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ABSTRACT

This paper estimates the dynamic causal price effects of weather-related disasters in
an instrumental-variable approach that links monthly product-category inflation
rates with meteorological and disaster data measured in the French overseas
territories. We document substantial heterogeneity in price responses across product
categories: weather shocks trigger an immediate and pronounced increase in food
prices (notably fresh food), while prices of services and manufactured goods
partially decline. These extreme weather-induced price effects dissipate within four
months. As a result, the overall impact on headline consumer price inflation is
moderate and statistically insignificant, peaking at around 0.1%. Additionally, we
find a significant reduction in employment following disasters, driven largely by job
losses in the food, services, and construction sectors.
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NON-TECHNICAL SUMMARY

How do weather-related disasters affect consumer prices? At a time when central banks are
considering climate risks in their operational frameworks, this question is becoming relevant for
monetary policy. Existing empirical literature has mainly focused on the overall effect on prices,
cloaking the complex interplay of supply disruptions following natural disasters that drive up prices
in the short run, combined with a shock to the composition of aggregate demand. This paper
documents how prices of granular Consumer Price Index (CPI) product categories respond to
weather-related natural disasters. The full decomposition across product categories in geographically
small regions refines our understanding of the inflation response to extreme weather events. Given
that disasters are expected to become more frequent as a result of climate change, our findings help
policymakers to address the important challenge posed by uncertain climate change more
appropriately.

A challenge for the measurement of causal dynamic effects from weather-related disasters is the
imprecise measurement of economic damages resulting from asset impairment and business
interruptions following natural disasters, which are not directly observable. We propose an
instrumental variable approach for binary disaster events. In a first step, we regress meteorological
data on administrative disaster events using a model capturing the non-linear relationship between
wind and precipitation intensity and unobserved economic damages during natural disasters. To
assess the inflation effects of natural disasters, we then relate the probability of an economic disaster
as predicted by the first-step equation to the evolution of prices for different time horizons following
the shock. We focus our empirical analysis on prices in four French overseas territories, namely
Guadeloupe, Martinique, French Guiana and Réunion.

Figure: Decomposition of the reaction of total inflation to a weather-related disaster
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Note: Plotted is the decomposition of the cumulative impulse response of headline CPI to a weather-related
disaster obtained from our baseline IV local projection. The contribution of each component is computed as
the cumulative response of the CPI of this component times its average weight in the consumer baskets of the
four overseas regions between 1999 and 2024. The solid black line reports the price effects obtained for
constant-weight headline inflation (in %). Sample period: 1999mO01 to 2024m12, excluding the Covid period
2020m03-2021m12, for all four regions.

Our main results are as follows. First, we observe an immediate strong surge in the prices of fresh
food products of 8% after two months, which vanishes after four months. This positive inflation
effect coincides with a negative impact from natural disasters on agricultural and food processing
employment, pointing to a negative supply shock with a displacement of labor supply from the
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agricultural and food processing sector to other low-skilled occupations. By contrast, the prices of
services and manufactured products decline moderately but in a statistically significant way just after
a natural disaster, by about -0.4%. This negative effect coincides with a broad decrease in services
and construction employment, suggesting a decrease in aggregate demand. The positive effects on
fresh food prices and the negative effects on other components tend to offset each other, yielding an
overall slightly positive but non-significant effect on headline inflation. Overall, our results mainly
point to a distortion of relative prices, with overall small effects on headline inflation.

A second contribution of the paper is methodological, consisting of a comparison of the two-step
IV approach with calibrated damage functions that map meteorological data directly via an explicit
functional form into economic damages. In our context, the price effects from the IV approach are
slightly larger, suggesting that the IV regression may better address the undetlying attenuation bias
present when using meteorological data. Our comparison also suggests that, depending on data
availability, either of these two methods can be used to provide consistent estimates of the effects of
natural disasters. Our IV approach may also be an interesting alternative for applied researchers since
it can help to characterize endogenously how extreme weather events affect the occurrence of natural
disasters. Relatedly, the findings undetline the importance of a careful modeling of regional
seasonality, as inflation and weather-induced disaster might share common seasonality patterns that
potentially bias the estimator.

Décomposition de la réponse de Pinflation aux
catastrophes météorologiques

RESUME

Cet article propose une estimation causale des effets dynamiques des catastrophes naturelles
sur les prix a 'aide d’une approche par variables instrumentales reliant I'inflation par catégorie
de produits aux données météorologiques et aux catastrophes naturelles dans les territoires
d’outre-mer francais. Nous documentons une forte hétérogénéité des réponses des prix selon
les catégories de produits : les chocs météorologiques entrainent une augmentation immédiate
et marquée des prix de I'alimentation (notamment des produits frais), tandis que les prix des
services et des biens manufacturés diminuent. Ces effets induits par les évenements
météorologiques extremes s’estompent a partir de quatre mois. Par conséquent, 'impact
global sur I'inflation des prix a la consommation est modéré et statistiquement non significatif,
culminant a environ 0,1 %. De plus, nous mesurons une réduction significative de 'emploi a
la suite des catastrophes, principalement due a des pertes d’emplois dans les secteurs de
Palimentation, des services et de la construction.

Mots-clés : catastrophes naturelles ; conditions météorologiques extrémes ; inflation ;
inflation désagrégée

Les Documents de travail refletent les idées personnelles de leurs auteurs et n'expriment pas
nécessairement la position de la Banque de France. Ils sont disponibles sur publications.banque-
france.fr
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1. Introduction

How do natural disasters affect consumer prices? At a time when central banks are considering
climate risks in their operational frameworks, this question becomes relevant for monetary policy
(e.g. Schnabel, 2021). Existing empirical literature has mainly focused on the overall effect on
prices, cloaking the complex interplay of supply disruptions following natural disasters that drive
up prices in the short run, combined with a shock to the composition of aggregate demand. This
paper documents how prices of granular Consumer Price Index (CPI) product categories respond
to weather-related natural disasters. The full decomposition across product categories in
geographically small regions refines our understanding of the inflation response to extreme weather
events. Given that disasters are expected to become more frequent because of climate change, our

findings help policymakers to address upcoming challenges more appropriately (Hansen, 2022).

We focus our empirical analysis on prices in four French overseas territories, namely Guadeloupe,
Martinique, French Guiana and La Réunion. These regions are regularly exposed to significant
weather-related disasters and are located in different parts of the world, which allows for the study
of shocks that are desynchronized across regions. For each of these regions, we use highly
harmonized price indices produced by the French statistical office (INSEE), at a disaggregated
product level and available at a monthly frequency over the 1999-2024 period. There is a trade-off
when considering the optimal size of regions for this type of analysis. While large regions contain
the risk that the shock only imperfectly propagates to the economic outcome, small regions might
limit the generalizability of the findings regarding the channels of shock propagation. Although the
regions considered here are relatively small and isolated, they are comparable to a laboratory
experiment, enabling us to precisely identify the effects of extreme weather events on prices by

matching data on natural disasters with product-level price indices for each of the four regions.

A challenge in the literature studying causal effects of weather-related disasters is the imprecise
measurement of economic damages resulting from asset impairment and business interruptions
following natural disasters, which are not directly observable. To overcome measurement issues
and identify causal dynamic effects from weather-related natural disasters, we use an instrumental
variable (IV) approach. This empirical strategy combines two data sources often separately used in
the literature, and which are both imperfect proxies for the unobserved economic damage and suffer
systematic biases or measurement issues. The first data type are meteorological data that allow to
approach the measurement of economic damages through the arguably objective physical intensity.
Meteorological data predict hazardous incidents imperfectly, as events of similar physical

amplitude are associated with different levels of destruction depending on regional vulnerabilities.
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Consequently, the use of meteorological data often induces an attenuation bias, arising from a
significant number of events with high physical magnitude that do not cause economic damages. In
the empirical framework, this can lead to an underestimation of true effects arising from weather-
related disasters on the economy. The second data type is sourced directly from administrative
databases that detect events associated with large economic damages based on several ad hoc
criteria, sometimes complemented by reporting-based intensity measures e.g. from insurance
companies. Administrative databases have the advantage of providing direct evidence on disasters
with significant economic damage with a relatively high accuracy. However, they are also known
to be subject to various reporting biases, which are likely to generate both attenuation bias (Grislain-
Letrémy, 2018) and sampling biases (Felbermayr and Groschl, 2014), questioning the assumption

of exogeneity of the disaster variable with respect to the endogenous outcome.

Our IV strategy uses meteorological data on wind and precipitation as instruments for the
occurrence of a reported disaster in a two-step regression approach. In the first step, we regress
meteorological data on administrative disaster events using a Logit model which captures the non-
linear relationship between wind and precipitation intensity and unobserved economic damages
during natural disasters. The instrumented variable combines events reported in the international
disaster database (EM-DAT) with a French administrative dataset (GASPAR) that contains
information on all disaster events that triggered insurance payments. In the second step, we treat the
probability of a disaster predicted from the first step as an exogenous regressor on a set of outcome
variables. As we are particularly interested in the dynamic causal effects of weather-related
disasters on granular inflation, we use local projections to gauge the effect of economic

damages on price indices several months after a disaster for different product categories.

Our main results are as follows. First, we observe an immediate strong surge in the prices of fresh
food products of 8% after two months, which vanishes after four months. This positive inflation
effect coincides with a negative impact from natural disasters on agricultural and food processing
employment, pointing to a negative supply shock with a displacement of labor supply from the
agricultural and food processing sector to other low-skilled occupations. By contrast, the prices of
services and manufactured products decline moderately but in a statistically significant way just
after a natural disaster, by about -0.4%. This negative effect coincides with a broad decrease in
services and construction employment, suggesting a decrease in aggregate demand. The positive
effects on fresh food prices and the negative effects on other components tend to offset each other,
yielding an overall slightly positive but non-significant effect on headline inflation. Overall, our

results mainly point to a distortion of relative prices, with overall small effects on headline inflation.



The main contribution of this paper is to show that small aggregate effects of weather-related
disasters on headline inflation are the result of quite heterogeneous and partly offsetting price
responses across product categories. This has not been documented at this level of granularity in
the existing literature before. Parker (2018) and Kabundi et al. (2022) use data from the EM-DAT
international disaster database and relate these events to CPI inflation in a large cross-section of
countries. These two studies find strong heterogeneity in the impact of disasters on inflation across
disaster types and the country development level. They also both emphasize the specific effect of
natural disasters on food price inflation. Bao et al. (2023) also document a strong response of fresh
food prices after typhoons in China, which drives the overall response in food prices. Heinen et al.
(2018) estimate the impact of hurricanes and floods on prices in Caribbean islands via calibrated
damage functions. They inspect total headline CPI and three sub-categories, namely food, housing
and utilities, and all other items. Their baseline result is an inflationary effect from disasters, lasting
one month in response to floods and two months in response to storms. In line with our findings,
food price is the sub-component that reacts most strongly to disasters. However, their results show
no offsetting effects in product sub-categories, possibly due to the still high level of aggregation of
the “other goods” category. Our contribution is the estimation of the price response to natural
disasters for a fully exhaustive list of product categories of CPI inflation that covers 12 types of
goods and services. A highly balanced panel allows us to interpret our findings as compositional
effects of headline inflation with larger granularity. A focus on a homogenous set of relatively small
territories regularly exposed to extreme weather events allows us to estimate more precisely
dynamic causal effects at monthly frequency. Finally, integrating sectoral economic dynamics

enables us to discuss plausible narratives for shifts in sectoral supply and demand.

A second contribution is methodological, consisting of a comparison of the two-step IV approach
with calibrated damage functions. Damage functions map meteorological data directly via an
explicit functional form into economic damages (Auffhammer, 2018). We show that in our context,
price effects obtained with both methods are broadly similar. The effects from the IV approach
are slightly larger, suggesting that in our application, the IV regression may better address the
underlying attenuation bias present when using meteorological data. Overall, our comparison
analysis suggests that, depending on data availability, either of these two methods can be used to
provide consistent estimates of the effects of natural disasters. In particular, in our case, the
nonlinearity coming from the minimal threshold value in a calibrated damage function contributes
alot to the price effects. Our two-step IV approach may also be an interesting alternative for applied

researchers since it can help to characterize endogenously how extreme weather events affect the



occurrence of natural disasters. Another methodological aspect we highlight is the modeling of
regional seasonality. Most empirical contributions that evaluate the impact of natural disasters on
inflation control for average time-specific fixed effects. This modeling approach ignores the fact
that the seasonality of extreme weather events usually varies across territories and thus, is likely
correlated with seasonality of inflation or local production. To account for this possible source for
omitted variable bias, we include region-specific seasonal dummies. This modeling of seasonality
further ensures instrument exogeneity. Quantitative results change significantly if the model does

not account for such regional seasonality.

The paper more generally relates to the literature studying the consequences of natural disasters for
inflation dynamics. Cavallo et al. (2014) and Doyle and Noy (2015) analyze the reaction of prices
to large earthquakes in the form of event studies. Parker (2018) and Kabundi et al. (2022) use a
variety of natural disasters, ranging from geophysical events to extreme weather events,
distinguishing the intensive margin of disaster-types on prices. A few papers study weather-related
disasters only, as we do. One specific strand of papers focuses on temperature variations (Faccia et

al., 2021, Ciccarelli et al., 2024, Kotz et al., 2024).

The paper is structured as follows. Section 2 describes the data. Section 3 lays out the empirical
strategy. Section 4 contains the main results. Section 5 discusses some methodological issues in

particular differences between IV and damage function approaches. Section 6 concludes.
2. Data

In this section, we describe how we combine detailed information on natural disasters and prices
for French overseas territories, for the period from January 1999 to December 2024. We exclude
observations covering the peak of the Covid-19 episode (March 2020-December 2021) from our
baseline sample because of inflation measurement issues and the atypical nature of shocks during

the Covid-19 pandemic.

2.1 Product-level inflation data

We use the Consumer Price Index (CPI) produced at monthly frequency by INSEE for each of the
four regions in our empirical analysis. Consistent with their administrative designation, we refer to
the four overseas territories as DROMs (départements et régions d’outre-mer). Overseas territories
are the only subnational regions in France for which price indices are specifically calculated using
price quotes collected in each region. These consumer price indices have been computed since 1967
in Guadeloupe, Martinique (both Caribbean) and La Réunion (Indian Ocean), and since 1969 in

French Guiana (South America). The methodology used for their computation is consistent with
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that for metropolitan CPI since 1993 and has been incorporated into the CPI for France since 1998.
Price indices are published monthly at a granular level for 12 CPI components, along with their
annual weight in the consumption basket. Throughout the paper, we focus on 6 higher-level
aggregates based on these 12 CPI components. In Online Appendix A.1, we provide more details

on price indices used and Table A.1 displays some summary statistics.

There are some specificities of consumer prices in overseas regions, where prices are set in a
distinctive manner compared with metropolitan France. First, price levels are generally higher in
overseas regions and the price gap remained broadly constant between 1985 and 2010 (Berthier
etal., 2010). Second, as documented in Table A.2 in the Online Appendix, even though inflation
in overseas regions is correlated with inflation in metropolitan France, this correlation is lower

for food inflation (Hugounenq and Chauvin, 2006), and especially for fresh food.

Second, the heterogeneous correlation of CPIs between metropolitan France and overseas
regions is likely to reflect heterogeneous trade prevalence across types of goods and services.
Hugounenq and Chauvin (2006) document that about 45% of DROMSs’ final household
consumption was imported in 1999 (of which 60% came from metropolitan France). The share
of imported goods was as high as 70% for manufactured products and 90% for durables and
fuels. In contrast, the food sector depends much more on local production. In 1995, between
55% and 63% of food needs were covered by local products. Coverage ratios are generally
higher for fresh food than for “all food” products (combining fresh and processed food); see

Table A.3 in the Online Appendix.

Third, French overseas regions benefit from specific fiscal schemes to compensate for their
distance from metropolitan France: VAT is lower and a tax in the form of specific dock dues
(octroi de mer) on imported products protects local production against external competition.
Tobacco and petroleum products are also less taxed in the DROMs than in metropolitan France:
no VAT is imposed on petroleum products, and taxes on tobacco are set by local authorities.

Petroleum product prices are also set by local authorities.

We complement these monthly data on inflation with monthly data on hotel overnight stays
(from 2011), quarterly data on employment (from 2011) and quarterly data on imports and
exports (from 2004). To the best of our knowledge, no quarterly data exist in DROMs for

consumption or investment (see Online Appendix A.2 for data sources).



2.2 Weather-related disaster data

This section presents the data sources for natural disasters and extreme weather events.'

2.2.1 Administrative databases for natural disasters

In this paper, we use two different datasets that collect ex-post administrative information on

economic losses due to natural events.

Starting point is the EM-DAT international disaster database, produced by the Centre for Research
on the Epidemiology of Disasters (CRED). It has global coverage, a standardized approach to
disaster thresholds, and marks a de facto standard for natural-disaster shock identification in the
literature. The events recorded in the database are aggregated from several sources, namely
insurance companies, UN agencies, NGOs, research institutes and press agencies. Events recorded
in EM-DAT must respect at least one of three criteria: (i) 10 or more people killed; (ii) 100 or more
people affected/injured/homeless; and (iii) declaration by the country of a state of emergency and/or
an appeal for international assistance. Throughout the analysis, we focus on disasters classified as
“storms”, “floods” or “landslides” (since the latter are often caused by heavy rainfall). For each
region, we create a monthly binary variable equal to 1 if at least one such natural disaster was

reported in a region during a calendar month, O otherwise.

These data are supplemented by the French administrative dataset GASPAR (Gestion Assistée des
Procédures Administratives relatives aux Risques) that is assembled by the French Ministry of
Ecological Transition. A disaster is recorded upon declaration by the French government of a state
of “natural disaster”, after consultation by an inter-ministerial commission. Importantly, under
French law, the declaration of state of natural disaster conditions the eligibility of households to an
insurance payout. We therefore consider that events registered in this database are a strong indicator
for economic damages. The GASPAR dataset, starting in 1990, contains various information, such
as the start date and the end date of events, municipality, region, and type of disaster. We collect
events that include designations of floods, tropical storms or cyclones and landslides.? Then, for
each region, we construct a binary indicator by assigning each disaster reported in GASPAR to the

month corresponding to its reported start date.

! Following the literature, we would refer to climate as moments of the distribution underlying longer periods of realizations
of weather data. Our focus is on weather realizations in the tails of the distribution of precipitation and wind speed data, and
not in effects of changes in the moment of this distribution (see e.g. Dell et al. (2012) for the latter).

2 These types of events include tropical phenomena, storms, and cyclones, damages due to waves or tidal waves, and floods. A
natural disaster can combine several events of this type at the same time. We exclude events that are not directly related to
weather extreme events, such as volcanic eruptions, damages due to lava and earthquakes, or for which there is no occurrence
in our sample, such as snowstorms or avalanches.



Combining these two datasets leads us to 100 disaster events over the period 1999-2024 in the four
regions. Most of the events in EM-DAT are also reported in GASPAR, but a smaller proportion
of GASPAR events are reported in EM-DAT, since GASPAR reports a significantly higher
total number of events (Table A.5 in the Online Appendix). The events can be categorized along
different criteria. Out of the 100 events, 92 entailed either high wind or high rain (33 of which
were associated with landslides), and 8 were landslides not associated with high wind or high
rain. Out of the events entailing either wind or rain, 14 were due to both floods and storms, 76
events were floods unrelated to a storm, and 2 were storms not associated with floods

(Tables A.6 and A.7 in the Online Appendix).

Both data sources have well-documented reporting biases. A heterogeneous insurance pattern
across French overseas territories likely leads to misreporting in the GASPAR database due to a
charity hazard. Grislain-Letrémy (2018) shows that the probability that local authorities declare the
state of emergency depends on the insurance coverage of households in their community. If this
coverage is large, authorities have an incentive to declare an emergency, a prerequisite in French
law for insurance payouts. If the coverage is low, however, local communities might be better off
calling for direct financial assistance from the French government. This introduces a misreporting
bias into the GASPAR database. For EM-DAT, Felbermayr and Groschl (2014) find a different
bias. They conclude that news-driven and insurance-based datasets generally raise a selection bias
issue with a potential correlation between intensity measures and error terms in economic growth

regressions. Such a selection bias would also most likely affect our results on inflation responses.

To overcome these potential biases, we complement our natural disaster datasets with information
from meteorological records. When we estimate the effects of disasters on prices or real variables,
this will allow us to use an IV approach where reporting-based natural disaster events are
instrumented by meteorological records. Instrument exogeneity holds if the weather-related disaster
is unrelated to any other unobserved shocks that affect the inflation rate in a systematic way. In
other words, weather-related extreme events should affect prices only through the economic
damages they create. As it is standard in the literature, we argue that natural disasters captured
by meteorological data alone are plausibly exogenous to economic outcomes (Strobl, 2012,
Felbermayr and Groschl, 2014).

2.2.2 Meteorological records

The meteorological information was collected by remote sensing systems based on satellites.
Wind speed is taken from the National Oceanic and Atmospheric Administration (NOAA) Cross-

Calibrated Multi-Platform (CCMP) wind vector analysis that allows us to compute wind speed over



the ocean surface in meters per second. Each vector summarizes the average wind speed in a cell

of 0.25 degrees of latitude longitude coordinates within a six-hour interval.

Figure 1. Data from remote sensing
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Note: Panel a) Maximum wind speed in La Réunion on 25 February 2007 is 27.76 m/s, which is associated with the passing
of Cyclone Gamede. Data from NOAA Cross-Calibrated Multi-Platform (CCMP); 0.25-degree grid in m/s; range from O to
30. Panel b) Maximum daily rainfall in Guadeloupe: 252.59 mm on 19 November 1999. The chart illustrates a high degree
of regional concentration of precipitation. Data from NOAA CPC Global Unified Gauge-Based Analysis of Daily
Precipitation; 0.5-degree grid in mm in a day.
Figure 1a provides an illustration of the data for the case of cyclone Gamede passing La Réunion
in February 2007. Precipitation data are taken from the NOAA CPC Global Unified Gauge-Based
Analysis of Daily Precipitation, which provides daily cumulative precipitation in millimeters over
horizontal surface at a resolution of 0.5 degrees of latitude longitude coordinates. Figure 1b
illustrates an episode of extreme precipitation in Guadeloupe in November 1999. For aggregation,
we convert gridded observations to a region—month value x;; by taking the monthly maximum: for
region i and month 7 i.e., the maximum over all grid cells intersecting region i and all six-hourly
slots (wind) or days (rain) in month z. Table A.9 in the Online Appendix reports summary statistics,
showing that La Réunion is the region with the highest average wind speed maximum, while French

Guiana is the region with the highest average precipitation maximum.

Figure 2 illustrates the correlation between administrative disaster data and the physical
intensity of rainfall and wind. Specifically, it plots the occurrence of administrative events
against the joint distribution of maximum monthly precipitation and wind speed. When we
compare discrete events with the physical intensity of wind and precipitation, we find that many
events lie in the upper tail of the distribution. EM-DAT events are almost systematically located
above the median of either wind or precipitation records, and most of them are in the top
quartile. Conversely, GASPAR events are mainly located in the center of the distribution. This

can be due to the charity bias in GASPAR, or due to true economic damage from natural



disasters associated with low meteorological intensity due to heterogeneous regional
vulnerability. As we cannot detect the reason from available data alone, this complicates
empirical identification of causal effects from extreme weather events on the economy. The

next section presents our instrumental variable approach to overcome this identification issue.

Figure 2. Administrative shocks and joint distribution of precipitation and wind speed
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Note: Plotted are the month-region wind speed maxima (measured in meters/second) and month-region precipitation
maxima (measured in mm/day) associated with each EM-DAT event (red dots) and GASPAR events (blue dots), as well
as their joint distribution (blue shaded density) between 1999m01 to 2024m12, excluding the Covid period 2020m03-
2021m12, and pooled across all regions. Dashed lines mark top-decile (p90) wind speed and precipitation maxima. Grey
and black rectangles represent, for each variable, the range of values between median (p50), top quartile (p75), top decile
(p90), top 5% (p 95) and top percentile (p99).

3. Empirical strategy

This section documents our IV empirical strategy to estimate the effects of weather-related
disasters on prices and real variables. Our strategy relies on instrumenting disasters reported as
binary variables in EM-DAT or GASPAR datasets with wind speed and rainfall variables.
However, the relationship between weather data and economic damages is highly nonlinear
(Emanuel, 2011) and a standard 2SLS regression cannot capture this non-linearity. Moreover,
Antoine and Lavergne (2023) argue that an inadequate functional form in the first stage of an
IV regression could give rise to weak instrument issues for inference. To account for this
nonlinearity in our IV approach, we thus follow the two-step method proposed by Wooldridge
(2010). In a first step, we estimate by maximum likelihood a Logit model relating the binary
disaster variable with weather data. In a second step, we estimate a 2SLS regression where in

the first stage equation, we use the estimated probability predicted by the Logit model as an



instrument for natural disasters and in the second stage of the 2SLS regression, we relate
product-category inflation to disasters as predicted by the first stage equation. Xu (2021) shows
that this two-step IV estimation method outperforms a linear 2SLS estimator (i.e. with a linear

probability model as first-stage IV equation).
3.1 Logit regression

As described above, we first estimate a Logit model where the dependent variable w;, is a
binary variable that is equal to one if a natural disaster related to a storm, a flood or a landslide
is reported in GASPAR or EM-DAT at date ¢ in region i, and O otherwise and p; , the probability
of disaster at date ¢ in region i. Our estimated non-linear model can be written as follows:

1

Pie = Py =1) = P 2 0) = oo,

ey
where wiy=a+bX; +cZi +dYy te,+ fi +eq X fi +hy +u.

The vector X; , contains meteorological data on wind speed and precipitation. Z; ; is a vector of
controls that are specific to each region and date, which contains the monthly variation of a
business climate indicator, three lags of monthly variations of CPI for fresh food, other food,
manufactured products, services and energy. Y; is a vector of aggregate controls common to all
regions at period ¢, consisting of monthly variation of CPI for metropolitan France and monthly
variation of the ECB deposit rate. We also include several fixed effects to control for
unobservable heterogeneity: region fixed effects f;, year fixed effects h,,, calendar quarter fixed
effects ey, and interacted fixed effects between region and calendar quarter to account for
differences of weather seasonality across the three regions where overseas territories are
located, notably the Caribbean, South America, and the Indian Ocean (see Section 5.2 for a
discussion on the role of seasonality controls). Finally, u;; denotes residuals, which we assume
to be independent and identically distributed and drawn from a standard logistic distribution.

The model is estimated by maximum likelihood.

To illustrate the highly nonlinear relationship between wind/rain and natural disaster events, we
compute the simulated probabilities of a natural disaster for wide ranges of wind and rain values
- relying on estimates of a simplified version of our Logit model with only rain, wind and
regional dummies as exogenous variables. Figure 3 plots these simulated predicted probabilities

as a function of rain and wind speed for the case of La Réunion.
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Figure 3. Simulated probabilities from the Logit model relating natural disasters and
meteorological data
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Note: Plotted are predicted probabilities obtained from a logistic cumulative distribution function (CDF) for a simplified

version of model (1) relating wind speed and rainfall to the occurrence of an administrative weather-related disaster:
1

1+exp (—(a+bwind+ byrain+f;))’

P(wi,t = 1|wind, rain) = The s-shaped sigmoid is determined by estimated coefficients for

wind intensity (b,), rainfall intensity (b,) and the regional dummies (f - The model is estimated over the sample period
1999m01 to 2024m12, excluding the Covid period 2020m03-2021m12, covering the four regions.

The relationship between the probability of a natural disaster and wind speed or rainfall is S-
shaped, reflecting the logistic functional form underlying the Logit model. For a large range of
low values of wind speed or rainfall this probability is close to O (dark blue region in Panel a)
whereas for another wide range of high values of wind and rainfall the probability is close to 1
(yellow region). Whenever the latent variable w;, (which depends on wind and rain values but
also on the estimated coefficients associated with these variables) goes above 0, the probability
gets closer to 1. The marginal effects of wind and rain on the probability of a disaster will vary
with the levels of wind speed and rainfall. The marginal effects are small at very low values of
meteorological intensity, where the probability of a disaster is very low anyways, or at very
high values of meteorological intensity, where a disaster is almost certain. In contrast, the
marginal effect (or the slope of the sigmoid) is steepest at intermediate levels for rainfall and
wind (as illustrated in Panel b and Panel c of Figure 3). One important feature of this model is
that the shape and the location of the non-linearity are determined by the empirical estimation,
and we do not rely on ad hoc thresholds for wind speed or rainfall above which we consider

meteorological events start to cause economic damage, or above which disasters are certain.’

3 These estimated thresholds are characterized by a joint effect of wind speed and rainfall, meaning that the marginal effect of
each variable varies with respect on the level of the other.
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This also allows us to fully characterize how wind and rain values affect the occurrence of a

disaster event reportedly having led to economic damages in a given region.

Panel A of Table 1 reports the average marginal effects estimated from our Logit model from
equation (1). Each column corresponds to a different model where we consider linear, square
or cubic specifications of wind speed and precipitation, with or without the lower order terms.
First, we find positive and significant marginal effects of both wind speed and rainfall on the
occurrence of a natural disaster, see column (1). When we include in separate regressions
squared or cubic values of rainfall and wind speed in columns (2) and (3), the parameters are
also significant but comparing pseudo-R? values, the fit of the model slightly worsens. When
we include all meteorological data in levels plus higher-order terms, most of the regression
coefficients become insignificant and the fit of the model only marginally improves, as can be
seen in columns (4) and (5). We use the model presented in column (1) as baseline specification
since we have a concern for weak instruments due to non-significant regressors for models with
higher-order terms. Our results suggest that the nonlinearity of the relationship between
meteorological data and our binary outcome variable is sufficiently captured by the logistic

CDF if wind speed and rainfall enter in levels.*

3.2 2SLS regression

In a second step, we implement a standard 2SLS regression, where the predicted probability of
a disaster obtained from the Logit model (equation 1) serves as an instrument for the dummy

variable of administrative events. The first stage of the 2SLS can be written as follows:
Wit =y + @1 Pie + P12 +T1Ye + 81y + Uyg V1 + Uig X V1 T E1ies (2)

where P, , is the predicted probability of a natural disaster w;, as a function of meteorological

data estimated from equation (1).> We include the same control variables and include the same
type of fixed effects as in equation (1). Panel B of Table 1 reports the results from this first
stage of IV regression. All specifications show a very strong first-stage relationship, with F-
statistics typically above 100.° This underlines the high relevance of meteorological data for

particularly destructive disaster events in an IV setup.

4 We run robustness regressions including higher order terms for wind speed and rain as instrumental variables. Results are
discussed in Section 4.2 below.

5> We use subindex 1 for parameters of the first stage equation and subindex 2 for parameters of the second stage equation.
6 We assess the strength of the first stage regression with the robust F-stat, which relies on the assumption that the residuals
from the first stage are i.i.d. Figure B.1 in the Online Appendix illustrates that the residuals are not autocorrelated.
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Consistent with the Logit estimation, considering probabilities obtained from a logistic CDF
fitted to meteorological data in levels entails a slightly stronger explanatory power (both in
terms of F-stat and R?) than considering them in square or cubic transformations of wind speed
or rainfall (columns 2 and 3), but a lower explanatory power than combining higher- with lower-
order terms. However, in the latter specifications, the gains in terms of explanatory power are
small, while the model in column (1) shows already a highly significant F-statistic. We therefore

adopt the most parsimonious model as our baseline.’

Table 1. Regressing administrative disasters on sensing meteorological data

(1) (2) (3) “4) (5)
Panel A: Logit model — Marginal effects
Wind 0.024%3** -0.016 0.189
(5.36) (-0.55) (1.07)
Rain 0.0027%3** 0.003*** 0.03**
(7.17) 4.21) (2.00)
Wind? 0.0009%*** 0.001 -0.013
(5.66) (1.36) (-1.06)
Rain? 9.57¢-6%** -5.26%-6 -8.30%-6
(5.90) (-1.57) (-0.48)
Wind? 0.0004%**%* 0.0003
(5.68) (1.17)
Rain® 4.3]16-8*** 8.82°-9
(4.65) (0.18)
Pseudo R? 0.378 0.358 0.336 0.385 0.388
N 904 904 904 904 904
Panel B: First Stage — 2SLS
Dit 1.034%*3 1.027%3%* 1.022%*3 1.033%%* 1.035%%*
(11.13) (11.07) (10.89) (11.62) (12.31)
Adj.R2 0.330 0.309 0.282 0.336 0.339
N 904 904 904 904 904
F-Stat 123.78 122.53 118.59 135.1 151.61

Note: Panel A contains the estimation results of the Logit model in equation (1). Panel B presents the first stage of the IV
regression from equation (2), where the dependent variable is W; ¢ a binary variable equal to 1 if a weather-related disaster has
been reported by EM-DAT or GASPAR, and 0 otherwise. Wind corresponds to the month-region maximum wind speed (in
m/s) from the CCMP database. Rain is the month-region maximum daily precipitation (in mm) as reported by the CPC Global
Unified Gauge-Based Analysis of Daily Precipitation. T-stats are reported in parentheses. Standard errors are
heteroskedasticity-robust and computed using a White-correction routine. The model is estimated over the sample period
1999m01 to 2024m12, excluding the Covid period 2020m03-2021m12, covering the four regions. Significant at ***(.01,
**0.05, *0.10.

7 Table B.1 in the Online Appendix provides some alternative specifications with dummies for top deciles of wind and rain
used as instruments or using a standard 2SLS regression (using a linear probability model as a first stage), but F-stats are much
lower than in our baseline specification.
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Figure B.2 in Online Appendix plots the distribution of predicted probability obtained from the
Logit model while Figures B.3 to B.5 plot a decomposition of the latter conditioning on the
occurrence of actual administrative natural disasters. The entire distribution conditional on an
observed administrative shock is shifted to the right compared with the distribution when there
is no administrative disaster reported in the data. We take this as evidence for a good predictive
property achieved in model (1). Overall, we find that the average predicted probability of a
weather-related disaster conditional on observing no administrative disaster as reported in EM-

DAT or GASPAR is 7%, while it is 43% conditional on observing an administrative disaster.

Estimation for the second stage of the IV regression relies on a local projection method (Jorda,
2005). We relate the log of the price index evolution between date (year-month) #-/, and date
t+h (where h=0...6 months) to the estimated probability of a natural disaster &, , recovered from
the first stage of the 2SLS estimation (equation 2). For each price index of interest (headline

CPI or product-level CPI), the second stage regression can be written as follows:

P; ~
log (PL;HJ) = dap + Op®ir + p2nZic + T2nYe + O2ny + Uang + Vani + Hang X Vi + E2nie> (3)

it—

where @; ,is the fitted value of the reported disaster w; ¢ derived from the first stage of the 2SLS
(equation 2). All control variables and fixed effects are identical to those included in
equations (1) and (2). In particular, the regression includes three lags of the endogenous
variable, namely the product-level monthly inflation rates. This modeling approach is
recommended by Montiel-Olea and Plagborg-Mgller (2021) in the context of local projections
to obtain robust estimation and take care of potential autocorrelation in the error terms, which
can be problematic in time-series models that feature high persistence in the underlying data.
Equation (3) is estimated separately for each horizon 4, and the parameters of interest are 6y,
they capture the cumulative effect on prices of a natural disaster 4 months after a weather-
related disaster. Standard errors are heteroskedasticity-robust and computed using a White-
correction routine, as suggested by Montiel-Olea and Plagborg-Mgller (2021) and Inoue et al.
(2025).

We estimate equations (2) and (3) using a standard 2SLS estimator. Since @; ¢ is the continuous
predicted probability defined in the range [0,1], our parameter of interest 8, should be
interpreted as the effect of the predicted probability @; , going from 0 to 1 on cumulative price

variation 4 months after a weather-related disaster event.
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4. Main results

In this section, we present the results of our baseline estimation strategy for the headline CPI

and the six main product-level components but also for the real activity variables.

4.1 Baseline specification

Figure 4 plots the results from the second stage of our baseline 2SLS regression. We first find
that the effect of weather-related disasters on prices is heterogeneous across CPI product
components. On the one hand, inflation of fresh food increases strongly and rapidly, up to 8%
two months after a weather-related disaster. This effect is particularly strong, as it typically
represents about 3.2 standard deviations of fresh food CPI on average across the four regions.
This positive effect then decays progressively, until reaching values close to zero after 5
months. On the other hand, prices of other components decrease moderately after weather-
related disasters. Prices of services decrease by a maximum of 0.5% (after one month), those
of manufactured products by a maximum of 0.4% (after one month) and those of other food by
a maximum of 0.3% (after 4 months). The negative reactions of these components are
significant at the 5% level at least once over the 6 months of the projection horizon, but overall
decay to zero quickly after the disaster. For services, the negative effect is broad-based across
all subcomponents, though the effects are significant only for health services, and to a lesser
extent for communication services (Table B.2 in the Online Appendix). For food, manufactured
goods or services, the price effects are transitory: it is significant just after the disaster but
disappears after some months. Weather-related disasters lead to transitory relative price effects
but not to permanent or broad-based price increases. Finally, prices of energy or tobacco
products do not react significantly to weather-related disasters, which is expected since they are
strongly administered. When we compare the effects obtained with our 2SLS regression to the
ones obtained by OLS, i.e. by using w; ; as exogenous variable in equation (3), we find similar
qualitative results, but the price effects obtained from OLS regressions are smaller (Figure B.6
and Table B.3 in the Online Appendix). This confirms that relying only on administrative data
to measure economic damages tends to underestimate the effects of disasters on inflation, since
a significant share of these natural disasters does not correspond to extreme weather events and

are therefore likely to be related to less severe real economic damages.
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Figure 4. Impact of weather disasters on prices — CPI components and headline CPI
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Note: Plotted are the cumulative impulse responses of CPI product components and headline to weather-related disasters
obtained from our 2SLS baseline model; price effects (solid black line) are reported in percent; shaded areas show 90% (dark
grey) and 95% (light grey) confidence intervals. Standard errors are heteroskedasticity-robust and computed using a White-
correction routine. Months are expressed in distance to the natural disaster. Sample period: 1999m01 to 2024m12, excluding
the Covid period 2020m03-2021m12, for all four regions.

Our second main result shows the dynamic propagation of weather-related disasters on headline
inflation over time (bottom panel of Figure 4). We evaluate this effect in two different ways.
First, we directly use the headline CPI as dependent variable. Second, we compute a constant-
weight headline CPI in which each of the 6 CPI subcomponents described above is weighted
by its average weight over time and space. This latter index will also allow us to evaluate the
contribution of each component to the overall effect controlling for time-varying CPI
composition effects. The effect on headline CPI first decreases modestly and temporarily by
about 0.1% after one month, then becomes positive after two months, and stabilizes at around
0.15%. The effect is however not statistically significant. Our IV estimates for total CPI are in
the range of those found in the existing literature. Heinen et al. (2018) find that an average

hurricane or flood causes a temporary rise in CPI by about 0.1 pp. Parker (2018) finds that a
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natural disaster among the top quintile leads to an increase in total CPI of about 0.6 pp after a

year, and 0.9 pp after two years.’

Figure 5. Decomposition of the reaction of total inflation in the baseline specification
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Note: Plotted is the decomposition of the cumulative impulse response of headline CPI to a weather-related disaster obtained
from our baseline IV local projection. The contribution of each component is computed as the cumulative response of the CPI
of this component times its average weight in the consumer baskets of the four overseas regions between 1999 and 2024. The
solid black line reports the price effects obtained for constant-weight headline inflation (in %). The x-axis corresponds to the
time horizon expressed in months since the disaster. Sample period: 1999m01 to 2024m12, excluding the Covid period
2020m03-2021m12, for all four regions.

Figure 5 decomposes the effect on total inflation based on the effects estimated for the six sub
aggregates taken separately, namely fresh food, other food, tobacco services, manufactured
products and energy. Each contribution is computed as the observed pass-through multiplied
by the average weight of the component over 1999-2024. The sum of the contributions is
compared to the reaction of the constant-weight CPI headline. The results indicate offsetting
contributions of fresh food on the inflationary side, and of manufactured products and services

on the deflationary side, resulting in a more muted response of headline CPI.

Since natural disasters affect very differently CPI categories, the impact of disasters on headline
inflation will depend on the CPI weight of each component. Since the weight of fresh food in
CPI tends to decrease over time, from 5.9% in 1999 to 2.7% in 2024 in our sample, the CPI

effect of disasters would decrease over time. If we assume that the weight of fresh food had

8 Both papers find stronger positive effects on food, and rather negative effects on other components (such as housing).
However, there is no available data to compute a decomposition (Heinen et al., 2018) and data coverage is not homogenous
across countries (Parker, 2018).
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stayed the same over the period 1999-2024 at its value in 1999, the disaster effect on overall

prices would have reached 0.5%.°

4.2 Robustness

Our results are robust to several alternative specifications even if the magnitude of the price
effects can vary somewhat (see Table B.4 in the Online Appendix). We consider several
alternative specifications where i) we exclude La Réunion where fresh food prices are more
volatile and extreme events are more frequent, ii) we control for lags of the dependent variable
w; ¢, 1i1) we exclude administrative disasters occurring less than six months after a previous
administrative disaster, iv) we use combinations of higher order meteorological data in the first-
step Logit regression, v) we use dummies in the Logit regression indicating whether wind and
rain are in the top decile of the distribution. For all these specifications, we find a positive and
significant effect for fresh food 2 months after the disaster and negative price effects for services
and manufacturing goods one month after the disaster. Additionally, we show that pre-trends
are unlikely to drive our results, both through visual evidence for the two main events that hit
La Réunion, the cyclones Dina in 2002 and Gamede in 2007, and by estimating backward local

projections (Figures B.7 and B.8).

In Online Appendix C, we consider alternative measures based on meteorological records from
ground stations and document that our results hold (Table C.1). In Online Appendix D, we
exploit the continuous nature of the first-stage Logit fitted probability p; ;. We re-estimate local
projections after discretizing p;, at increasing thresholds 7. This exercise shows that price
effects for fresh food are near zero when the threshold is close to 0, and rise monotonically with
the threshold, reaching large values for very high predicted probabilities. Our baseline IV effect
lies in the upper part of the distribution of effects obtained across thresholds, consistent with
the idea that p; ; embeds information about event severity (only 5.8% of tested specifications
yield higher estimates). In other words, high values of the instrument predict episodes that are
both more likely to be administratively recognized and economically more disruptive. Finally,
placebo exercises that randomize instruments and treatment yield effects centered near zero and

well below our baseline estimates (Figure E.1 in the Online Appendix).

% Online Appendix F provides details of these calculations and some additional results on possible distributional effects across
households of weather-related disasters arising from varying budget shares of fresh food along the income distribution.
Specifically, this share is larger for low-income households than for high-income households.
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4.3 Effects on real economic activity

Turning to the interpretation of these results on prices, the positive effects on the prices of food
are likely driven by supply-side factors, while the negative effects on other CPI items are likely
driven by demand factors. To shed light on these mechanisms, we estimate reactions of sector-
level employment in the four regions to weather-related disasters. The main results are reported
in Table 2 while Table B.10 in the Online Appendix provides more detailed results. Note that
these effects for real activity are less precisely estimated since data are available only at a

quarterly frequency and for shorter time horizons.

Table 2. Main effects of meteorological extreme events on selected real variables (2SLS)

T=0 T=1 T=2 T=3 T=4 T=5 T=6
Overnight hotel stays -21.08%** -3.88 -2.31 -17.43%%%* -1.83 1.38 -10.45
(8.3) (7.25) (7.95) (6.6) (5.51) (7.45) (6.85)
Employment
Total -0.07 -0.37* -0.61%* -0.827%%* -1.02%%%* -1.18%** -1.20%**
(0.13) 0.2) (0.24) (0.28) (0.29) (0.33) 0.37)
Agriculture (AZ) -.34 -1.69%* -1.58 -1.24 -1.02 -.81 -1.83
(.61) (.82) (.96) (1.06) (1.17) (1.27) (1.3)
Food manuf. (C1) 67%* 78 -.06 -.54 -1.29* -1.18 -1.54%%*
(.32) (.5) (.67) (.83) 77 77 (.75)
AZ+ClI 54% .01 -.39 -.55 -1.01 -.89 -1.54%%*
(.31) (42) (.53) (.59) (.62) (.64) (.59)
Construction (FZ) -31 -.95 -1.39%%* -1.92%3%* -1.98%** S22k -2.776%**
(.36) (.59) (.66) (.73) (.84) (91) (.95)
Car repair (GZ) -.15 -.29% - 41%* -.34 -43* -51F* -.63%*
(.11) (.17) (.19) (:22) (.23) (:25) (.25)
Transports (HZ) -.34 -.46 -.83% -.88* -1.13%* -1.51%%* -1.88%%*
(.26) (:39) (.44) (.49) (.53) (.57) (.6)
Accom. — restaurants (IZ)  -.43 =72 -1.31%* -1.87%%%* -2 15%H* -2.26%%* S2.27HH*
(41 (.57) (.62) (.69) 7D (.81) (.84)
Real estate (LZ) A5 =22 -.09 -.35 -1.09* -1.55%%* -1.03
(:27) (.44) (.51) (.55) (.59) (.66) (.78)
Scientific — admin (MN) -24 -.57 -.81* -.81* -1.14%%%* -1.209%%* -1.32%%*
(.28) (.38) (.42) (.44) (.48) (.53) (.58)
Public admin (OQ) -.01 -.39* -.56%* S TTEEE -.98*Hk -1.18%** -.96%**
(.16) (:2) (:23) (.3) (.31) (.37) (41)
Other services (RU) -.66 -1.66* -2.05%* -2.67%* -2.83%k* N -2.43%%*
(.55) (.92) (:99) (1.09) (1.04) (1.12) (1.17)
Imports 2.84 2.57 6.29 4.92 5.26 2.14 3.39
(2.25) (3.37) (4.08) (4.15) (3.79) 3.7 (3.39)

Note: Coefficients based on 2SLS local projections providing cumulative impulse response functions of real activity data in
the four regions estimated for month horizon 2=0...6 between 2011m01 and 2024m12 for employment, and between 2014m01
and 2024m12 for external trade. Heteroskedasticity-robust standard errors in parentheses, computed using a White-correction
routine. Significant at ***0.01, **0.05, *0. 10. The sample excludes the Covid period 2020m03 to 2021m12.

Our main finding is a decrease of overall employment immediately after the disaster with the effect

reaching its maximum at a 1.2 % drop after six months and this downturn is widespread across
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sectors. This result is consistent with previous findings by Barattieri et al. (2023) after hurricanes in
Puerto Rico. Specifically, we find sustained decrease in agricultural and food manufacturing
employment following a natural disaster reaching a maximum and significant drop of -1.5% after
six months. This finding is in line with previous studies documenting a drop in agricultural labor
supply after natural disasters (Kirchberger, 2017). It suggests that the price increase in fresh food,
which is more likely to be produced locally than other food products, results from a predominant

negative supply shock related to the destruction of crops in fields.

Employment in most services sectors also decreases significantly, in particular for construction
(- 2.8% after 6 months), accommodation and restaurants (-2.3%), other services (-2.4%) and
transports (-1.9%). Relatedly, we estimate negative effects of weather-related disasters on overnight
hotel stays of up to -17% after three months, but these effects are much less persistent. In this
context, the combination of downward effects on services prices and downward effects on
employment in services suggests a predominant negative demand effect. This result is in line with
recent contributions showing that natural disasters decrease demand, notably through higher risk

aversion (Cantelmo et al., 2023 and Cassar et al., 2017).

We do not find significant effect of weather-related disaster on employment in the manufacturing
sector or on imports, one main source of supply for manufactured products in overseas territories. '
These results suggest that the negative effect on the prices of manufactured products is also likely
to stem from predominant negative demand. Relatedly, the absence of reaction of imports suggests
that the drop in the prices of other food products mostly come from a negative demand effect, as

other food products are mostly imported.
5. Robustness results and methodological discussion

This section compares our results with the ones obtained from a damage function approach which
is an alternative empirical strategy to measure economic effects of weather-related disasters. We

also discuss how the controls for seasonality affect the results.

5.1 Comparison with results from damage functions

One alternative empirical approach often used in the literature to assess the effect of weather-
related disasters on inflation is to rely on damage functions. This approach defines a functional
form using as inputs weather and climate data and assumes a direct mapping between this

function and economic outcomes in the sense of a “dose response function”. For applications,

10 Table B.11 in the Online Appendix reports estimated sectoral import responses.
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see in particular Emanuel (2011), Strobl (2011, 2012) and Heinen et al. (2018); for
methodological reviews, see Auffhammer (2018) and Kolstad and Moore (2020). In this
section, we compare our baseline results to estimates obtained with damage functions as
proposed by Heinen et al. (2018) and we discuss the methodological differences and parallels

with our IV approach.

To obtain a time-series of wind damage for each region, we first compute a wind destruction
index. Specifically, for gridded cell j of weather data in one of our four regions i and within a

day d, we compute the monthly wind-destruction as follows:

] D
3
H;; = max 25”- Z(Wi%“") X H{Wi%ax>w*} ) (4)
j=t  d=1 det

where &;; are exposure weights for grid cell j in region i, which aggregate to one at the regional
level, W™ is the maximum sustained wind speed for one minute in an intraday window d of

six hours from the CCMP, and 1.+ is an indicator variable equal to one if the recorded

wind speed exceeds a threshold value W™ (0, otherwise). In our case, we set this value at 15 m/s,
which corresponds to the 95" percentile of the wind distribution in our sample. We discuss
below results of robustness exercises where we vary the wind speed threshold. Maximum
sustained wind speed enters the damage function in cubic form, as it has been found that the
local destructive power of wind is roughly in cubic form related to wind speed (Emanuel, 2011).
Exposure weights §;; are constructed from satellite nighttime light data. Nighttime light has a
high predictive power for economic activity (see Henderson et al., 2012, Chen and Nordhaus,
2019 and Pérez-Sindin et al., 2021 for applications), which makes it particularly suited for the
construction of weights in our case, as we are interested in detecting areas of more intensive

economic activity.

Regarding possible economic destruction due to excessive rainfall, we also follow Heinen et al.

(2018) and define region-specific flood destruction as

]
F;t = max IZ fz‘j X Tijae X ﬂ{njdt>r* } ’ )
j=1

det

where 7;4; is the cumulative sum of rainfall in millimeters over a three-day backward-looking
window in region i, weather cell j, on day d, in month 7. The exposure weights ¢;; follow the

same logic as above and are also constructed from satellite nighttime light data. Following
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Heinen et al. (2018), we set r* at 112 mm which corresponds to the top 98" percentile of the
distribution of rainfall in our sample (see Online Appendix G for more details on the

construction of damage functions).
To evaluate the effect of disasters on prices, we run the same local projection method as in our
baseline model but using damage functions as exogenous variables:

log (PL,H ) = ap + OppHii + OpnFi + ppZie +ThY  + Shy + My + Vg + by XV +€nie (6)

i,t—1

where H;, and F;; are standardized values of H;; and F;;, and control variables and fixed effects
are the same as the ones included in our baseline model (3). Results of this estimation are
reported in Table B.5 in the Online Appendix. Damage functions have positive and significant
effects on prices of fresh food products, and overall negative effects on the prices of
manufactured products, services, and other food products; these results are broadly consistent
with our baseline IV specification. Price effects mainly come from the wind damage function,
while the rain damage function contribution is more muted. Some diverging results can be
observed compared to the 2SLS specification: rain damage functions entail some short-lived
positive effects on energy and services, while wind damage functions yield short-lived positive

effects for manufactured products.

Quantitively, we cannot directly compare the magnitude of the price effects obtained from the
two types of regressions - one derived from damage functions and the other one based on the
predicted probability of a disaster as an exogenous variable. In particular, the two types of
explanatory variables are not expressed in the same units: in the 2SLS model, the predicted
probability lies in the [0, 1] interval, whereas the damage functions are based on linear (for
rainfall) or cubic (for wind speed) values derived from meteorological records. To compare
quantitatively the price effects obtained in the two distinct exercises, we estimate how damage
functions are related to the Logit predicted probability to ensure comparability of units across
specifications. To do so, we first estimate the slope of the regression linking the damage

functions (H;, and F3}) to the predicted probability of a disaster (Pi¢). as follows:

Hist = ay + BuDit + Eith (7
Fit = ap + Brbie + €ien ()
The results of these regressions (reported in Table B.6 in the Online Appendix) show a strong

positive correlation between the predicted probabilities and the standardized damage
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functions.!! Estimates of By and By give us the damage function variation consistent with a
predicted probability of a disaster ranging from O to 1 so that we can easily compute the
predicted price response combining these two parameters (3 . and B ) with the ones estimated

from equation (6). We compute price effects obtained from damage functions that would be

consistent in terms of units with our IV estimates as follows:

Oup X By + O % By ©)
This predicted price response therefore corresponds to the effect of the wind and rain damage
functions when their variation is such that they entail a shift of the 2SLS predicted probability

from O to 1.

Figure 6. Price effects estimated using damage functions or IV regressions for headline CPI

and three main CPI product categories
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Note: Plotted are the cumulated impulse response functions obtained from the baseline 2SLS model (dashed black lines) and
using the wind and rain damage functions in OLS regressions (solid black lines). The price response (in %) to damage functions
is computed for a variation of the damage functions equivalent to a 0-to-1 increase in the 2SLS predicted probability of a
disaster. Shaded areas represent 90% and 95% confidence intervals associated with the coefficients of the damage functions.
Standard errors are heteroskedasticity-robust and computed using a White-correction routine. The x-axis corresponds to the
time horizon expressed in months since the disaster. Sample period: 1999m01 to 2024m12, excluding the Covid period
2020m03-2021m12, for all four regions.

Figure 6 compares our baseline 2SLS estimates for total CPI and fresh food, manufactured
products and services CPI (dashed lines) to estimates obtained from damage functions (solid

lines), using the normalization described above. The results using damage functions are

1" Additionally, Tables B.7 and B.8 in the Online Appendix show that higher predicted probabilities of disasters p;, are
associated with much higher shares of non-null damage functions, and that predicted probabilities are higher when wind or rain
are above the thresholds we set for the baseline damage function (W*=15 m/s and r*=112 mm).
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coherent with those of our baseline 2SLS methodology. In most cases, estimated reactions are
close, though a bit lower in absolute values. As a complementary analysis, we report results of
separated regressions for the wind damage function and rain damage function in Figure B.9 in
the Online Appendix. Results appear to be driven by the wind damage function, with only
limited effects from the rain damage function. This is consistent with our finding of a higher
average marginal effect of wind over precipitation on the disaster probability in the Logit
regression model (1). To further test the respective role of rain and wind extreme events, we
have estimated the price effects of the different weather-related disasters including dummy
variables corresponding to different types of events (storms with or without floods, floods
without storms, landslides) in OLS local projections.!? We find the price effects mainly come
from storms (Table B.9 in the Online Appendix). This conclusion is also in line with results

obtained by Heinen et al. (2018).

In both damage function and IV approaches, economic damages or occurrence of reported
damages are expressed as a nonlinear function of weather data. The nonlinearities in the damage
function come from the dummy variable based on wind or rain thresholds, but also the use of
cubic terms. In contrast, the nonlinearity in the IV approach comes only from the probability of
weather-related disasters. This probability is endogenous and is estimated using a Logit model
that links wind speed and rainfall to recorded administrative disasters, while in the damage
function approach, disaster occurrence is determined by an exogenous threshold. We
investigate how the two sources of nonlinearities in the damage function contribute to the
estimation of the results and how they compare with the IV approach. We run this comparison
exercise for fresh food prices since the effects of weather-related disasters are maximal for this
product category and using the damage function computed with wind speed which is the most
important meteorological dimension for economic damages in our sample. Our comparison
exercise consists of using different damage functions where we vary the threshold of the dummy
variable entering the damage function and we also test damage functions where wind is
introduced linearly (instead of the cubic term). Results are plotted on Figure 7. In columns, we
vary the threshold values, while in rows we vary how wind speed is incorporated into the
damage function (cubic transformation, levels, or a simple dummy variable). Our baseline
scenario (with a threshold at 15m/s and a cubic transformation of wind speed) is represented in

panel (a) for comparison.

12 Estimating our 2SLS model would require using three different instruments for the three types of weather events. We prefer
to keep the empirical model simple, as our focus is on the relative contribution of the different weather-related events to price
effects.
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Figure 7. Effects of alternative wind damage functions on fresh food prices

a) W*=15, cubic damage b) W*=20, cubic damage
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Note: Plotted are the dynamic responses of alternative wind damage functions on the prices of fresh food. In columns, we report
results where we vary the threshold under which the damage function is 0. In column (1), we consider a threshold of 15 m/s as
in our baseline scenario (95™ percentile). In column (2), the threshold is set to 20 m/s (99" percentile) and in column (3), we
set this threshold to 5 m/s implying that the damage function is always different from 0. In rows, for a given max threshold of
wind, we report results of regressions where we modity the functional form of the damage function when it is different from 0
(i.e. above the max threshold). In the first row, we report results using the baseline damage function using the cubic term
transformation. In the second row, we use wind in levels in the damage function. In the third row, we report results where the
damage function is reduced to a dummy variable equal to 1 if the wind speed is above the max threshold at date ¢ and 0
otherwise. Dashed lines in all the graphs report our baseline 2SLS estimates for comparison. The shaded area represents the
90%- and 95% confidence intervals. Standard errors are heteroskedasticity-robust and computed using a White-correction
routine. All price effects are expressed in percent. The x-axis corresponds to the time horizon expressed in months since the
disaster. Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-2021m12, for all four regions.

First, we consider two polar cases of the damage function: one where we use a very low
threshold such that the only source of nonlinearity arises from the cubic transformation of wind
speed (panel ¢) and another one where the threshold is larger (set at 20 m/s, i.e., the 98th
percentile of the wind speed distribution) but where we do not include the cubic transformation
of wind speed. In that case, the damage function is reduced to a dummy variable equal to 1
when wind speed exceeds the threshold and 0 otherwise (panel h). When we compare results
using these two alternative damage functions, the results are almost identical. This suggests that
the two types of nonlinearities in the damage function capture the same price effects. Moreover,

for a threshold of 20m/s, the cubic transformation of wind speed does not provide additional
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price effects (panel b). Put differently, when the threshold in the damage function is set at a
relatively high value, the price effects estimated with a simple dummy damage function
(panel h) are similar to those obtained with the baseline damage function that includes both

types of nonlinearities (panels a and b).

Keeping the threshold at 15 m/s but with a damage function where wind is introduced in levels
(panel d), we find that more than half of price effects are captured (5.2% at t+2 versus 6.7%
with the cubic term) and the dummy threshold still captures a significant share of price effects
(Figure 7, panel g). This result is consistent with our IV regression: when we introduce cubic
terms of rain and wind, we also find somewhat stronger price effects for fresh food (10.3% at
t+2 instead of 8.0% in our baseline, see Table B.4 in the Online Appendix). Overall, in both
approaches, results are quite similar, the main difference comes from modelling choices: in the
IV model, thresholds are determined by the estimation of the model whereas in the damage
functions, the thresholds are set by the econometrician and are justified by physics laws or
expert judgment. In our context, the comparison between damage functions and our IV
approach suggests that the price effects are mainly driven by the nonlinearity coming from the
binary threshold defining the occurrence of a disaster event rather than by whether the weather

data are introduced in levels or in cubic terms.

Finally, we test whether results of damage functions differ because of the explicit exposure
measure (Figure B.10 in the Online Appendix). There are potentially many factors that shape
the impact of meteorological events at the local level. The existing literature refers to geological
features such as the degree of urbanization and land use in the affected area (Noy, 2009), or the
shape of the continental shelf and coast (Bertinelli and Strobl, 2013). Nightlight imagery, the
exposure weight we adopted from the literature, is notably ill-suited to capture agricultural value-
added (Keola, 2015), and its predictive power for services value-added can be heterogeneous across
territories (Bluhm and McCord, 2022). If we compute damage functions (4) and (5) without

exposure weights, we find very similar results (panels d to f of Figure B.10 in the Online Appendix).

5.2 The role of seasonal factors and year fixed effects

This section documents the importance of accounting for regional seasonality in estimating the
effects of weather-related extreme events. Indeed, such events in overseas territories are often
related to hurricanes and cyclones. The occurrence of storms is more likely during periods when
the difference between air temperature and sea surface temperature is at its peak, resulting in a
seasonal phenomenon. This matters for two reasons. First, it highlights the need to model regional

seasonality in the empirical framework to prevent possible omitted variable bias. Second,
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instrument exogeneity requires that instruments and outcome variables are uncorrelated conditional
on all control variables. Possibly overlapping seasonality between inflation and wind speed can be
controlled for with regional time dummies. Next, we discuss sources and patterns of seasonality in

the data and show how the treatment of this seasonality affects quantitatively our results.

Seasonality in extreme weather events differs across the territories. Table A.8 in the Online
Appendix shows that weather-related disasters in La Réunion are concentrated during the first
half of the year. In contrast, Guadeloupe, Martinique, located in the Caribbean, are affected by
the North Atlantic hurricane season, which runs from June to November. There is also regional
heterogeneity in the absolute exposure to weather-related disasters. While Guadeloupe, La
Réunion and Martinique have a comparable number of administrative shocks, French Guiana
has a much smaller number of shocks (all based on GASPAR data), which are mainly
concentrated in the month of May (Tables A.5 and A.8 in the Online Appendix). Similarly,
seasonal patterns in inflation differ across the regions. Figure A.1 in the Online Appendix plots
the average monthly variation for the main components of CPI across regions. Seasonal
variation in La Réunion appears to differ from that of the other overseas regions, both in timing
and in magnitude. The difference mainly reflects that La Réunion is the only southern

hemisphere region in our sample, affecting the seasonal timing of agriculture and tourism.

In our baseline regression, we have included quarter fixed effects interacted with regional fixed
effects to capture the seasonal effects specific to each region. In Table 3, we compare our
baseline 2SLS specification with alternative 2SLS specifications controlling differently for
seasonal patterns. Panel (A) reports our baseline estimates for comparison. Panel (B) reports
results from a specification excluding quarterly region-specific fixed effects (but including year
fixed effects common to all regions). The product-level price reactions differ substantially. Not
controlling for region-specific seasonality yields much stronger effects for fresh food products,
which go up to 18.6% after two months, driven by the distinct seasonality of La Réunion.
Stronger effects for fresh food prices are partially offset by stronger negative price effects for
manufactured products, down to a minimum of -0.7% after two months. Additionally, the prices
of services increase more substantially at the end of the horizon, by up to 0.9% after 6 months. '3
Eventually, in this specification, the effects for headline CPI are positive and significant. In
Table B.12 in the Online Appendix, we report that controlling only for seasonal effects and

excluding year fixed effects yields results closer to our baseline specification. Overall, these

13 This specific effect appears to be entirely driven by the disasters and price seasonality of French Guiana, in which 60% of
shocks occur in the month of May.

27



results imply that controlling for region-specific seasonal patterns is important for the precise

and unbiased estimation of dynamic causal effects of weather-related extreme events on prices.

Table 3. Alternative specifications regarding seasonality for the 2SLS strategy

T=0 T=1 T=2 T=3 T=4 T=5 T=6
(A) Baseline
Headline -0.14 -0.11 0.11 0.11 0.13 0.12 0.20
Fresh food 0.99 6.71%%* 8.0+ 4. 59%#** 2.45 1.16 1.23
Other food excl. tobacco -0.09 -0.21%%* -0.11 -0.24 -0.28%* -0.11 -0.14
Manufactured products -0.06 -0.38#%* -0.13 0.05 -0.05 -0.10 -0.01
Services -0.20%* -(.47% %% -(0.29%* -0.08 -0.04 -0.02 0.05
(B) No seasonal effect
Headline -0.09 0.08 0.46%%* 0.42%* 0.41%** 0.527%#%* 0.56%**
Fresh food 6.05%%* 16.28%%%  18.59%** ]2 45%%*% 6.37%* 2.69 0.25
Other food excl. tobacco -0.03 -0.07 0.01 -0.15 -0.24 -0.09 -0.10
Manufactured products -0.17 -0.71%%% -0.32% 0.06 0.07 0.29 0.25
Services -0.40%** -0.51%** -0.13 0.17 0.53%** 0.77%%* 0.90%***

Note: Results for alternative specifications of local projections of consumer prices from a 2SLS model. Panel (A) shows results
for our baseline specification, panel (B) shows results for a 2SLS specification controlling for year-quarter fixed effects, but
not for region-specific quarter fixed effects. Significant at *#*0.01, **0.05, *0.10. Standard errors are heteroskedasticity-robust
and computed using a White-correction routine. Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-
2021m12, for all four regions.

6. Conclusion

This paper estimates the sectoral effects on prices of weather-related natural disasters in the
four French overseas territories between 1999 and 2024. The response of inflation to weather-
related disasters is heterogeneous across CPI components both in terms of timing and
amplitude, with a quick and positive response of food inflation, especially fresh food, which is
partly offset by a negative contribution of inflation in services and manufactured products. This
leads to a moderate, non-significant effect on headline inflation. We provide complementary
evidence on real activity. While lower employment in the food sector points toward dominant
supply effects in the price response of fresh food, lower demand for manufactured goods and
services in conjunction with lower employment are likely to contribute to the negative price

response of manufactured goods and services.

Finally, the paper makes a methodological contribution of interest for follow-up empirical
work. Namely, it proposes an IV approach to overcome the measurement problems related to
economic damage resulting from physical disaster risk. Instrumenting disaster occurrence in
administrative databases with meteorological data leads to comparable results as the direct
specification damage functions. Relatedly, the findings underline the importance of a careful
modeling of regional seasonality, as inflation and weather-induced disaster might share

common seasonality patterns that potentially bias the estimator.
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ONLINE APPENDIX

Decomposing the Inflation Response
to Weather-Related Disasters

Erwan Gautier, Christoph Grosse-Steffen, Magali Marx, Paul Vertier

Appendix A. Data sources and descriptive statistics
A.1 Consumer prices in French DROMs

A.1.1 CPI data

CPI data are downloaded from INSEE website. We use monthly raw CPI data. INSEE publishes

these data for several levels of aggregation (or “regroupements conjoncturels”), all based on
the COICOP classification. The indicators can be classified into 4 aggregates, for which there

exists 12 subindicators (whose composition can be found here):

* Food including tobacco, which is broken down between fresh food, other food and
tobacco

* Manufactured products, which is broken down between footwear and garment, other
manufactured products and pharmaceutical products

* Energy, for which INSEE produces a subindex on petroleum products (but no other
subindices)

* Services, which includes transportation, communication, health, rents and other services
In our baseline analysis, we focus on manufactured products, energy and services without
breaking them down, but we break down food including tobacco into its three components,
because of their very different nature (fresh food products being largely produced locally, other

food being largely imported, and tobacco being administered).

Headline CPI is significantly correlated between overseas regions and France with an average
correlation of 0.29, except for La Réunion (Table A.2). On average, the correlation is strong and
positive for services (0.7) but smaller for manufactured products and energy (about 0.3), and this
holds true for all overseas regions except for La Réunion in which the CPI of manufactured products
is negatively correlated with that of France. While the CPI of other food products and tobacco is
positively correlated between overseas regions and France (0.3 to 0.6), this is not the case for the
CPI of fresh food products, which is not significantly correlated between overseas regions and

France (-0.02 on average).
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Table A.1. Descriptive statistics of monthly inflation rate (1999m01-2024m12)

Guadeloupe greznch La Réunion | Martinique DROMs France
uiana

Component mean sd |mean sd |mean sd |mean sd |mean sd |[mean sd
Headline 0.14 049 | 0.13 042 |0.14 059 |0.14 040 |0.13 0.34]0.14 0.35
Fresh products 035 338|032 3.07 (069 891|032 272|042 248|030 3.39
Other food 0.18 047|017 033|019 040|020 041]0.19 0.28|0.16 0.31
Tobacco 0.70 254|061 271|070 352|073 255|068 1.67 051 1.74
Manufactured 0.05 091 |-0.02 0.27 | 0.04 0.89 | 0.04 0.63 | 0.03 0.45|0.02 1.06
products

Energy 0.27 219|028 226|027 214|028 2201|0.27 193|035 1.87
Services 0.15 058015 075014 0.78 | 0.14 0.51 | 0.14 0.49 | 0.15 0.48

Note: the table reports the mean and standard deviation of monthly inflation rates in each overseas territory and in France
mainland. The sample excludes the Covid period 2020m03-2021m12.

Table A.2. Correlations between headline monthly CPI inflation in DROMs and in France

(1999m01-2024m12)

Component Guadeloupe French La Réunion Martinique All DROMs
Guiana
Headline 0.296 0.287 0.058 0.247 0.291
[0.000] [0.000] [0.328] [0.000] [0.000]
Fresh food 0.039 0.027 -0.009 -0.110 -0.016
[0.507] [0.652] [0.883] [0.061] [0.781]
Other food 0.287 0.433 0.466 0.454 0.582
[0.000] [0.000] [0.000] [0.000] [0.000]
Tobacco 0.235 0.116 0.239 0.135 0.313
[0.000] [0.050] [0.000] [0.022] [0.000]
Manufactured products 0.339 0.393 -0.183 0.360 0.266
[0.000] [0.000] [0.002] [0.000] [0.000]
Energy 0.294 0.285 0.308 0.333 0.346
[0.000] [0.000] [0.000] [0.000] [0.000]
Services 0.422 0.692 0.519 0.47 0.723
[0.000] [0.000] [0.000] [0.000] [0.000]

Note: the table reports correlation coefficients between headline CPI monthly inflation in each overseas territory and

headline CPI monthly inflation in France mainland, p-values in parentheses. The sample excludes the Covid period

2020m03-2021m12.

Table A.3 — Share of consumption covered by local production
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Fruit Vegetables
Fresh All Fresh All
Guadeloupe 44% 16% 55% 43%
Martinique 31% 13% 39% 26%
French Guiana 94% 79% 90% 81%
La Réunion 62% 34% 68% 48%

Note: Coverage ratios of local production for fruit and vegetables in the four regions, both for fresh food (Fresh)

and the sum of fresh and non-fresh food (All).
Source: Observatoire des économies agricoles ultramarines (2021) — La couverture des besoins alimentaires

dans les DCOM.
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Figure A.1. Seasonal variations of regional monthly CPI inflation
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Note: the figure plots for each calendar month the average month-on-month variations (in %) of headline CPI and of CPI
by broad product categories. The x-axis reports calendar month (1 for January, 2 for February...). The sample excludes the
Covid period 2020m03-2021m12.
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A.1.2 Composition of CPI baskets across overseas regions

Annual CPI weight data for each aggregate are also downloaded from the INSEE website. The

composition of consumer baskets is heterogeneous across French territories and varies over time.
Table A.4 reports the weights of each aggregate according to the French statistical office (INSEE)
over our sample period, in each region, and the unweighted mean over the sample. Food including
tobacco represents about 17% of the consumer basket in the considered region at the end of the
sample, with a weight that is declining over time. Fresh food represents roughly 16% of the food
basket in 2024 (2.7% of the CPI basket), and its weight strongly decreased over time from 5.9% in
1999. Services represent about 45% of the consumer basket at the end of the sample, with a
maximum weight of 46% in La Réunion and a minimum weight of 43% in Martinique. Contrary to
food, the weight of services increases over time in all territories. Manufactured products represent
30% of the CPI basket in 2024, only slightly above the sample mean.

Table A.4. Weight of the main aggregates of Consumer Price Index (Total=10,000)

Geographical area Guadeloupe French Guiana La Réunion Martinique DROMs France
Period 1999 2024 99- (1999 2024 99- | 1999 2024 99- | 1999 2024 99- | 1999 2024 99- [ 1999 2024 99-
24 24 24 24 24 24

Food 2882 1654 2110 | 2729 1705 2224 | 2675 1708 2091 | 2538 1626 2061 | 2706 1673 2121 | 1973 1687 1843
Fresh food 813 345 410 | 499 245 359 | 432 195 240 | 615 311 415 | 590 274 356 | 225 185 217
Other food 1999 1252 1625 | 2139 1384 1752 | 2121 1407 1686 | 1895 1263 1585 | 2039 1327 1662 | 1550 1323 1432
Tobacco 71 57 75 91 76 113 | 122 106 165 | 29 52 6l 78 73 103 | 198 179 195
Manuf. products 3065 3049 3057 | 2526 2822 2601 | 3200 2925 3010 | 2868 3174 2870 | 2915 2993 2885 | 3011 2305 2821

Footwear and garment | 779 388 590 | 613 548 618 | 618 470 614 | 673 400 632 | 671 452 613 | 541 343 447

Other manuf. prod. 2012 2040 2111 | 1775 1889 1732 | 2376 2104 2159 | 1964 2273 1944 | 2032 2077 1987 | 2093 1564 1939
Pharma. products 274 621 355 139 385 251 205 351 238 | 232 501 294 | 213 465 284 377 398 435
Energy 822 912 882 | 707 962 761 758 749 738 | 793 866 855 | 770 872 809 | 717 831 783
Petroleum prod. 600 548 665 | 459 530 523 533 434 522 | 561 532 637 | 538 511 587 | 408 428 444
Services 3232 4385 3951 | 4042 4511 4413 | 3370 4618 4162 | 3801 4334 4215 | 3611 4462 4185 | 4144 5177 4490
Transportation*® 0 62 338 0 232 401 0 196 371 0 131 216 0 155 332 | 228 296 252
Communication® 0 439 333 0 433 392 0 352 413 0 444 377 0 417 378 197 199 247
Health 331 805 447 147 548 302 | 278 974 506 | 280 736 418 | 259 766 418 | 507 614 552
Rents 723 817 812 | 1470 1406 1552 | 874 835 962 | 934 878 9838 | 1000 984 1078 | 776 794 744
Other services 1757 2262 2096 | 2141 1892 1901 | 1786 2261 2035 | 2188 2145 2262 | 1968 2140 2073 | 2444 3274 2699

* Data only available since 2010 for all regions (DROMs).

Note: Weight of the main components of CPI in the four regions, and in metropolitan France, for year 1999, year 2024 and
the average overt the 1999-2024 period. The average for the four DROMs is an unweighted mean. The sample excludes the
Covid period 2020m03-2021m12.

Comparing the weights in overseas regions to those in metropolitan France, three facts stand out.
First, the weight structure is more stable over time in metropolitan France. Second, the weights in

overseas regions and in France differ mainly with respect to food excluding fresh food (which is
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higher in DROMs) and services (which is lower in DROMs). Thirdly, the composition of
consumption baskets in overseas regions are converging to the composition measured in

metropolitan France.

A.2 Real activity and external sector

We complement our empirical analysis with some sectoral data on real activity. We include

sectoral employment published at quarterly frequency by INSEE since 2011. Employment in

overseas regions is dominated by services: non-commercial services (public administration)
represent about 45% of employment, and commercial services represent about 39% of
employment. In contrast, the manufacturing industry represents only about 7% of total
employment, and the construction sector about 5%, followed by the agricultural sector with 2%.
To assess the effect of natural disasters on the tourism sector, we also include monthly hotel
overnight stays (“nuitées dans [’hotellerie’) in our analysis, published at monthly frequency by

INSEE since 2011. They amount to 83,000 on average every month, which roughly corresponds

to about 15% of the average population of overseas regions. Finally, we also explore the effects

of natural disasters on imports, which are provided by the French customs on a quarterly basis

since 2004. Food imports represent about 10% of all imports, refined oil about 25%, and
transport materials about 20%. In our analysis, these quarterly data are merged with our main
monthly dataset assuming constant monthly values of employment and imports within a quarter.
We tested an alternative way of merging the data, assuming that quarterly data refer to the last

month of each quarter and using a linear interpolation within the quarter. The results are robust.

A.3 Administrative disaster databases

Table A.S. Overlap between the administrative measures of disasters

Number of reported disasters (and %) in
Total | Guadeloupe f}ii:fll; Réll;l?ion Martinique
GASPAR 97 | 27 (27.8%) 8(8.2%)  31(32.0%) 31 (32.0%)
EM-DAT 17 4 (23.5%) 1 (5.9%) 8 (47.1%) 4 (23.5%)
All admin.* 100 |27 (27.0%) 8(8.0%) 34 (34.0%) 31 (31.0%)
GASPAR & EM-DAT 14 4 (28.6%) 1 (7.1%) 535.7%) 4 (28.6%)

Note: Descriptive statistics on the distribution of natural disasters (including storms, floods and landslides) in the four French
overseas territories. The percentages in brackets sum to 100% over the columns (ie for a given data source). “All admin” is
the union between GASPAR and EM-DAT events. The sample excludes the Covid period 2020m03-2021m12.
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Table A.6. Types of disasters — Floods and storms
Flood

Number of observations Total
No Yes
Storm No 1,068 76 1,144
Yes 2 14 16
Total 1,070 90 1,160

Note: this table reports the distribution of events with our sample period (1999-
2024, excluding the Covid period 2020m03-2021m12) In bold, 92 administrative
disasters as reported in EM-DAT or GASPAR datasets including either floods or

storms.
Table A.7 — Types of disasters - Landslides
Flood or storm No flood or storm

Number of events events

events without with ) .

landslides landslides with landslides
59 33
Total 92 8

Note: Number of disaster events (storm or flood) in which landslides occur or not in columns

(2) and (3). Column (4) reports the number of landslides events in periods without storms or
floods.

Table A.8. Share of total administrative disasters (in %) by month of the year

Month La Réunion | Guadeloupe Martinique Fre.nch
Guiana
January 23.5 7.4 3.2 12.5
February 324 0.0 0.0 12.5
March 59 3.7 0.0 12.5
April 17.7 3.7 9.7 25.0
May 2.9 11.1 12.9 37.5
June 2.9 7.4 3.2 0.0
July 0.0 0.0 3.2 0.0
August 0.0 7.4 9.7 0.0
September 0.0 18.5 16.1 0.0
October 0.0 14.8 194 0.0
November 2.9 18.5 12.9 0.0
December 11.8 7.4 9.7 0.0

Note: Share of total number of administrative disasters by calendar month, in each of the different
regions. 32.4% of all administrative disasters in La Réunion occurred in February. The sample
excludes the Covid period 2020m03-2021m12.
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A.4 Meteorological data

The Appendix A.4 illustrates the meteorological data used in the empirical model and provides
summary statistics.

Figure A.2. Wind speed from remote sensing
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Note: Wind speed from NOAA’s Cross-Calibrated Multi-Platform (CCMP) provided on a global scale on a 0.25°
latitude/longitudinal grid. Wind speed is measured as maximal sustained wind for one minute during a 6-hour window. Its
unit is in m/s on a range from O to 30. Panels a—d show the maximum wind speed observations for days with regionally large
events:(a) La Réunion, Cyclone Gamede, 27.76 m/s on 2007-Feb-25 12 am, (b) Martinique, Hurricane Dean, 17.26 m/s on
2007-Aug-17 6 pm. (c) Guadeloupe, Hurricane Maria, 21.52 m/s on 2017-Sep-19 6 pm. (d) French Guiana, 13.52 m/s on
2015-Mar-10 12 pm.
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Figure A.3. Precipitation from remote sensing
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Note: Precipitation from CPC Global Unified Gauge-Based Analysis of Daily Precipitation. The data is defined on a 0.5°
longitude/latitude grid and its unit is measured in mm/day with global realizations in the interval [0,300]. Panels a—d show
the corresponding observations on days with regionally extreme precipitation events. (a) La Réunion, 319.11 mmon 2011-
01-29, (b) Martinique, 141.06 mm on 2016-09-28, (c) Guadeloupe, 252.59 mm on 1999-11-19, (d) French Guiana,
212.79 mm on 2000-04-08.

Table A.9. Summary statistics of meteorological data

Rain Wind speed
(mm/day) (m/s)
Mean SD Mean SD
La Réunion 41.06 43.29 13.33 2.71
French Guiana 67.54 30.34 10.13 1.30
Guadeloupe 37.30 24.78 11.68 1.64
Martinique 41.18 24.64 11.20 1.35

Unweighted average 46.77 33.88 11.59 2.17

Note: Precipitation is measured in cumulative mm/day. Wind speed is measured in
m/s as maximum sustained wind speed for one minute. The sample excludes the
Covid period 2020m03-2021m12.
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Appendix B. Additional results

Figure B.1 Partial autocorrelation of the 2SLS first-stage residual.
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Note: Average partial autocorrelation of the Logit residual obtained over the 4 regions. The partial autocorrelation and the
related 95 % confidence interval are computed using the Stata pac command for each of the 4 regions. The confidence interval
is computed as the standard error of 1/y/n, where n is the sample size. The results are then averaged using equal weights. The
shaded area represents the average confidence interval.

Figure B.2. First-stage fitted values: predicted probability of a significant natural disaster
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Note: Density plot of predicted probabilities p; ; obtained from Logit model (1). Since the dependent variable is an indicator
variable associated with natural disaster events with large economic damages, we interpret p;; as the predicted probability
of an economically significant natural disaster as a function of meteorological data. The sample excludes the Covid period
2020m03-2021m12.
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Figure B.3. First-stage fitted values: predicted probability conditional on the occurrence of
an administrative disaster (GASPAR or EM-DAT)
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Note: Density of predicted probabilities, computed on two separate subsamples of dates where an administrative weather-
related disaster was reported (in blue) and dates with no reported disaster (in red), (decomposition of previous Figure B.2).

Sample excludes the Covid period (2020m03-2021m12).

Figure B.4. First-stage fitted values:
predicted probability conditional on the
occurrence of GASPAR disaster
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Note: Density of predicted probabilities, computed on two
separate subsamples of dates where an administrative
weather-related disaster was reported in GASPAR (in blue)
and dates with no reported disaster (in red), (decomposition
of previous Figure B.2). Sample excludes the Covid period
(2020m03-2021m12).

Figure B.5. First-stage fitted values:
predicted probability conditional on the
occurrence of EM-DAT disaster
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Note: Density of predicted probabilities, computed on two
separate subsamples of dates where an administrative
weather-related disaster was reported in EM-DAT (in blue)
and dates with no reported disaster (in red), (decomposition
of previous Figure B.2). Sample excludes the Covid period

(2020m03-2021m12).
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Table B.1. First stage regressions - alternative specifications

ey 2)

Endogenous variable: w;
g i Logit model Linear prob. model

Logit model
Dummy top decile wind 0.139%%*
(5.12)
Dummy top decile rain 0.153**
(5.71)
Pseudo R* 0.311
N 904
2SLS - first stage equation
Predicted probability (p;;) 1.0227%*%*
(9.32)
Wind 0.04 1%**
(6.49)
Rain 0.003%**
(6.58)
Adj.R2 0.250 0.230
N 904 904
F-Stat 86.83 48.651

Note: Column (1) presents the estimation results for Logit stage eq. (1) and first stage eq. (2) with dependent
variable all natural disasters reported in EM-DAT and GASPAR as a binary variable. Dummy top decile wind
is a dummy variable indicating whether the maximum wind speed from the CCMP database in a given region
and month is in the top decile of the distribution computed across the 4 regions. Dummy top decile rain is a
dummy variable indicating whether the maximum daily precipitation in a region and month as reported by the
Climate Prediction Center (CPC) is in the top decile of the distribution computed across the 4 regions.
Column (2) presents the results of a linear probability model as a first stage regression in the IV approach.
Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-2021m12, for all four regions. T-
stats are reported in parentheses. Standard errors are heteroskedasticity-robust and computed using a White-
correction routine. Significant at ***0.01, **0.05, *0.10.
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Table B.2. Effects on CPI cumulated inflation for all available product components (2SLS)

T=0 T=1 T=2 T=3 T=4 T=5 T=6
Food excl. tobacco 0.03 0.90%**  1.28%** 0.54 0.23 0.18 0.17
(0.20) (0.30) (0.36) (0.36) (0.36) (0.34) (0.31)
Other food -.09 -0.21%*  -0.11 -0.24 -0.28*  -0.11 -0.14
(.08) (0.10) 0.12) (0.15) (0.15) (0.17) (0.19)
Fresh food 0.99 6.71%*% B Ql*** 4.59%** 245 1.16 1.23
(1.20) (1.74) (1.88) (1.64) (1.63) (1.52) (1.50)
Tobacco 0.39 0.73 1.02 1.03 1.30 1.15 1.05
(0.55) (0.72) (0.88) (0.98) (1.07) (1.17) (1.18)
Energy -0.60 -0.07 -0.13 -0.11 0.78 0.64 0.83
(0.56) (0.69) (0.73) (0.80) (0.93) (0.94) (0.89)
Petroleum products -0.82 -0.15 -0.15 -0.31 0.55 0.45 0.89
(0.76) (0.93) (0.99) (1.05) (1.21) (1.26) (1.21)
Manufactured products -0.06 -0.38***  -0.13 0.05 -0.05 -0.10 -0.01
(0.14) (0.14) (0.15) (0.15) (0.18) (0.16) (0.16)
Other manuf. 0.05 -0.12 -0.08 -0.07 -0.02 0.09 -0.06
(0.08) (0.09) (0.11) (0.13) (0.13) (0.10) 0.11)
Footwear and garments -0.37 -1.53%** -0.46 0.40 -0.44 -1.04 0.04
(0.60) (0.65) (0.63) (0.60) (0.74) (0.74) (0.57)
Pharmaceutical products -0.05 -0.02 0.04 -0.11 -0.13 0.02 -0.12
(0.09) 0.12) (0.14) (0.15) (0.15) (0.16) (0.18)
Services -0.20%* -0.47%*%  (.29%* -0.08 -0.04 -0.02 0.05
0.11) (0.14) (0.15) (0.14) (0.15) (0.14) (0.16)
Other services -0.07 -0.15 -0.05 0.10 0.12 0.12 0.24
0.11) (0.13) 0.17) 0.17) (0.18) (0.19) (:21)
Rents 0.04 -0.13 -0.03 -0.05 0.00 0.02 0.08
(0.09) (0.11) (0.13) (0.14) (0.15) (0.16) (0.16)
Communication services -0.28%* -0.30 -0.37 -0.30 -0.33 -0.02 -0.06
(0.16) (0.23) (0.26) (0.30) (0.36) (0.42) (0.45)
Health services -0.26%* -0.14 -0.30* -0.38**  -0.33*  -0.14 -0.10
0.11) (0.14) (0.16) (0.16) (0.20) (0.19) (0.26)
Transportation services -2.63 -4.02 -1.02 0.04 -2.20 1.84 0.02
(2.92) (3.17) (2.87) (2.53) (3.05) (2.65) (3.17)
Total -0.14 -0.11 0.11 0.11 0.13 0.12 0.20
(0.10) (0.13) (0.14) (0.17) (0.17) (0.16) (0.16)
Total, constant weight -0.13 -0.09 0.13 0.12 0.10 0.05 0.10
(0.11) (0.13) (0.13) (0.16) (0.16) (0.15) (0.16)

Note: This table reports the estimated coefficients of the cumulative impulse responses of CPI product components and
headline inflation to weather related disasters obtained from the 2SLS local projections model (coefficients 8 in the
equation (3)). Heteroskedasticity-robust standard errors in parentheses are computed using a White-correction routine.
Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-2021m12, for all four regions. Significant
at ***0.01, **0.05, *0.10.
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Table B.3. Main results — CPI headline and product components — OLS regressions

OLS estimates T=0 T=1 T=2 T=3 T=4 T=5 T=6
Total -0.07 -0.03 0.01 0.10 0.10 0.05 0.05
(0.05) (0.07) (0.08) (0.09) (0.08) (0.08) (0.08)
Total, constant weight  -0.07 -0.04 0.02 0.12 0.11 0.05 0.03
(0.05) (0.07) (0.07) (0.08) (0.08) (0.07) (0.07)
Fresh food 0.61 3.00%** 3 73Fk*Ek D 24*FE 1,26 0.52 0.26
(0.55) (0.87) (1.06) 0.97) (0.82) (0.75) (0.64)
Other food excl. tobacco -0.08** -0.08 -0.05 -0.14*  -0.08 -0.06 -0.07
(0.04) (0.06) (0.08) (0.08) (0.08) (0.09) (0.10)
Manufactured products  -0.09 -0.12 -0.05 0.08 0.11 -0.05 -0.03
(0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.08)
Services -0.09 -0.23%**%  -0.16%* (.12 0.07 0.05 0.06
(0.07) (0.08) (0.07) (0.08) (0.08) (0.08) (0.09)
Energy -0.21 -0.10 -0.55 -0.48 -0.20 0.13 0.07
(0.23) (0.35) (0.42) (0.46) (0.53) (0.56) (0.54)
Tobacco 0.05 0.30 0.25 0.13 0.61 0.45 0.28
(0.33) (0.40) (0.45) (0.48) (0.58) (0.62) (0.64)

Note: This table reports the estimated coefficients of the cumulative impulse responses of CPI product components and headline
inflation to weather related disasters (using w; as exogenous variable) obtained from an OLS local projection. Heteroskedasticity-
robust standard errors in parentheses, computed using a White-correction routine. Sample period: 1999m01 to 2024m12, excluding
the Covid period 2020m03-2021m12, for all four regions. Significant at ***0.01, **0.05, *0.10.

Figure B.6. Main results — CPI headline and product components — 2SLS vs OLS
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Note: Cumulated impulse response functions of CPI components in our baseline 2SLS (solid lines) and using an OLS
specification (dashed lines). Treatment effects are expressed in percent. 90% and 95% confidence intervals for the 2SLS
estimate in the shaded areas. Standard errors are heteroskedasticity-robust and computed using a White-correction routine. The
x-axis corresponds to the time horizon expressed in months since the disaster. Sample period: 1999m01 to 2024m12, excluding

the Covid period 2020m03-2021m12, for all four regions.
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Table B.4. Robustness analysis for headline CPI and its components (2SLS regressions)

T=0 T=1 T=2 T=3 T=4 T=5 T=6
(A) Total
2SLS - Baseline -0.14 -0.11 0.11 0.11 0.13 0.12 0.20
2SLS — Baseline — excl. La Réunion -0.23%%* -0.19 -0.23 -0.16 -0.22 -0.12 -0.13
2SLS - Baseline, 3 lags shock -0.11 -0.06 0.13 0.11 0.15 0.15 0.22
2SLS — Baseline excl. shock < 6months -0.20 -0.11 0.23 0.20 0.26 0.26 0.38
2SLS - 6 lags forward -0.12 -0.08 0.16 0.15 0.16 0.13 0.22
2SLS — Wind and rain 3 -0.07 0.02 0.31 0.25 0.14 0.13 0.25
2SLS — Wind and rain "1 & 2 & 3 -0.10 -0.01 0.21 0.20 0.14 0.13 0.23
2SLS — Top decile wind or rain -0.19 -0.31* -0.02 0.09 0.18 0.27 0.33*
(B) Fresh food
2SLS - Baseline 0.99 6.71%*k* B OI*** 4 59%*k D45 1.16 1.23
2SLS — Baseline — excl. La Réunion 0.31 3.22%%k% ) ]Sk 1.05 0.17 0.02 -0.35
2SLS — Baseline, 3 lags shock 1.50 TA41k*Ex g 5Q%kkE 4 RQkkEk D A5 1.16 1.52
2SLS — Baseline excl. shock < 6months 2.62 12.89%** 14 93#*%k 8 A8*** 424 1.96 2.57
2SLS — 6 lags forward 0.87 6.65%** B 4%*%k 4 54%k% ] 8] 0.52 0.84
2SLS — Wind and rain 3 1.82 0.16%**  10.3]%** §523%:x* 2.54 1.63 1.95
2SLS — Wind and rain "1 & 2 & 3 1.43 8.02%**  10.06%** ©.58%*%* 3 OE8%* 2.13 1.90
2SLS — Top decile wind or rain 0.31 5.20%* 6.95%** 4 T4 3.36* 2.82 2.43
(C) Other food excl. tobacco
2SLS - Baseline -0.09 -0.21%* -0.11 -0.24 -0.28%* -0.11 -0.14
2SLS — Baseline — excl. La Réunion -0.12 -0.24%%* -0.15 -0.31% -0.27 -0.14 -0.14
2SLS - Baseline, 3 lags shock -0.09 -0.17* -0.09 -0.23 -0.25 -0.10 -0.13
2SLS — Baseline excl. shock < 6months -0.15 -0.30%* -0.15 -0.40%* -0.43* -0.16 -0.22
2SLS - 6 lags forward -0.08 -0.17* -0.07 -0.21 -0.27* -0.08 -0.13
2SLS — Wind and rain 3 -0.14 -0.19* -0.15 -0.25 -0.34* -0.19 -0.22
2SLS — Wind and rain "1 & 2 & 3 -0.08 -0.20%* -0.11 -0.23 -0.25 -0.12 -0.15
2SLS — Top decile wind or rain -0.02 -0.21 -0.10 -0.21 -0.35* -0.12 -0.07
(D) Manufactured products
2SLS - Baseline -0.06 -0.38*** (.13 0.05 -0.05 -0.10 -0.01
2SLS — Baseline — excl. La Réunion -0.18 -0.36%** -0.16 -0.08 -0.31 -0.38%* -0.17
2SLS — Baseline, 3 lags shock -0.05 -0.36%* -0.13 0.04 -0.04 -0.07 -0.02
2SLS — Baseline excl. shock < 6months -0.09 -0.62%* -0.22 0.07 -0.07 -0.12 -0.03
2SLS — 6 lags forward -0.06 -0.43%*% 0,17 0.01 -0.02 -0.09 -0.02
2SLS — Wind and rain 3 -0.10 -0.42%*%  _0.15 0.17 -0.11 -0.11 0.03
2SLS — Wind and rain "1 & 2 & 3 -0.04 -0.32%* -0.14 0.00 -0.08 -0.14 -0.03
2SLS — Top decile wind or rain 0.01 -0.47%* -0.26 0.00 -0.06 -0.09 0.10
(E) Services
2SLS - Baseline -0.2% -0.47%%%  0.29%*  -0.08 -0.04 -0.02 0.05
2SLS — Baseline — excl. La Réunion -0.34%*% (0. 50%*%*%  -(0.34** 0.03 -0.12 0.02 -0.15
2SLS — Baseline, 3 lags shock -0.2% -0.43%*%  _0.20% -0.09 -0.05 0.01 0.05
2SLS — Baseline excl. shock < 6months -0.35%* -0.75%*%%  -0.50% -0.16 -0.08 0.02 0.09
2SLS - 6 lags forward -0.15 -0.40%**  -0.25% -0.01 0.03 0.00 0.10
2SLS — Wind and rain 3 -0.13 -0.40%**  -0.20 -0.05 -0.06 -0.07 0.07
2SLS — Wind and rain "1 & 2 & 3 -0.18%* -0.44%*% (. 28* -0.02 -0.05 0.00 0.12
2SLS — Top decile wind or rain -0.29%%  _(0.59%*% _()20% -0.08 -0.06 0.08 0.09

Note: Coefficients of the cumulative impulse response functions of consumer prices to weather-related disasters using alternative specifications of local projections. “2SLS baseline”
is our baseline 2SLS specification. “2SLS — Baseline — excl. La Réunion” is the baseline specification excluding La Réunion. “2SLS — Baseline, 3 lags shock” controls for up to 3 lags
of the shock. “2SLS — 6 lags forward” controls for up to 6 forward lags of the shock. “Baseline excl. shock < 6 months” is the baseline specification, excluding shocks that occur less
than 6 months after a previous shock. “2SLS — Baseline, weather station data” is the baseline specification, but with instruments taken from weather station data rather than remote
sensing data. “2SLS — Rain and wind 73" uses as instruments cubic values of wind and rain. “2SLS — Wind and rain 21 & 2 & 3” uses as instruments cubic values of wind and rain, as
well as lower order terms. “2SLS — Top decile wind or rain” uses as instruments dummies indicating whether wind and rain records are in the top decile of the distribution. Sample
period: 1999m01-2024m12, excluding the Covid period 2020m03-2021m12. Significant at *#*0.01, **0.05, *0.10. Standard errors are heteroskedasticity-robust and computed using

a White-correction routine. Results for tobacco and energy are not reported since disasters have no significant effects in the baseline regression.
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Figure B.7. Evolution of fresh food prices around two major natural disasters in La Réunion
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Note: Plotted is the log CPI of fresh food for each region, 6 months before and 6 months after cyclones Gamede (Feb. 2007 in
La Réunion) and Dina (Jan. 2002 in La Réunion), that correspond to the two largest events in terms of wind speed in our
dataset. The series are seasonally adjusted (at monthly frequency) for each region and expressed in deviation from their value
in July 2006 (for Gamede) and June 2001 (for Dina).

Figure B.8. Baseline estimated price effects for fresh food CPI, including pre-trends up to 6

months
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Note: Cumulated impulse response function for the CPI of fresh food obtained from the 2SLS specification, with no controls
for lagged values of shocks and of the outcome variable. Treatment effects are expressed in percent. 90% and 95% confidence
intervals for the 2SLS estimate in the shaded areas. Standard errors are heteroskedasticity-robust and computed using a White-
correction routine. The x-axis corresponds to the time horizon expressed in months since the disaster. Sample period: 1999m01
to 2024m12, excluding the Covid period 2020m03-2021m12, for all four regions.
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Table B.S. Price effects of disasters proxied using damage functions - OLS regressions

T=0 T=1 T=2 T=3 T=4 T=5 T=6
Total — headline CPI
Rain damage function 0.00 -0.01 0.01 0.02 0.05%** 0.03 0.03
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Wind damage function 0.01 0.03 0.08** 0.04 0.00 -0.02 0.01
(0.02) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03)
Fresh food
Rain damage function -0.27 0.20 0.41 0.36 0.21 0.07 0.10
(0.20) (0.36) (0.32) (0.28) (0.27) (0.29) (0.30)
Wind damage function 0.63%%* 1.65%*%* 1.90%%* 0.83* 0.37 0.34 0.50%*
(0.18) (0.34) (0.51) (0.49) (0.45) (0.29) (0.27)
Other food
Rain damage function 0.00 -0.03%* -0.02 -0.02 -0.03 -0.01 -0.03
(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)
Wind damage function -0.02%* -0.02 0.00 -0.01 -0.02 -0.01 -0.02
(0.01) (0.01) (0.02) (0.02) (0.02) (0.03) (0.03)
Tobacco
Rain damage function -0.06 -0.07 -0.03 -0.01 0.05 0.08 0.10
(0.08) (0.09) (0.11) (0.12) (0.14) (0.16) (0.15)
Wind damage function 0.13 0.17 0.15 0.09 0.05 -0.04 -0.06
(0.12) 0.14) (0.16) (0.18) (0.19) 0.21) (0.20)
Energy
Rain damage function 0.08 0.15 0.15 0.20 0.27* 0.22 0.21*
(0.10) (0.13) (0.13) (0.14) (0.14) (0.14) (0.12)
Wind damage function -0.18%* -0.09 0.02 0.04 0.07 0.01 0.05
(0.07) 0.11) (0.14) (0.15) 0.17) 0.17) (0.15)
Manufactured products
Rain damage function 0.00 -0.01 0.00 0.01 0.02 0.02 -0.01
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Wind damage function -0.01 -0.057%* -0.01 0.02 -0.04* -0.04* 0.01
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Services
Rain damage function 0.01 -0.01 0.01 0.00 0.06%* 0.01 0.03
(0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02)
Wind damage function -0.01 -0.02 0.00 0.01 -0.03 -0.04%* -0.02
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

Note: This table reports the estimated coefficients of the cumulative impulse responses of CPI product components and headline
inflation to weather related disasters (using standardized damage functions of wind and rain H5. and F;3 as exogenous variables)
obtained from an OLS local projection. For fresh food products, an increase of the wind damage function by one SD increases
prices by 1.65% one month after the shock. Heteroskedasticity-robust standard errors in parentheses, computed using a White-
correction routine. Significant at ***0.01, **0.05, *0.10.
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Table B.6. OLS regressions relating damage functions to predicted probability of a disaster
(from the Logit model)

Standardized wind
damage function

Standardized rain
damage function

Predicted probability (p; ;) from the Logit model

Constant

Adj. R2
N

2.93 %
(0.65)
-0, 13%#%*
(0.04)

0.234
904

2,84k
(0.62)

0. 1475
(0.04)

0.214
904

Note: Results of OLS regressions relating the damage functions H;, and F;, given by equations (7) and (8) to the predicted

probability of a weather-related disaster obtained from the Logit model (p; ;). Sample period: 1999m01 to 2024m12, excluding
the Covid period 2020m03-2021m12, for all four regions. Heteroskedasticity-robust standard errors in parentheses, computed
using a White-correction routine. Significant at ***0.01, **0.05, *0.10.

Table B.7. Characteristics of wind and rain damage functions depending on the predicted
probabilities of disasters

Pit €[0;0.25] Pit €10.25;0.5] Pit €10.5;0.75] Pie €10.75 ;1]
Share of Mean Mean Share Mean Mean Share Mean Mean Share Mean Mean
dam. of dam. ofdam. | of dam. ofdam. ofdam. | ofdam. ofdam. ofdam. | of dam. ofdam. of dam.
funct. >0 funct. funct. funct. funct. funct. funct. funct. funct. funct. funct. funct.
if >0 >0 if >0 >0 if >0 >0 if >0
Wind damage function 1.8 % 410 23134 | 77% 3330 43293 | 393% 12998 33086 | 57.1% 39229 6865.1
(W#*=15 m/s)
Rain damage function 0.1% 03 2167 | 108% 164 1519 | 17.9% 469 2629 | 57.1% 1481 2592
(r#=112 mm)

Note: This table presents, for different values of the predicted probability from the Logit model (p; ;), the share of observations
for which the wind and rain damage functions are strictly positive (“Share of dam. funct. >0”), the average value of the damage
function (“Mean of dam. funct.”) and the average value of the damage function conditional on being strictly positive (“Mean f
dam. funct. if >0”). The results are reported for the baseline wind damage function (with W*=15 m/s) and for the baseline rain
damage function (7*=112 mm).
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Table B.8. Average values of predicted probability from the Logit model depending on
maximum monthly wind speed and rainfall

Average probability Average probability
(Pi¢) below threshold | (p; ) above threshold

Maximum monthly wind speed (threshold=15 m/s) 8.3 % 47.7 %

Maximum monthly rainfall (threshold=112 mm) 9.1 % 40.5 %

Note: Average values of the predicted probability from the Logit model (p; ;), conditional on whether monthly maximum wind
speed and rainfall are below the threshold set for the baseline damage functions (respectively 15 m/s and 112 mm). The average
probability when wind speed is below the threshold of 15 m/s is 8.3%, and it is equal to 47.7% when maximum monthly wind
speed is above the threshold of 15 m/s.

Table B.9. Local projection estimations (OLS) relating consumer prices to the different types
of administrative disasters

T=0 T=1 T=2 T=3 T=4 T=5 T=6
(A) Headline
Storms (with or without floods) -0.06 0.19 0.47 0.30 -0.13 -0.08 0.10
Floods (without storms) -0.08 -0.08 -0.06 0.05 0.14 0.09 0.06
Landslides only 0.13 0.05 -0.23 0.08 0.15 -0.05 -0.31
(B) Fresh food
Storms (with or without floods) 4.10%*  12.06%** 13.69%** 8 65%* 4.19 3.38 4.32%%*
Floods (without storms) -0.01 0.80 1.41 1.04 1.00 0.21 -0.37
Landslides only -1.54 2.53 1.48 -2.34 -4.31* -3.69* -2.98**
(C) Other food
Storms (with or without floods) -0.06 0.01 0.05 -0.07 -0.19 -0.14 -0.18
Floods (without storms) -0.06 -0.06 -0.02 -0.09 0.01 0.03 0.01
Landslides only -0.20*%  -0.38**%*  _(Q.61**k*  -Q.61FF*F (. TF4FFF () TEE¥E () 59%**
(D) Manufactured products
Storms (with or without floods) -0.14 -0.35%* -0.27 -0.04 -0.21 -0.26 0.10
Floods (without storms) -0.11 -0.12 0.00 0.06 0.10 -0.02 -0.04
Landslides only 0.27 0.46%** (.06 0.48* 0.85*** (.18 -0.14
(E) Services
Storms (with or without floods) -0.10 -0.16 -0.02 0.17 -0.11 -0.05 0.11
Floods (without storms) -0.09 -0.22%%* -0.16%* 0.08 0.08 0.05 0.06
Landslides only 0.07 -0.22 -0.32 0.28 0.26 0.26 -0.07
(F) Energy
Storms (with or without floods) -0.74 -0.53 -0.52 -0.30 -0.94 -0.02 0.16
Floods (without storms) -0.16 -0.01 -0.52 -0.50 -0.05 0.15 0.10
Landslides only 0.71 0.04 -0.41 -0.15 0.16 0.19 -0.58
(G) Energy
Storms (with or without floods) -0.19 0.02 1.16 1.22 1.42 1.22 1.12
Floods (without storms) 0.11 0.33 -0.03 -0.24 0.32 0.22 0.08
Landslides only -0.10 0.23 0.92 1.47%* 1.15% 0.63 0.14

Note: This table reports the estimated coefficients of the cumulative impulse responses of CPI product components and headline
inflation to weather related disasters obtained from an OLS local projections where we include simultaneously three dummies
for administrative disasters as reported in EM-DAT or GASPAR: one indicating storms (with or without floods), another one
for floods (without storms) and a last for landslides only. In each column, Panels (A) to (G) report the results of one regression
relating price changes to the three dummy variables for disasters (control variables and fixed effects are also included as in our
baseline exercise). Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-2021m12, for all four regions.
Standard errors are heteroskedasticity-robust and computed using a White-correction routine. Significant at ***0.01, **0.05,
*0.10
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Figure B.9. Comparison of baseline damage functions with wind-only and rain-only damage

functions
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Note: Plotted are the cumulated impulse response function for the baseline 2SLS (dashed line) and for damage functions
evaluated “at predicted probability”, i.e. for a variation of the damage functions equivalent to a switch from a predicted
probability equal to O to a predicted probability equal to 1. In solid black, the price reaction is estimated through a regression
including both wind and rain damage functions, and the shaded area represent the 90% and 95% confidence interval for this
estimation. Standard errors are heteroskedasticity-robust and computed using a White-correction routine. In solid brown, the
price reaction is estimated through a regression including only wind damage functions. In dashed brown, the price reaction is
estimated through a regression including only rain damage functions. All effects are expressed in percent. The x-axis
corresponds to the time horizon expressed in months since the disaster. Sample period: 1999m01 to 2024m12, excluding the
Covid period 2020m03-2021m12, for all four regions.

51



Figure B.10. Effects of wind damage functions on fresh food prices: the role of the nighttime
light weights
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Note: Results of alternative wind damage functions on the prices of fresh food. In columns, we report results where we vary
the threshold under which the damage function is 0. We consider a threshold of 15m/s as in our baseline scenario (95" percentile
of win distribution in our sample) (column 1), in column (2), the threshold is set to 20m/s (99" percentile of the wind
distribution) and in column (3), we set this threshold at 5m/s implying that the damage function is always different from 0
(there is no nonlinearity due the max threshold). In rows, for a given max threshold of wind, we report results of regressions
where we weight or not the observations by nighttime light or not. In the first row, we report results using the baseline damage
function using the cubic term transformation weighted by nighttime light ‘with NTL’). In the second row, we do not weight for
nighttime light (‘no NTL’). Dashed lines in all the graphs report our baseline 2SLS estimates. The shaded area represents the
90%- and 95% confidence intervals for the effects of the damage function. Standard errors are heteroskedasticity-robust and
computed using a White-correction routine. All price effects are expressed in percent. The x-axis corresponds to the time

horizon expressed in months since the disaster. Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-
2021m12, for all four regions.
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Table B.10. Effects of weather-related disasters on real variables (2SLS)

T=0 T=1 T=2 T=3 T=4 T=5 T=6
Hotel stays
Overnight hotel stays -21.08**  -3.88 -2.31 -17.43%*% -1.83 1.38 -10.45
(8.30) (7.25) (7.95) (6.6) (5.51) (7.45) (6.85)
Employment
Total -0.07 -0.37* -0.61%* -0.82%%* -1.02%%% ], 18%%* -1.20%%*
(0.13) (0.20) (0.24) (0.28) (0.29) (0.33) (0.37)
Agriculture (AZ) -0.34 -1.69%* -1.58 -1.24 -1.02 -0.81 -1.83
0.61) (0.82) (0.96) (1.06) (1.17) (1.27) (1.30)
Food manuf. (C1) 0.67** 0.78 -0.06 -0.54 -1.29* -1.18 -1.54%%*
(0.32) (0.50) (0.67) (0.83) (0.77) (0.77) (0.75)
AZ+ClI 0.54* 0.01 -0.39 -0.55 -1.01 -0.89 -1.54%%*
(0.31) (0.42) (0.53) (0.59) (0.62) (0.64) (0.59)
Industry (C2 to C5) 0.06 0.00 -13 -0.19 -0.30 -0.50 -0.46
(0.16) (0.25) (0.30) (0.32) (0.37) (0.38) 0.47)
Construction (FZ) -0.31 -0.95 -1.39%* -1.92%%* -1.98%** -2.27%% -2.76%%*
(0.36) (0.59) (0.66) (0.73) (0.84) (0.91) (0.95)
Car repair (GZ) -0.15 -0.29* -0.41%* -0.34 -0.43* -0.51%* -0.63%*
(0.11) (0.17) (0.19) (0.22) (0.23) (0.25) (0.25)
Transports (HZ) -0.34 -0.46 -0.83* -0.88* -1.13%* -1.5] %% -1.88%#%*
(0.26) (0.39) (0.44) (0.49) (0.53) (0.57) (0.60)
Accom. — restaurants (1Z) -0.43 -0.72 -1.31%* -1.87%%* S2. 15%%E D DOFE* SQ.27F**
0.41) (0.57) (0.62) (0.69) (0.71) (0.81) (0.84)
Info. — comm (JZ) -0.30 -0.61 -0.34 -0.15 -0.26 -0.53 -1.21
(0.37) (0.58) (0.70) (0.76) (0.83) (0.84) (0.84)
Finance — insurance (KZ) 0.02 0.12 -0.07 -0.06 -0.15 -0.24 -0.48
(0.29) (0.37) (0.41) (0.44) (0.45) (0.46) (0.50)
Real estate (LZ) 0.15 -0.22 -0.09 -0.35 -1.09* -1.55%* -1.03
(0.27) (0.44) (0.51) (0.55) (0.59) (0.66) (0.78)
Scientific — admin (MN) -0.24 -0.57 -0.81* -0.81* -1.14%* -1.29%* -1.32%%*
(0.28) (0.38) (0.42) (0.44) (0.48) (0.53) (0.58)
Public admin (OQ) -0.01 -0.39* -0.56%* -0.77%%* -0.98#** -], 18%%* -0.96%**
(0.16) (0.20) (0.23) (0.30) (0.31) (0.37) 0.41)
Other services (RU) -0.66 -1.66* -2.05%* -2.67%* -2.83%Fk% D J3kE -2.43%%
(0.55) (0.92) (0.99) (1.09) (1.04) (1.12) (1.17)
Interim 1.53 -0.27 -2.67 -2.92 -0.52 3.48 -0.99
(2.80) (3.92) (4.74) (5.18) (5.06) (5.10) (5.34)

Note: This table reports the estimated coefficients of the cumulative impulse responses of real activity measures to weather
related disasters obtained from the 2SLS local projections model (coefficients ), in the equation (3) where the endogenous
variables are either hotel stays or employment instead of prices). Heteroskedasticity-robust standard errors in parentheses are
computed using a White-correction routine. Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-

2021m12, for all four regions. Significant at ***(0.01, **0.05, *0.10.
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Table B.11. Effects of weather-related disasters on imports (2SLS)

T=0 T=1 T=2 T=3 T=4 T=5 T=6
Imports
Agriculture (AZ) 2.42 3.00 3.50 2.65 3.25 3.78 2.10
(2.43) (3.66) (4.18) (3.61) 4.14) (4.33) (3.52)
Extractive indus. (DE) -14.01 -0.02 0.19 -4.38 -1.61 -12.71 -6.08
(10.98) (13.02) (15.07) 14.7) (15.49) (16.39) (14.88)
Processed food (CA) 0.54 0.03 0.54 0.39 1.89 2.37 2.58
(1.41) (2.06) (2.75) (2.73) (2.70) (2.53) (2.20)
Textile (CB) -2.80 -5.33 -2.54 -2.12 -2.44 -4.49 0.45
(2.67) (4.19) (4.99) (3.75) (4.01) (3.65) (3.38)
Wood (CC) 1.36 0.27 1.82 -2.14 -2.84 -6.00%* 1.36
(2.58) (3.32) (3.74) (3.43) (3.34) (3.55) (4.90)
Refined oil (CD) 5.02 9.81%* 10.71%* 10.70* 7.39 2.48 4.62
(3.14) (4.60) (5.13) (6.05) (5.64) (6.34) (6.11)
Chemical products (CE) -7.01%* -4.93 -5.38 -2.22 -3.35 -4.55 6.55
(3.08) (5.39) (6.05) (5.92) (6.65) (6.61) (7.60)
Pharmac. goods (CF) 1.01 -4.24 -8.13 13.84 15.39 16.80 20.49
(12.65) (16.85) (19.72) (18.90) (16.39) (15.90) (17.23)
Gum / plastic (CG) -0.37 -4.75% -2.26 0.21 4.34 4.28* 3.70
(1.78) (2.60) (3.18) (2.79) (2.69) (2.57) (2.41)
Metals (CH) -1.12 -5.40 -6.04 -7.99 -3.25 -1.86 -0.67
4.01) (5.69) (6.58) (6.23) (6.76) (6.92) (6.31)
Electronics (CI) 2.83 3.05 2.59 -6.05 -7.53 -5.21 1.43
(5.40) (7.17) (8.73) (7.64) (8.24) (8.50) (8.24)
Electric equip. (CJ) -1.26 -6.45 -7.59 -3.39 -2.37 -2.90 -12.36%*
(4.49) 5.97) (8.25) (8.79) (8.79) (7.78) (6.80)
Industrial machines (CK) -7.28 -8.66 -13.01* -7.48 -3.14 -1.87 -1.72
4.72) (6.52) (7.39) (7.12) (6.82) (6.97) (6.70)
Transport mat. (CL) 11.39 9.93 22.01%* 4.68 3.86 -4.18 2.40
(6.95) (9.97) (12.32) (11.85) (10.54) (9.12) (8.69)
Other manuf. (CM) -3.13 -2.45 -0.25 1.36 -1.29 -5.33 -1.87
(2.42) (3.45) (3.85) (3.25) (3.83) 3.77) (3.10)
Edition/Comm (JZ) 0.37 9.66 11.27 9.53 -7.47 -9.89 -4.97
(5.05) (8.61) (9.16) (7.92) (6.25) (6.40) (5.90)
Techn. draw./art (MN -RU) 9.17 13.53 9.76 19.92 15.97 37.94 -0.79
(18.54) (28.31) (32.29) (30.31) (34.44) (35.01) (31.72)
Total 2.84 2.57 6.29 4.92 5.26 2.14 3.39
(2.25) (3.37) (4.08) (4.15) (3.79) (3.70) (3.39)

Note: This table reports the estimated coefficients of the cumulative impulse responses of real activity measures to weather
related disasters obtained from the 2SLS local projections model (coefficients ), in the equation (3) where the endogenous
variables are imports by type of sectors instead of prices). Heteroskedasticity-robust standard errors in parentheses are
computed using a White-correction routine. Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-
2021m12, for all four regions. Significant at ***0.01, **0.05, *0.10.
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Table B.12. Alternative 2SLS specification not controlling for year fixed effects

T=0 T=1 T=2 T=3 T=4 T=5 T=6
(A) Baseline
Headline -0.14 -0.11 0.11 0.11 0.13  0.12 0.20
Fresh food 0.99 6.71%** 8 (Q]*** 4.59%**% 245 1.16 1.23
Other food excl. tobacco -0.09 -0.21%* -0.11 -0.24 -0.28* -0.11 -0.14
Manufactured products -0.06 -0.38***  -0.13 0.05 -0.05 -0.10 -0.01
Services -0.20%  -Q0.47*F*%* () 29%* -0.08 -0.04 -0.02 0.05
(B) No year FE
Headline -0.09 -0.05 0.28 0.20 0.06 0.03 0.21
Fresh food 0.66 7.46%*%*  10.14***  576%* 2.13  0.10 1.00
Other food excl. tobacco 0.02 -0.10 0.02 -0.11 -0.17 0.02 -0.13
Manufactured products -0.03 -0.36%*  -0.10 0.10 -0.16 -0.21  0.00
Services -0.17 -0.5%**  (,28% -0.06 -0.06 -0.06 0.15

Note: Results for alternative specifications of local projections of consumer prices in a 2SLS setting as presented in
equation (3). Panel (A) shows results for our baseline specification. Panel (B) shows results for a 2SLS specification controlling
for region-specific quarter fixed effects, but not for year fixed effects. Standard errors are heteroskedasticity-robust and
computed using a White-correction routine. Significant at ***0.01, **0.05, *0.10. Sample period: 1999m01 to 2024m12,
excluding the Covid period 2020m03-2021m12, for all four regions.
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Appendix C. Results using ground data

Meteorological records from ground weather stations are obtained from the Global Surface

Summary of the Day (GSOD), a database derived from the Integrated Surface Hourly dataset. This

source provides data for over 9,000 stations around the world beginning in 1929, with two to three

stations matched to each region in our analysis (Figure C.1). Each weather station provides data on

precipitation in 0.01 inches in cumulative terms per day and the maximum wind speed measured

for one minute during the day in tenths of knots.

Figure C.1. Location of weather stations
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Note: Blue crosses mark the locations of ground weather stations from the Global Surface Summary of the Day (GSOD)
database in La Réunion (St Denis Gillot, St Pierre Pierrefonds), Martinique (La Lamentin, Martinique Aime Césaire
International Airport, Trinité Caravelle), Guadeloupe (La Desirade, Le Raizet, Point-a-Pitre International Airport), and
French Guiana (Maripasoula, Rochambeau, St Laurent du Maron).

56



Figure C.2. Comparing remote sensing with ground weather station data

a) Wind speed, La Réunion, Feb-2007 b) Rainfall, Guadeloupe, Nov-1999
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Note: Panel a) showing daily maximum wind speed in La Réunion in February 2007, Panel b) showing rainfall in Guadeloupe
in November 1999. Source: Remote-sensing wind speed (NOAA Cross-Calibrated Multi-Platform, CCMP; 0.25-degree grid
in m/s; range from O to 30) and rainfall (NOAA Climate Prediction Center, CPC; 0.5-degree grid in mm). Ground station data
from Global Surface Summary of the Day (GSOD) station data (wind in 0.1 knots; rain in 0.01 inches).

Table C.1. Relating administrative disasters to ground-level meteorological data

€)) (2) 3) 4) (5)
Panel A: Marginal effects — Logit model
Wind 0.052%** -0.079 -0.143
(2.621) (-0.851) (-0.421)
Rain 0.0071#** 0.001%**  0.002%**
(7.477) (4.826) (3.454)
Wind? 0.009%** 0.022 0.045
(2.852) (1.479) (0.399)
Rain? 0.000%** 0.000* 0.000*
(5.571) (-1.757) (-1.836)
Wind? 0.002%** -0.002
(3.051) (-0.193)
Rain® 0.000%** 0.000
(4.269) (1.433)
Pseudo R 0.339 0.313 0.293 0.347 0.352
N 904 904 904 904 904

Panel B: 2SLS — 1% stage
Pred prob. 1.037#%*  1,027*%*%*  1.027***  1.054***  1,065%**
(12.868) (11.3) (10.484) (13.206) (13.733)

Adj.R2 0.285 0.254 0.229 0.296 0.304
N 904 904 904 904 904
F-Stat 165.589  127.698 109.922 174.394 188.595

Note: Estimation results for first-stage equation (2) with dependent variable all natural disasters reported in EM-DAT and
GASPAR as binary variable. All wind speed variables are expressed in m/s and all precipitation variables are expressed in mm.
Wind corresponds to the maximum sustained wind speed maintained for one minute from the CCMP database per region and
month. Rain is the maximum daily precipitation in mm per month and region as reported by the CPC Global Unified Gauge-
Based Analysis of Daily Precipitation. T-stats are reported in parentheses. Standard errors are heteroskedasticity-robust and
computed using a White-correction routine. Significant at ***0.01, **0.05, *0.10
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Figure C.3. Main results with ground data— CPI components and headline CPI
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Note: Plotted are the cumulative impulse responses of CPI product components and headline to weather-related disasters (where
meteorological data in the first step equation are ground data) obtained from our 2SLS baseline model; price effects (solid black
line) are reported in percent; shaded areas show 90% (dark grey) and 95% (light grey) confidence intervals. Standard errors are
heteroskedasticity-robust and computed using a White-correction routine. Months are expressed in distance to the natural
disaster. Sample period: 1999m01 to 2024m12, excluding the Covid period 2020m03-2021m12, for all four regions.
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Appendix D. The role of the estimated probability of a weather-related
disaster for the price effects

In this Appendix, we explore how the estimated probability of a weather-related disaster affects the
price effects obtained in our IV approach. To do so, we estimate the price effects of disasters for
different thresholds of the estimated probability, which define the occurrence of a weather-related

disaster.

We first define a series of more than 900 probability threshold values (7) uniformly defined
between 0 and 1. For a given threshold value 7, we define a binary variable 1(@,, > T) equal
to 1 if the predicted probability @,, from the Logit model based on equation (1) is above this
threshold and O otherwise. Then, for every threshold 7, we run a local projection exercise (as
in equation (3) on the price index for fresh food. We estimate as many local projection
regressions as thresholds 7, with the same set of controls as in our baseline specification (more

than 900). The estimated equation can be written as follows:

)2
log <le,t+f11> =ay, + Gh]l((ﬂzt > T) + ponZic + TonYe -
it—

(10)
+82ny + Uzng + Yani + Uang X Vani + E2nit

Figure D.1 plots the estimated coefficients 6 in equation (10), for fresh food, at horizon h=2,
obtained for the more than 900 values of thresholds (x-axis) (the dashed line corresponds to our
baseline estimation obtained in our 2SLS model) whereas Figure D.2 plots the distribution of
the price effects obtained across the more than 900 estimations. Several conclusions are worth
being highlighted. First, the estimated price effect based on these discrete probability thresholds
increases with the threshold. The effect goes from about O when the threshold is equal to 0
(meaning that virtually all observations are defined as a weather-related disaster) to 17.7% when
the threshold is equal to 1 (meaning that only a few observations with the highest probability
are treated as weather-related disasters). Second, the confidence interval contains the baseline
estimated effect starting from a threshold probability of about 60%, this suggests that, above
this value for the predicted probability, price effects are not statistically larger. Third, our

baseline estimate is in the upper part of the distribution (Figure D.2).
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Figure D.1. Price reactions of fresh food for a set of discrete shocks based on varying
thresholds of estimated probabilities
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Note: Maximum estimated effect of OLS regressions for fresh food prices with shocks based on discretized probabilities
estimated from Logit regression (1), with threshold varying from 0O to 1. Confidence intervals at the 95% level in grey.
Standard errors are heteroskedasticity-robust and computed using a White-correction routine. The dotted line corresponds to
our baseline estimated effect.

Figure D.2. Distribution of estimated effects on fresh food in the discrete shocks against the
baseline effect
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Note: Distribution of estimated coefficients represented in Figure D.1. The dotted line corresponds to the baseline 2SLS effect.
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Appendix E. Estimating placebo effects

In this Appendix, we present results of different placebo regressions where we have randomized
weather-related disaster shocks in both equations of our two-step model. We have run three

distinct exercises.

E.1. Description of the placebo estimations and results

In a first exercise, we randomize the instrumental variables. Namely, we simulate rainfall and
wind data from Gumbel laws of distribution (whose parameters are derived from the empirical
distribution of rainfall and wind records across regions) since the Gumbel law is well suited to
replicate the distributions of extreme events (see Section E.2 of this Appendix for additional
methodological details). We run 100 2SLS estimations, each based on a distinct set of simulated

data for instruments and using the actual observations for the treatment variable.

In a second exercise, we keep the actual values of the instrumental variables, but we randomize
the treatment, drawing randomly 100 shocks from a uniform distribution. As in the previous
exercise, we do not allocate them to regions in proportion to their observed frequency of
disasters. We run 100 2SLS estimations, each based on a distinct set of simulated data for the

treatment, but keeping the actual observations of the instrumental variables.

In a third exercise, we keep the actual values of the instrumental and treatment variables, and
we compute the correct predicted probability of treatment in the first stage, but we randomly
allocate this predicted probability across regions and over time between the first and second
stage. We run 100 OLS estimations of the second stage, each based on a distinct set of

randomizations of the predicted probability.

Figure E.1. Distribution of T-stats of placebo regressions

a) Randomization of b) Randomization of ¢) Randomization of
instrumental variables treatment variable predicted probabilities

Note: Distributions of T-stats of placebo tests. In Panel a), the randomized variables are the instrumental variables. In Panel b),
the randomized variable is the treatment variable. In Panel c), the predicted probability is randomly allocated across regions
between the first and the second stage. The dotted vertical lines correspond to the t-stat of the baseline estimation.
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Figure E.1 plots the distributions of T-statistics for local projections of fresh food prices at
horizon h=2, as well as the T-statistics from our baseline estimate (dashed vertical line). While
the T-stat of the baseline estimate is equal to 4.3, 95% of those in the placebo estimates with
randomization of instrumental variables are below 1.66 (Panel a), 95% of those in the placebo
estimates with randomization of the treatment variable are below 1.98 (Panel b), and 95% of
those in the placebo estimates with randomization of predicted probabilities are below 1.2

(Panel c).

E.2. Drawing random weather-related disasters for placebo estimations

Next, we describe how we draw random weather-related disasters for our first placebo estimation
in which we instrument the actual administrative disasters by randomly generating them. We model
the maximum observed monthly rainfall and wind speed using Gumbel distributions. The latter are
part of generalized extreme value distributions, which are well suited to modelling extreme

phenomena such as the ones we focus on.

For wind and rain, we generate 100 random draws from Gumbel distributions whose parameters
match the empirical moments of the maximum wind and rain distributions. More specifically, the
expected value and variance of a random variable following a Gumbel distribution of location

parameter p and of scale parameter  are defined as:
E(X)= p+ By

2

s
Ve = =5
6
where y is Euler-Mascheroni constant (approximated by the value 0.5772156649). We therefore

define f and [T as:

sd(X)
T

g =EX)-py

where sd(X) and E(X) are empirical standard deviation and expected values observed for the

B =Ex

variable X in our full sample of observations. Empirically, £ and [ are similar to the parameters
estimated in Stata using the package extremes. Using these sets of parameters, computed both for
observed maximum records of wind speed and rainfall, we randomly generate placebo values of

maximum records of wind speed and rainfall for these values, defining them as:

Maxplacebo = max (i — ,é X In(=In(U)), 0)
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where U is a random draw in a uniform distribution [0,1]. Since random draws in a Gumbel
distribution can take negative values, we truncate them at zero, to match the fact that maximum

rainfall and wind speed cannot have negative values.

Table E.1. Empirical moments of maximum wind and rainfall and computed parameters of

Gumbel distributions

EX) sd(X) Q0 B
Maximum wind speed 11.59 2.17 10.61 1.69
Maximum rainfall 46.77 33.88 31.52 2642

In Figures E.2 and E.3, we plot the densities of placebo records (in grey), the density of observed
records (in red), and the density of a random draw of a normal distribution with parameters of
expected value and standard deviation equal to the empirical moments of maximum wind speed
and rainfall (in blue).

Figure E.2. Placebo and observed maximum Figure E.3. Placebo and observed maximum
wind speed rainfall

34 015
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Maximum wind speed Maximum rainfall
Note: The grey curves represent 100 densities of random draws in Gumbel distributions matching the observed moments of

maximum wind speed and maximum rainfall. Blue curves correspond to a random draw in a normal distribution. Densities of
actual maximum wind speed and rainfall are plotted in brown.

In Figures E.4 and E.5, we plot the quantile-quantile (QQ) plots of our random draws against the
observed distributions. Overall, our random draws match the distribution of observed maximum

wind speed and rainfall reasonably well and are better suited to such data than a normal distribution.
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Figure E.4. QQ plots of placebo and observed Figure E.S. QQ plots of placebo and observed
maximum wind speed maximum rainfall
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Appendix F. Price effects and the CPI weight of fresh food
F.1. Varying the fresh food weight

The overall positive effect of natural disasters on inflation is mainly driven by the large effect on
prices of fresh food products, which represent a small fraction of the CPI basket of goods (3.6% on
average between 1999 and 2024). The share of fresh food products has continuously decreased
over our sample period from 5.9% in 1999 to 2.7% in 2024 (Table A.4 in the Appendix). In this
robustness exercise, we estimate the overall effect on inflation of natural disasters when we

vary the share of fresh food.

Figure F.1. Baseline and alternative effects on CPI inflation

Treatment effect

-1 ] 1 2 3 4 5 6
Months

Cl 90 % - 2024 Weight Cl 95 % - 2024 Weight
= Headline - 2024 Weight === Headline - 1998 Weight

Note: Comparison of the baseline IV estimation for a reconstitution total CPI using weights of CPI components as of 2024
(solid line), and as of 1999 (dashed line). Treatment effects are expressed in percent. The shaded area represents the 90% and
95% confidence interval for the estimation using the 2024 weights. Standard errors are heteroskedasticity-robust and computed
using a White-correction routine. The x-axis corresponds to the time horizon expressed in months since the disaster.

In Figure F.1, we show counterfactual effects on headline inflation, assuming different weights
for fresh food. The blue line represents the effect estimated on a constant-weight headline,
where each of the 6 main aggregates have throughout the whole sample a weight equal to their
average value across regions in 2024. The shaded areas represent the 90% and 95% confidence
intervals of this estimate. The red line represents the effect estimated on a constant-weight
headline, where each of the 6 main aggregates have throughout the whole sample a weight equal
to their average value across regions in 1999. This estimated is significantly higher than the one
using 2024 weight, and reaches about 0.5% after two months, notably because of the higher
weight of fresh food.
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F.2. Differential effects depending on household income quintiles

In this Appendix, we evaluate the effect of weather-related disasters for different CPI basket
composition, corresponding to different quintiles of income in regions, using the Budget des
familles dataset from 2017. The main difficulty in merging the CPI data with the Budget des
familles is that the Budget des familles consumption basket and the CPI aggregates we
considered, though based on the same underlying classification (COICOP), have differing
compositions. This prevents perfect mapping of the two sets of items. We therefore focus on
the item that reacts the most strongly in our estimation, namely fresh food. However,
reconciling the two datasets is not straightforward. Indeed, while INSEE publishes the CPI of
fresh food and total CPI excluding fresh food, the share of fresh food in the consumption baskets
is not available from the Budget des familles survey. Conversely, while the Budget des familles
survey gives weight for total food (including tobacco), the food CPI published by INSEE

excludes tobacco.

Table F.1. Share of food (inc. tobacco) in the household consumption basket, by quintile of
income (2017)

Guadeloupe Martinique French Guiana La Réunion Average
Total 15.8 16.0 15.8 17.0 16.2
1% quintile 19.8 19.9 21.2 23.3 21.1
2™ quintile 20.1 18.0 20.7 21.9 20.2
3 quintile 16.5 16.5 16.2 17.2 16.6
4% quintile 15.8 15.3 15.2 15.7 15.5
5% quintile 12.4 13.9 12.2 14.5 133

Note: Share of food (including tobacco) in the household consumption basket (in % of total consumption), according to the
Budget des Familles survey of 2017. The average across the four regions is computed as an unweighted mean.

We therefore resort to the following simple approximation. First, in the Budget des familles
survey, for each quintile of income, and on average across the four overseas regions, we
compute the percent deviation in the share of food (including tobacco), compared to the average
share. Second, we apply these percent deviations to the average weight of fresh food observed
in our sample. This gives us estimated weights of fresh food for each quintile. We therefore
implicitly assume that the deviation of weights of fresh food between the quintiles and the
average is the same as the observed deviation of weights of food including tobacco, and that
the deviation of weights of food products observed in 2017 between the quintiles and the
average is representative of the deviations that occurred between 1999 and 2024. Finally, we

derive the weights of the remaining components of the CPI, making sure that i) their relative

66



weights are identical to that of the actual weight structure, ii) the sum of all weights including
those of fresh food is equal to 100%. We then aggregate CPI components using this new
structure, yielding a headline CPI for each quintile of income. Finally, we estimate the reaction
of these quintile-specific CPI to weather-related shocks in our 2SLS-local projection framework
(Figure F.2). We find a stronger reaction of the CPI corresponding to the basket structure of the
first quintile (blue line, with the associated 90% and 95% confidence intervals in shaded areas),

compared to that of the last quintile (red line), with a maximum difference of 0.15 pp.

Figure F.2. Baseline and alternative effects on CPI inflation by income quintile

Treatment effect

Months

CI 90 % - First quintile Cl1 95 % - First quintile
= Headline - First quintile === Headline - Last quintile

Note: Baseline IV impulse responses for constant-weight headline CPI reweighted by household-expenditure shares for the 1st
(solid) and 5th (dashed) income quintiles (INSEE “Budget des familles” 2017). Treatment effects are expressed in percent. The
shaded area represents the 90% and 95% confidence interval for the estimation using the weights of the first quintile. Standard
errors are heteroskedasticity-robust and computed using a White-correction routine. The x-axis corresponds to the time horizon
expressed in months since the disaster.
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Appendix G. Construction of wind and rain damage functions

This Appendix provides complementary information on the construction of damage functions.

For the calibration of wind speed threshold value W*, we choose to set this value at 15 m/s,
which corresponds to the 95" percentile of the wind distribution in our sample. It is well known
that remote-sensing data from CCMP is fairly accurate at low to moderate wind speeds
(<15 m/s), but systematically underestimate high winds, in part because of spatial smoothing
within fields from the numerical background model (Mears et al. 2022). This is a comparatively
low threshold values of damage from extreme wind compared with the literature. Strobl (2012)
and Heinen et al. (2018) set the threshold value at approximately 49 m/s. The higher value is
due to the different underlying dataset, as these authors use the HURDAT data, which is
collected from hurricane reconnaissance aircrafts that more accurately measure peak hurricane
intensity. Also Emanuel (2011) uses a higher threshold value in a damage function at 26 m/s.
We converted units to meters/second here, while the thresholds are defined in knots in Emanuel
(2011) (50 knots) and in kilometer per hour in Strobl (2012) and Heinen et al. (2018) (177-
178 km/h).

Unfortunately, the HURDAT dataset does not cover La Réunion. Applying the exact same
thresholds from this literature to our wind data would not be consistent given the strong
underestimation of wind speed above 15 m/s from remote sensing data. Further, it would lead
to H;; being different from O for only few data points of our sample. However, for robustness
we provide results with a threshold at 20 m/s which corresponds to the 98" percentile of the

wind distribution in our dataset.

The calibration of the rainfall threshold values r* follows Heinen et al. (2018). The threshold
is based on precipitation of a cumulative amount of 112 mm over surface, cumulative over a
three-day backward-looking window. Heinen et al. (2018) deducted this threshold from an
intensity duration flood model and actual flood event data for Trinidad. We keep the same

threshold in our case for all overseas territories.

Exposure weights &;; are constructed from satellite nighttime light data from the U.S. Air Force
Defense Meteorological Satellite Program (DMSP), obtained via the Earth Observation Group
(Baugh et al., 2010). We use the version cleaned of background noise, averaged across the
calendar year and corrected for percent frequency of light detection. Figure G.1, Panel a
visualizes the data for the case of La Réunion. Figure G.1 Panel (b) shows nighttime light

observations that are cleaned of observations above the ocean surface. We use geographic
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information system software and freely available shapefiles on ocean surfaces by Natural Earth
to geolocate the nighttime light and meteorological data jointly. The main motivation is to
consider noise from coastal areas, such as ships or other coastal activities. We compute a proxy

of economic activity in a weather cell j in region i as

Vij = Xm=1 NTLijn X Lgo,,.=0}, (G.1)
where NTL;j, denotes nighttime light in region i in weather cell j and nighttime light grid cell
n, and 1 denotes an index variable which takes the value of one if the nighttime light is recorded
above land. Figure G.1 Panel (c) illustrates that the number of nighttime light observations N
per weather cell j can vary substantially. The final weights are obtained by dividing nighttime
light intensity in each weather cell j by total nighttime light intensity in region i:

Vij

§ij = S v (G.2)

Figure G.1, panel (d) illustrates the result, where brighter areas indicate higher values of &;;.

Figure G.1. Nighttime light weights for La Réunion
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Note: Nighttime-light activity weights for La Réunion based on data of Defense Meteorological Satellite Program, cleaned
from observations above ocean surface (based on Natural Earth coastlines). Weights are computed on the CCMP 0.25° grid
as the normalized detection frequency within each cell (brighter = higher weight; weights sum to 1 over land cells).
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