deposits}}$$