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ABSTRACT

We identify two global supply shocks that generate tensions in supply chains: shocks to
transportation services and shocks to the production of highly specific intermediate inputs.
Using a structural vector autoregression identified with sign, narrative, and boundary
restrictions, we exploit their distinct implications for transportation costs. Transportation
shocks raise shipping costs, while input production shocks lower equilibrium transportation
prices by reducing output and demand for complementary services. Complementing the
analysis with a global demand shock, we construct structurally interpretable, monthly indices
for supply-side tensions and demand-induced congestion along global supply chains from
1969 to 2024. Both global supply shocks generate recessionary and inflationary effects in
U.S. data but differ markedly in persistence and magnitude. Input production shocks produce
large and persistent effects and elicit partial monetary policy accommodation, whereas
transportation shocks are transitory and largely looked through.
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NON-TECHNICAL SUMMARY

Disruptions to global supply chains have become a major concern for policymakers since the Covid-
19 pandemic. When deliveries are delayed or key inputs are missing, firms may slow production, lay
off workers, or raise prices. Understanding how supply-chain tensions affect economic activity,
employment and prices is therefore essential for the conduct of stabilization policies such as fiscal
and monetary policy. This paper shows that two sources of supply-chain tensions, that are often
bundled together in public debate, have distinct macroeconomic effects. The first is a transportation
shock, reflecting sudden capacity losses or bottlenecks in shipping and logistics that make it harder
and more expensive to move goods. The second is an input-production shock, arising from
disruptions in the production of highly specific intermediate goods that firms cannot easily substitute
in the short run. Both types of shocks can lengthen supplier delivery times and slow global output,
but they operate through different channels.

To distinguish these shocks in the data, we use monthly global indicators of real transportation-costs,
supplier delivery times, and world industrial production. The key idea is intuitive. When
transportation capacity is constrained, shipping prices rise. When the production of specific inputs is
disrupted, global output falls and demand for transport services declines, causing transportation
prices to fall even as delivery times lengthen. We also use well-documented events — such as disasters,
portt closures, and maritime canal blockages — to help identify periods of severe supply chain tensions,
and by bringing other information we obtain from economic theory to the empirical setup.

The estimated shocks display clear historical patterns. Transportation shocks cluster in periods of
tight logistics capacity and line up with large, discrete events, such as the Suez Canal blockade in 2021
and shipping disruptions linked to the Panama Canal drought. Input-production shocks are more
episodic and less clustered, with prominent spikes around major input shortage and the onset of the
Covid-19 pandemic.

Both shocks are contracting economic activity and raising prices. However, their persistence differs
markedly. Transportation shocks raise shipping costs and producer prices mainly in the short run and
fade within two years. Input-production shocks generate larger and more persistent output losses and
a longer-lasting increase in producer prices, with a gradual pass-through to consumer prices and core
inflation. This reflects the difficulty of replacing missing, highly specific inputs within complex
production networks.

A central contribution of the paper is the development of practical monitoring tools. We construct a
Global Supply Chain Tension Index (GSTIX) that summarizes, month by month, supply chain
tensions stemming from transportation and input-production shocks (Figure 1a). The index can be
decomposed into these two components, allowing policymakers to identify the source of supply-
chain stress. We also build a separate index capturing demand-driven congestion, labeled as Global
Supply Chain Congestion Index (GSCIX), helping to distinguish supply-side tensions from strong
global demand (Figure 1b).

The paper also examines how these global supply shocks affect the U.S. economy and the response
of monetary policy. Both shocks reduce industrial production, raise unemployment, and affect
inventories. Transportation shocks lead to a sharp but temporary rise in producer prices, with limited
spillovers to consumer price inflation. Input-production shocks cause a deeper and more persistent
downturn and more sustained inflationary pressures. A key finding is that the U.S. interest rates
respond differently across shocks. Transportation shocks are largely looked through, while input-
production shocks are followed by a clearer and more persistent tightening, consistent with their
longer lasting inflationary effects. Monetary policy partly accommodates the inflation response to
limit the output losses.
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Figure 1.
a) Global Supply Chain Tension Index (GSTIX) b) Global Supply Chain Congestion Index (GSCIX)
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Note: Black line corresponds to the GSTIX and GSCIX, respectively, with shaded bands = 68\% and 90\ % robust credible
sets. Vertical grey bars denote NBER U.S. recessions. The grey line in Panel a) represents the Global Supply Chain Pressure

Index (GSCPI) at rhs y-axis. Source: Authors’ calculations and Applied Macroeconomics and Econometrics Center
(AMEC) at the Federal Reserve Bank of New York.

Chocs d’offre sectoriels mondiaux,
inflation et politique monétaire

RESUME

Nous identifions deux chocs d’offre mondiaux qui génerent des tensions dans les chalnes
d'approvisionnement : les chocs sut les services de transport et les chocs sur la production
d'intrants intermédiaires hautement spécifiques. A Taide d'un modéle vectoriel
autorégressif structurel identifié a I'aide de restrictions de signe, narratives et d’amplitude,
nous exploitons leurs implications distinctes sur les couts de transport. Les chocs sur les
transports augmentent les couts d'expédition, tandis que les chocs sur la production
d'intrants font baisser les prix d'équilibre du transport en réduisant la production et la
demande de services complémentaires. En ajoutant un choc de demande global, nous
construisons des indices mensuels structurellement interprétables pour les tensions liées
aux effets d’offre et la congestion causée par des effets de demande le long des chaines
d'approvisionnement mondiales de 1969 a 2024. Ces deux chocs générent des effets
récessifs et inflationnistes dans les données américaines, mais différent considérablement
en termes de persistance et d'ampleur. Les chocs liés a la production d'intrants ont des
effets importants et persistants et entrainent un assouplissement partiel de la politique
monétaire, tandis que les chocs liés au transport sont transitoires et la politique monétaire
« regarde donc a travers ».

Mots clés : Chaines d’approvisionnement ; chocs sectoriels ; VAR structurel ; dynamique
de Iinflation ; politique monétaire ; réseaux de production ; congestion causée par des
effets de demande.
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1 Introduction

Domestic production networks depend heavily on foreign inputs, often via indirect
trade, making them vulnerable to international sectoral shocks. Global supply chain
disruptions related to the Covid-19 pandemic led to increased interest in the topic.
Causal evidence for sectoral spillovers and the estimation of input elasticities is so far
based on firm-level data during natural disaster episodes and providing evidence that
output effects are economically meaningful (Barrot and Sauvagnat 2016; Boehm et al.
2019; Carvalho et al. 2021). However, informing policies that are intended to stabilize
production, demand and inflation requires to go beyond the analysis of case studies
and to assess empirically dynamics at business cycle frequency.

We propose a structural vector autoregressive (SVAR) model to identify two global
sectoral shocks that lead to tensions in global supply chains and that are often looked
at jointly: (i) transportation shocks and (ii) input production shocks. Transportation
shocks cause severe delays and restrictions in the flow of goods within and across
countries and are due to infrastructure or operational bottlenecks. Input production
shocks, in contrast, directly lead to a slowdown or impediment in manufacturing due
to the shortage of upstream production inputs with high specificity, such as certain
raw materials, specialized electronic parts, or any other intermediate input with high
specificity.

The empirical identification is based on the combination of sign, narrative and
boundary restrictions, while estimation draws on robust Bayesian inference for set-
identified models following Giacomini and Kitagawa (2021); Giacomini et al. (2023).
Sign restrictions are a common approach for the identification of economic shocks in
SVARs, but require a consensual view about the applied signs for identification. We
develop a stylized production network model to derive our assumptions for empirical
identification. In this model, productivity shocks in the transportation sector and
the sector for complementary intermediary input goods lead to a drop in aggregate
activity as a result of downstream production effects. Supply delivery time length-
ens due to imperfect substitutability between production and inventories. Key for
our identification is an opposite effect of the two shocks on the equilibrium price of
complementary transportation services. Transportation shocks have the conventional
effect to increase transportation services prices by constraining supply. In contrast,
input production shocks lower transportation prices. As less goods are being produced
globally, market clearing prices for transportation services drop. The channel is lower
demand for transportation services, which are complementary inputs for intermediate
and final goods. Short-run rigidities in transportation supply make this price response

an overall plausible assumption for the empirical model, where restrictions are only



imposed on impact. We complement the two supply-side shocks with a global demand
shock.

We extend the set of identifying assumptions for supply shocks along two dimen-
sions. First, we exploit narrative information by imposing sign restrictions on selective
historical events. We focus on events which have documented effects on either produc-
tion networks, as the 2011 Tohoku earthquake in Japan, or on transportation services,
for example the grounding of a container ship that led to the blockage of the Suez
canal in March 2021. Second, we place weak bounds on four impact elasticities to
rule out implausible short-run behavior while keeping the model set-identified. The
bounds capture three facts: (i) freight demand is pro-cyclical but not infinitely elastic,
so transportation costs rise only moderately with activity; (ii) higher logistics costs de-
press activity on impact; and (iii) more production lengthens delivery times, whereas
longer delivery times do not, by themselves, bid up freight prices.

The results show that transportation and input-production shocks together account
for a meaningful share of movements in world industrial production at business—cycle
horizons, even though a global demand shock remains the dominant driver of output
volatility. Regarding transportation, the two sectoral shocks explain most of the vari-
ation in real transportation costs at all horizons, while their contribution to supplier
delivery times is large and front-loaded, gradually giving way to global demand as bot-
tlenecks clear. Based on those results, we construct a Global Supply Chain Tension
Index (GSTIX) by aggregating the contributions of the two sectoral supply shocks in
the historical decomposition of supplier delivery time and transportation cost from
1968 to 2024 at monthly frequency. The index has a structural interpretation and can
be decomposed into a transportation and an input-production component. We also
build a Global Supply Chain Congestion Index (GSCIX) that sums the contribution
of a global demand shock to the same two variables and tracks demand-driven tight-
ness leading to longer delivery times and higher shipping costs. The GSTIX co-moves
strongly with bottom-up measures of global supply-chain pressure (Benigno et al.,
2022), while the GSCIX closely tracks demand rebounds.

Next, we study transmission in a block-exogenous setting for the United States and
global commodities. A main result is that both sectoral shocks are contractionary and
inflationary, hence lead to the responses traditionally associated with supply shocks.
The strength, timing, and persistence of the price response differ across the two shocks.
A transportation shock lowers U.S. industrial production, raises producer prices with
a clear hump, and generates only modest, short-lived increases in PCE and core PCE,
whereas an input-production shock produces a deeper and more persistent contraction

together with a more durable rise in producer prices and a more sustained, though



still moderate, pass-through to consumer prices. Real activity declines, unemployment
rises, and inventories adjust in both regions, in line with capacity constraints and
sequencing frictions along supply chains. These empirical patterns are consistent with
real-side amplification through input—output linkages in industries that rely on foreign
inputs (Acemoglu et al., 2012; Baqaee, 2018; Dhyne et al., 2021). The significant price
responses can be rationalized with sectoral price stickiness (Afrouzi and Saroj, 2023),
and with trade-cost pass-through that amplifies the propagation of transportation cost
shocks to free-on-board prices (Hummels and Skiba, 2004; Daudin et al., 2022).

The long sample period allows us to study the systematic response of monetary
policy to the two supply disturbances. Importantly, we find that U.S. monetary pol-
icy reacts differently to the -side shocks. Transportation shocks are largely “looked
through,” with the one-year interest rate showing little systematic tightening despite
higher producer prices and temporary consumer-price increases. In contrast, input-
production shocks are followed by a clear and sustained rise in the one-year interest
rate, in line with persistent inflation and a deeper production downturn generated by
this shock. Since interest rates move by less than inflation, the monetary policy partly
accommodates the inflation response to preserve production.

Turning to global commodities, both shocks are inflationary for oil and broad
commodity prices. Transportation shocks generate a hump-shaped build-up in the
real price of oil and in the commodity index that fade only after two years. Input-
production shocks deliver even more persistent increases in oil and commodities prices.
These commodity-price patterns reinforce the pricing pressure seen in producer prices
and help account for the persistence differences across the two shocks.

We find that post-pandemic inflation is consistent with the channels identified in
our parsimounious SVAR. In 2022, both transportation and input-production shocks
contributed to the surge in U.S. PCE and core PCE inflation, with input-production
shocks accounting for most of the increase in producer prices. As congestion eased
in 2023, transportation shocks became disinflationary, while input-production shocks
continued to push U.S. consumer and producer prices upwards. By 2024, the con-
tributions of both sectoral shocks to consumer inflation were small and often not
statistically distinguishable from zero, with some remaining sectoral-supply influences
concentrated in upstream producer prices.

Our work is related to mainly two sets of papers. Quantifying the role of sectoral
shocks for business cycle dynamics is a classic question studied in a number of works
since Long and Plosser (1983, 1987). Horvath (2000) proposes a model where all aggre-
gate fluctuations are driven by independent sectoral shocks. More recent contributions

focus on the amplification arising from sectoral shocks in complex networks (Acemoglu



et al., 2012; Baqaee, 2018; Dew-Becker, 2023; Afrouzi and Saroj, 2023). Our paper
contributes to this theoretical literature by showing empirically that significant real
effects originate from input production shocks and transportation shocks in the US
data. We consider sectoral supply shocks as being of global relevance, motivated by the
observation that production networks depend on foreign inputs (Dhyne et al., 2021).
Our paper also draws on results from this literature for the identifying assumptions,
which is based on a differentiated price responses in the transportation services sector
through demand complementarities. We consider this mechanism to be distinct from
supply shocks causing deflation via negative income effects that have been put forward
as Keynesian supply shocks in the literature (Guerrieri et al., 2022).

Our paper relates to a growing number of empirical papers that study the propaga-
tion of localized shocks through production networks. Boehm et al. (2019) document
Boehm et al. (2019) firm-level spillovers from the 2011 Tohoku earthquake in Japan.
They find a short-run elasticity of substitution between different inputs of near zero,
suggesting large adjustment frictions and output losses in response to shocks in the
production network leading to input shortages. Barrot and Sauvagnat (2016) estimate
the network effects of natural disasters in U.S. firm-level data in a sample covering 30
years. They find that customers of firms affected by natural disasters suffer substantial
output losses.

More closely related to our approach are recent contributions in a time-series setup.
Burriel et al. (2024) develop a newspaper based index of supply bottlenecks for six
advanced economies. They assess the macro effects of exogenous changes in their index
based on a Cholesky identification approach, finding that they dampen industrial
production and employment, and increase CPI inflation. Bai et al. 2024 estimate
the effects of supply chain disruptions by mobilizing satellite data for 50 ports to
construct a measure of port congestion over the period 2017-01 to 2022-04. Kéanzig and
Raghavan (2025) also focus on disruptions in the transportation sector by exploiting
high frequency surprises in shipping rates at short windows around events related to
disruptions at the Suez and Panama canal, respectively, with a stagflationary effect
on the U.S. economy. Focusing on shortages of input goods, Caldara et al. (2025)
construct a newspaper article based monthly shortages index. They find that shortages
help improve inflation forecasts, but exogenous increases in shortages have limited
effects on U.S. consumer prices in a VAR-based analysis. Our paper departs from
these approaches by considering a setup for joint identification of transportation shocks
and input production shocks and by studying their differentiated effect on the U.S.
economy.

The remainder of the paper is organized as follows. Section 2 presents the empirical



model, data and identifying assumptions for robust Bayesian inference for set-identified
models. Section 3 reports the baseline results, including the construction of the indices
capturing tensions in global supply chains and demand congestion. Section 4 presents
the macroeconomic effects for the U.S. economy and commodity prices. Section 5

concludes.

2 Empirical model and identification

This section sets up the empirical model. It presents three sets of identifying assump-
tions made in the baseline model, namely sign-restrictions, shock-sign restrictions from
narrative episodes, and prior information on elasticities from economic theory. The
section also discusses the robust Bayesian estimation approach with multiple priors
used for the set-identified model (Giacomini et al., 2023).

2.1 Model setup and data

The empirical model takes the form of a structural vector autoregression (SVAR). Let

y; be an n x 1 vector of variables following the SVAR(p) process
Ay = Ay + €, t=1,..,T (1)

where the vector &, = (y;_y, .., Y;_4, -, Yi_,, C, ) contains lagged endogenous variables
up to lag ¢ = p, a vector of constants ¢, and a linear trend, A, = (A4, ..., Ay, ..., A,, A,),
and structural shocks €, SN (Opx1,I,). Let m = dim(x;) denote the number of re-

gressors. The reduced form of the model can be expressed as
yt:BZBt—{—ut, t= 1,...7T (2)

where B = (B4, ..., B,, B.), with B, = Aj'A,; and u; = A;'€;, with the reduced
form errors u;, s N(0,x1,%). The covariance matrix of the reduced-form residuals is
given by

E(uu) =3 = Ay (A1) (3)

Let ¢ denote the set of reduced form parameters such that B, 3 € ¢, while structural
parameters are denoted by 6, such that Ay, A, € 6.

Data. We set y; = (st, Zt, yt)’ to be a vector containing a measure of transportation
cost (s;), supply delivery time (z;), and world industrial production (y;). Throughout,
s¢ is in logs, z; is in levels, and y; is in first difference of the log. Transportation

costs are expressed in real cost from a large cross-section of shipping and air freight



indices, extending a measure proposed by Kilian (2009). See Online Appendix B.2
for details on the construction of the index. Supplier delivery time is a monthly
index compiled by the Institute of Supply Management from a survey among firm
managers. It tracks changes in the speed of supplier delivery time. Values above 50
indicate slower delivery speed, while faster delivery speed is associated with values
below 50. The information contained in the data is used by practitioners to decide
when to place orders to prevent running out of inventories. Finally, global industrial
production corresponds to the monthly industrial production of OECD countries plus
six major emerging market economies, following Baumeister and Hamilton (2019). All
data sources are described in the Online Appendix B.1. In the baseline analysis, we
use monthly data from January 1968 to June 2025. The starting period is given by
the availability of transportation cost series.

The model equations for transportation cost, supplier delivery time, and world

industrial production from the structural model (1) are:

/

St = Ozt + Qgyly + Q1 Ty + €1, (4)
/

2t = QpsSp + Oyl + Qo Ty + €gy, (5)
!

Yo = QysSt+ 0oz + @l X+ €3y, (6)

where a], denotes the ith row of A, for i =1,2,3, and €, = (€1, €2, €31)".

Equation (4) represents the market for transportation services. Transportation
costs s; are determined contemporaneously by supplier delivery time, via the coefficient
as, capturing bottlenecks in global supply chains, by global demand conditions through
sy, and by a structural transportation supply shock €;. Equation (5) summarizes the
determinants of supplier delivery time z;: one ingredient is transportation services, as
implied by a5, another is global demand through a.,, while other factors that slow
down delivery are captured by the structural input production shock ey,. Finally, global
activity y; enters the model through equation (6) and depends on transportation costs
(cys), supplier delivery time capturing the availability of intermediate inputs (o),
and a structural global demand shock e3;. We set the lag length to p = 12, so that the
regressor vector a; includes twelve lags of all variables, a constant, and a linear time
trend, x; = (y,_1, .-, Y, 19, 1,1)"

The corresponding matrix Ay is given by

1 —Qlg, —Qgy
AO = | —Ozs 1 —Qlzy | - (7)

—Qlys  — O, 1



2.2 Identification and robust Bayesian inference

This section motivates our choice of robust Bayesian inference over estimation methods
applying conjugate priors. To clarify the interaction of the three sets of identifying
assumptions put forward below, it will be useful to restate model (2) in its orthogonal-

reduced form, as it is common for set-identified SVARs:
yt:Bwt—’—PT’t, t = 1,...,T (8)

where P denotes the lower-triangular Cholesky factor of 3, thus X = PP’, and we
have normalized the variance-covariance matrix F(nn;,) = I,,, with reduced-form VAR
innovations u; = P1,. Candidate solutions for structural shocks can then be obtained

from
€ = Q'n, (9)

where Q' is a n x n square orthogonal matrix such that u; = Pn, = PQe; (Kilian
and Liitkepohl, 2017). Note that any candidate matrix @ is a draw from the set of all
orthogonal matrices fulfilling the condition O(n) = {Q | QQ’ = I,,}.

Our approach to identification of three structural shocks in (2) falls short of fulfill-
ing the sufficient number of zero restrictions for point-identification, leaving us with
the task of estimating a set-identified system (Rubio-Ramirez et al., 2010). Available
algorithms for Bayesian estimation of set-identified SVARs, such as Arias et al. (2018),
propose a conjugate prior to generate independent draws over structural parameteri-
zation. Such a prior can be decomposed into a prior for the reduced-form parameter,
which is revised by the data, and the prior for the structural parameter given the
reduced-form parameters, which is not revised by the data (Giacomini and Kitagawa,
2021). The latter implies a uniform distribution over O(n). While the implicit prior
is assumed to be uninformative on the rotation of the Q matrix itself, Baumeister and
Hamilton (2015) have shown that it may well be informative for other parameters of
the model.

We impose three sets of identifying assumptions on structural parameters @, or
functions thereof, in order to give economic interpretation to the orthogonalized shocks
€; in equation (9). First, we use sign restrictions (SR) on the structural parameters
via restrictions on elements of (A;')". Specifically, this limits the contemporaneous
response of the ith variable to the jth shock. Second, we impose boundary restrictions
(BR) that limit the magnitude of the contemporaneous response of the ith variable
to the jth shock (Kilian and Murphy, 2012). Third, shock-sign restrictions from
narrative events (NR) are imposed, which require that a structural shock ey, for some

k€ {1,...,T} is either positive or negative, according to the narrative event. This last



set of restrictions introduces a direct dependence of the set-valued mapping from ¢ to
0 on the realization of the data.

We estimate the model using a robust Bayesian approach suggested by Giacomini
and Kitagawa (2021) (henceforth GK21) that eliminates prior sensitivity, and which
was extended by Giacomini et al. (2023) (henceforth GKR23) to account for narrative
restrictions. Intuitively, the procedure explores the sensitivity of any object of inter-
est, e.g. the IRF, to the choice of the prior for the flat part of the likelihood that is
not revised by the data. Formally, we follow the notation in GKR23 and let 2(¢ |
SR,BR,NR,YT) denote the set of observationally equivalent parameter points, such
that it is possible to denote the set of all conditional priors for @ that are consistent
with the identifying restrictions as Ilg|4 = {WQM, : 7TQ|¢(Q(¢ | SR, BR,NR, YT)) = 1},
where Y7 = (yi,...,yr). In our application, we seek obtaining a robust set of a scalar
value € H (or functions thereof), representing for example an impulse response func-
tion n = h(@). The robust procedure applies Bayes rule to each (conditional) prior
Ilg|s, and computes the point-wise posterior lower (and upper) probability that sat-
isfy the restrictions, denoted by m,y.(-) and 7T:;|Y(~>, respectively, and represent the
infimum and supremum probabilities for the object of interest based on the researchers
joint set of identifying assumptions. Intuitively, this amounts to minimizing the pos-
terior probability for ¢ to fall within 2(-). This can be interpreted, in the words of
GK21, as saying that ‘the posterior credibility for n € 2(-) is at least equal to my.(-),
no matter which unrevisable prior one assumes’.

GKR23 demonstrate how to extend this procedure to the case of narrative restric-
tions, where a difficulty arises from the data-dependent mapping from ¢ to Q. By
considering for the posterior only values of @ that are consistent with sign restrictions
and narrative restrictions, the NR effectively truncate the prior for Q | ¢. Then, using
every possible prior in the set of conditional priors allows computing the set of pos-
teriors for (¢, Q), which is now not only conditional on the validity of all traditional
restrictions (Dy = 1), but also on the data Y7. We denote this set of posteriors as
Iy qiy™,py=1, from which it is possible to obtain the set of posteriors for 1, denoted
by I, yr p,=1 through n = h(6(¢,Q)). It is in the sense of data-conditionality that
the suggested approach arrives at a ‘conditional identified set’.

Ultimately, we compute a robust credible region C? with credibility level o € (0, 1)
for n directly from the posterior distribution of ¢ by minimizing a volume-distance
criterion. Specifically, GK21 consider a subset €, C H such that

Tapy+(Ca) = Ty (¢ :1S,(é | SR, BR,NR, YT) C C,) > a, (10)

where IS, (-) is the identified set of impulse response functions derived from observa-



tionally equivalent values of Q. Recall that the likelihood within IS, (-) is flat, leading
to multiplicity for C,. GK21 suggest pinning down a unique value C? by minimizing
the point-wise volume of a distribution of distance measures d(1.,1S,(¢)) at the ath
quantile of this distribution, where 7. denotes a candidate IRF from the identified
set IS, (+). Ultimately, one can refer to C as the smallest robust credible region with
credibility . In all figures we report 68% and 90% smallest robust credible regions.

The model is estimated from the conjugate diffuse reduced-form posterior implied
by a flat prior on B and a Jeffreys prior on ¥, truncated to the set of stable VARs.
Equivalently, we draw ¥ ~ IW(S, T —m) and vec(B) | & ~ N (vee(B), T® (X' X)),
discarding unstable draws, where X = (xy,...,xr) is the T' X m matrix of regressors,
B is the OLS estimate of B, and S is the associated sum-of-squares matrix. For
the baseline specification, we obtain 1,000 draws that satisfy all restrictions (sign,
boundary, and narrative) simultaneously.

In the following sections, we explain in detail all identifying assumptions we impose

for identification.

Sign Restriction 1: [transportation shock] A transportation shock lowers global

industrial production and increases supplier delivery time and transportation cost.

Second, a negative input production supply shock (henceforth input production
shock) refers to any disruptions in the production of goods, excluding oil, that lead
to decreased supply of intermediate or final goods. This type of shock can occur due
to various reasons such as natural disasters, labor strikes, power outages, equipment
failure leading to business interruptions, and other factors that affect the smooth
operation of production lines. For example, a factory fire could cause an input pro-
duction shock for a specialized product, impeding downstream production due to a
high specificity of the missing good. Another example is a labor strike that shuts
down a production line, resulting in a temporary halt in production and potentially
causing a shortage of goods. Finally, any export restrictions of supplies of critical ma-
terial would also fall within this category. Input production shocks can cause adverse
economic consequences that are not limited to downstream sectors due to production
complementarities (Acemoglu et al., 2012). Importantly for identification, we think
of transportation services as a complementary good, which will be in lower demand
if negative input production shock dampens output. This induces ceteris paribus the
market clearing price for transportation services to drop, which is reinforced through
the rigid supply of transportation services due to installed capacity, for example a

fixed number of container ships in the short run.

Sign Restriction 2: [input production shock| An input production shock lowers

global industrial production, raises supplier delivery time, and lowers transportation



cost.

Third, a global demand shock captures broad demand-driven movements in out-
put that raises contemporaneous utilization of logistics capacity, driving up supplier

delivery time and transportation cost.

Sign Restriction 3: [global demand shock] A global demand shock increases global

industrial production, transportation cost, and supplier delivery time.

Micro-foundations. The three sign patterns are micro-founded by a simple production-
network model developed in Online Appendix A. Short-run rigidity in transportation
supply and complementarity between transportation services and upstream inputs im-
ply: (i) transportation bottlenecks raise freight prices and lengthen delivery times; (ii)
input-production shortfalls lower freight prices while still lengthening delivery times;
and (iii) stronger activity raises the demand for freight and, hence, transportation
costs. These implications map one-for-one into the sign restrictions used below.

Combining restrictions 1-3, we impose sign restrictions on Ay " (rows ordered as s
= transportation cost, z = supplier delivery time, y = global industrial production;
columns ordered as transportation, input production, and global demand shocks) such
that

+ -+
sign(4,1) = [+ + + (11)
- -+

These sign restrictions imply o, <0, a5 > 0, and oy > 0.

2.3 Boundary constraints

We use additional prior information from the existing literature in order to reduce the
number of eligible empirical models further. While this approach has been introduced
by Kilian and Murphy (2012) in the context of a model using an uninformative prior
on the rotation matrix, we argue that this type of restriction is particularly useful for
the context of robust Bayesian estimation with multiple priors. In essence, the ap-
proach imposes assumptions on structural parameters on the contemporaneous effects
summarized in Tab. 1.

Assumption BR1 implies a transportation cost elasticity to supplier delivery time
below zero. We infer this restriction from the work of Alessandria et al. (2023), who
model the effects of shipping delays for the US economy over the pandemic. They

find that a shipment delay lowers imports, production and consumption. While they
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Table 1: Assumptions regarding boundary restrictions

+# struct. param. description interval
(BR1) Qs transp. cost elast. to supply deliv. time [—o0, 0]
(BR2) Qys output elast. to transportation cost [—00, 0]
(BR3) Qsy income elasticity of demand for transp. 0, 2]
(BR4) sy supply deliv. time elast. to production 0, 3]

do not have variable transportation cost in their model, we infer from the aggregate
responses that transportation services real costs should drop.

Assumption BR2 builds on the central idea quite present in the literature that
lower transportation cost stimulate economic activity. Transportation cost can drop
for example due to higher productivity and innovation, which Cogar et al. (2024) as-
sociate with long-run increases in GDP. (Hummels et al., 2009) associate increased
competition in the transportation sector with lower transportation cost and higher
trade and imports. Kilian et al. (2023) summarize unexplained variation in trans-
portation cost as frictions in container shipping, which also negatively correlate with
US industrial production and household consumption in their findings.

Assumption BR3 is informed directly by estimates from the literature. Kilian et al.
(2023) find that foreign and domestic demand shocks raise transportation cost, but by
less than one for one, suggesting a value between zero and one. Tjandra et al. (2024)
document that the income elasticities for transportation demand for a broad range
of transportation freight services (rail, road, marine, and aviation) and across various
country clusters is positive and estimated between 1.5-2. The range is also supported
by Oum et al. (1990), who find relatively low price elasticity of demand for freight
transport ranging from 0 to 2. Hence, we limit the interval of plausible estimates to
this range.

Assumption BR4 postulates that higher output raises supplier delivery time. While
standard macroeconomic models do not consider load-dependent production time of
goods, the relationship between quantities (e.g. number of customers) and waiting time
is well-known as “Little’s law” (Little, 1961) from queuing systems. The operations
research literature defines lead time as the duration between placing an order and
receiving the final product. It is a performance indicator in supply chains. Studies
that quantify the relationship between the production load and lead time at the firm
level find that these feature a hockey stick relationship. While increases in production
load initially do not raise lead time, rapid increases in lead time can accrue when
certain thresholds are exceeded and further orders are placed (Cannella et al., 2018).

The slope of this upward reaching path is determined by the responsiveness of the
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company, which is given by a wide range of factors such as the way raw materials are
sourced or the efficiency of inventory management. Translating these considerations
to aggregate relationship between global industrial production and supply delivery
time is non-trivial. At the aggregate level, the non-linearities should be smoothed
out via substitution between goods and suppliers, why we assume an upper bound of
ay €10, 3].

Our impact sign restrictions on the columns of (A;')’" imply three contemporaneous
cross-elasticities in Ay with known signs: oy, < 0, oy, > 0, and a5 > 0. Economi-
cally, a,, < 0 captures that longer supplier delivery times (congestion/delays) depress
contemporaneous activity by slowing the arrival of intermediary goods; oy, > 0 re-
flects that stronger activity raises the demand for freight services, putting upward
pressure on transportation cost; and a,, > 0 is consistent with higher transportation

cost signaling capacity strain that lengthens supplier delivery times.

2.4 Narrative restrictions

We refine identification by imposing one-month impact sign restrictions on the struc-
tural shocks in months associated with plausibly exogenous disruptions to transporta-

tion or input production. Tab. 2 lists the episodes and dates used as restrictions.

Table 2: Episodes used for narrative sign restrictions (on-impact, one month)

Event Date

Transportation shocks
Great Hanshin (Kobe) earthquake January 1995

Hurricane Katrina September 2005
Eyjafjallajokull eruption April 2010
Hanjin Shipping bankruptcy September 2016
Suez Canal grounding March 2021
Panama Canal drought August 2023
Red Sea attacks November 2023

Input-production shocks

Benguela railway closure (cobalt) — August 1975
Shaba invasion / cobalt crisis May 1978
Chi-Chi (Taiwan) earthquake September 1999
Sichuan (Wenchuan) earthquake — May 2008
Tohoku earthquake and tsunami ~ March 2011
Thailand floods October 2011

12



Transportation-shock episodes

- January 1995 is considered as transportation disruption due to the Great Hanshin—
Awaji (Kobe) earthquake on 17 January 1995. At the time the 6th largest container
terminal in Japan and the connection to Japans second largest economic region,
quay-wall failures from soil liquefaction, toppled cranes, and widespread berth dam-
age led to 90 percent destruction and its quasi shutdown for two years (Chang, 2000).
This had devastating economic consequences in the Hyogo prefecture (Hiroshi and
Hsiao, 2015).

- September 2005 corresponds to Hurricane Katrina, which lead to destruction and
closure of Gulf coast ports and navigation channels in the Lower Mississippi River,
an important gateway for varios bulk materials (Frittelli, 2005). Friedt (2021) finds
sizable and persistent trade reductions from US port-level data, which are partly

offset by rerouting to neighboring ports (Sytsma, 2020).

- April 2010 marks the eruption of Iceland’s Eyjafjallajokull vulcano. In its aftermath
the volcanic ash plume forced largeareas of European airspace to close for a week,
cancelling more than 100,000 flights (Budd et al., 2010). Air freight volume dropped
by around 5-6 percent, affecting temporarily trade between the US and Europe
(Besedesa and Murshid, 2018).

- September 2016 captures the bankruptcy of Hanjin Shipping, the 7th largest con-
tainer carrier in the world, which stranded vessels and boxes and created short-run
port congestion. The Korean company was linked to various container terminal

assets which led to further service gaps (Kwon, 2021).

- March 2021 refers to the grounding of the container ship 'Ever Given’ in the Suez
Canal (23-29 March), which halted transits for six days and delayed onward port
calls (Suez Canal Authority, 2021). 25 container ships heading to ports at the US
east coast got delayed with a sizeable trade volume of 217,400 TEUs (Bureau of
Transportation Statistics, 2021).

- August 2023 denotes a Panama Canal incident in response to a prolonged drought,
as water levels in Gatun Lake dropped to an extend that locks could no longer be
operated at usual frequency. The port authority limited daily transits and required
ships to lighten their load. As a consequence, Chico et al. (2024) identified more
than 290 vessels that were forced to take alternative transit routes, usually longer,

leading to higher transportation cost and shipping delays, notably at US ports.
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- November 2023 marks the onset of attacks by Houthi forces on commercial vessels.
The OECD’s International Transportation Forum reports that between 1 November
2023 and 28 February 2024, the number of ships transiting the Bab-el-Mandeb Strait
decreased by 55 percent. Rerouting via the Horn of Africa can take from 8 to 17
additional days, depending on the vessel type, leading to shipping delays that initially
perturbed supply chains, while rerouting was subsequently integrated in plans for
inventory orders (ITF, 2024).

Input-production-shock episodes

- August 1975 corresponds to the Angolan civil-war closure of the Benguela Railway
linking the mineral rich region of Katanga in Democratic Republic of Congo (DRC)
to the port of Lobito, running through the hinterland of Angola. Price speculation
and delayed supply and supply constraints had implications for industries that had
to adapt quickly (Habib et al., 2016; Gulley, 2022).

- May 1978 (Shaba II) marks renewed conflict in the Shaba region in southern Zaire,
today DRC, that further affected mining and processing operations (Habib et al.,
2016).

- September 1999 captures the Chi-Chi (Taiwan) earthquake with a magnitude of 7.6,
where widespread power outages and facility damage produced short-lived but sharp

interruptions in electronics and semiconductor output (Noy and duPont, 2016).

- May 2008 denotes the Wenchuan earthquake in the Sichuan Province of China, which
generated substantial industrial losses—especially in chemicals—with upstream bot-
tlenecks propagating via input linkages to distant regions in China (Huang et al.,
2022).

- March 2011 is the Tohoku earthquake in Japan, which caused supply-chain dis-
ruptions that propagated to downstream manufacturers abroad through imported
inputs. Boehm et al. (2019) document significant spillovers to US manufacturing

production via elevated production elasticities at the firm level.

- October 2011 refers to the Thailand floods, where increased rainfall in the early
monsoon season related to La Nina event caused damage along the Chao Phraya
River which, as it approaches Bangkok, concentrates two thirds of national GDP
(UNISDR, 2012). The disaster affected manufacturing in automotive and electronics
parts (Haraguchi and Lall, 2015), propagating via supply chains to foreign buyers
as far as Sweden. Forslid and Sanctuary (2023) find that output of Swedish firms
exposed to Thai exporters dropped in 2012 by 8 percent.
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Figure 1: Posterior distributions of contemporaneous elasticities
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Notes: Histograms show posterior draws of the six contemporaneous elasticities under the baseline
identification that combines sign restrictions with narrative and boundary restrictions. Vertical red

lines mark BR bounds where applicable.

Fig. 1 reports the posterior distributions of the six contemporaneous elasticities
under the baseline identification that jointly imposes sign, narrative, and boundary
restrictions. The posteriors are tight and economically plausible, and each layer of
identifying assumptions provides valuable information contributing to model selec-

tion.!

3 Estimation results

This section presents the results based on the three variable structural VAR. In addi-
tion to more standard results on the dynamics, we compute novel measures of supply

chain disruptions based on the structurally identified model.

!Online Appendix C discusses elasticity posterior densities for the set of models identified by i)
SR only, ii) combining SR and BR, as well as iii) combining SR and NR. Each set of identifying
assumptions leads to posterior distributions that are less spread out, hence contributing to the model
selection by sharpening identification.
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3.1 Evolution of global sectoral supply shocks

Fig. 2 shows the time series of global sectoral supply shocks from our SVAR at monthly
frequency. The top panel is the transportation supply shock and the bottom panel is
the input-production supply shock.

The transportation shock is mostly positive in 2021-2022, consistent with tight
logistics capacity and congestion. The input-production shock spikes at historicaly
high values in early 2020, before turning negative after reopening after the first lock-
down. We also see a short dip in the input-production shock around April 2022 (China
lockdowns) and renewed transportation disturbances in late 2023-2024 when shipping

routes were rerouted due to the Panama canal drought and Red Sea crisis.
Figure 2: Historical evolution of supply shocks
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Notes: Shaded bands show 68% (inner) and 90% (outer) credible sets for monthly shocks. The solid
line represents the posterior mean. Vertical bars correspond to the narrative restriction episodes.

Over a longer history, transportation shocks display medium-frequency waves—
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episodes of tightness followed by easing—with positive clusters in the early—mid 1970s,
around the mid-2000s, and again in 2021-2022. Distinct one-off peaks line up with
well-known disruptions to ocean and air freight capacity (early 1995 Kobe, spring
2010 airspace closures, late-2016 Hanjin, spring 2021 Suez, late-2023 canal/route re-
strictions), consistent with the shipping cycle where slow supply adjustment interacts
with demand (Stopford, 2009). Input-production shocks are more episodic, showing
short bursts rather than long runs, with spikes in the mid-1970s, a clear reduction
during the Great Moderation from 1990 to 2007, and again higher volatility around
the GFC and with the onset of the pandemic.

3.2 Impulse response analysis

Fig. 3 displays impulse responses of all variables to a rise of one standard deviation
of each of the three structural shocks. Shaded areas are robust credible regions in the
sense of GKR23, with the darker band showing the 68% region and the lighter band
the 90% region.

For a contractionary transportation supply shock, exhibited in the top row, trans-
portation costs jump on impact and exhibit a hump-shape within the first year before
gradually returning toward zero after about three years. Supplier delivery time rises
on impact due to constraints in transportation capacity that lead to delayed shipping,
then overshoot into negative territory between 18 to 30 months, before normalizing
thereafter. World industrial production declines on impact, then overshoots for a few
months, before turning back into negative territory around one year after the shock.

For a negative input-production supply shock, exhibited in the middle row, trans-
portation costs drop modestly on impact decaying toward zero within two to three
years. Supplier delivery time rises on impact and then converges back to zero with a
temporary very moderate undershooting. World industrial production declines persis-
tently by an economically meaningful amount, highlighting the real effects of complex
global value chains with highly specified input goods.

For a positive global demand shock, shown in the bottom row, transportation costs
and supplier delivery time (SDT) both increase on impact. Transportation cost build
up until one year before converging back to zero after two years. SDT peaks after
6 months, converges more quickly back to zero before it undershoots for some time.
World industrial production rises and remains positive over the horizon of the impulse
response of 5 years. The very presistent output respose of the global demand shock
is rather untypical for demand-side factors, which are usually assumed to return to
zero after some time (Blanchard and Quah, 1989). We leave the long-run response

of industrial production to global demand unrestricted, and our result points in the
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Figure 3: Impulse responses
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Notes: Responses to a one-standard deviation structural shock. Dark band: 68% robust credible
set; light band: 90% robust credible set (Giacomini-Kitagawa—Read). Monthly horizons. Variables
(columns): transportation costs, supplier delivery time, world industrial production. Shocks (rows):
transportation supply, input-production supply, global demand. Restrictions combine sign, boundary,
and narrative restrictions. Responses for world industrial production (shown in cumulative form) and
for the transportation-cost index are read as percentage deviations from the pre-shock level, while
responses for supplier delivery time are measured in index points.

direction of hysteresis effects discussed in the literature (Furlanetto et al., 2025).

3.3 Forecast error variance decomposition

Next, we turn to the forecast error variance decomposition. Fig. 4 reports the share
of the forecast error variance explained by each structural shock (rows) for each ob-
servable (columns). Shaded areas are robust credible regions in the sense of GKR,
with the darker band showing the 68% region and the lighter band the 90% region;
horizons are monthly.

Three observations are worth mentioning. First, transportation costs are predom-
inantly driven by the transportation supply shock at all horizons: its share is near
one on impact and remains high (around 0.7-0.8) even at the horizon of five years.
The global demand shock contributes modestly, rising toward roughly one-third by

one year and thereafter, while the input-production shock accounts for a small and
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relatively flat share (about 0.1-0.15 at longer horizons). Second, supplier delivery
time are mostly determined by the input-production shock, around 0.8-0.9 on impact,
with this share declining over time toward roughly 0.3 as the global demand shock
takes over, gradually rising to about 0.5-0.6 within the first years after the shock
impulse. The transportation supply shock explains only a limited and gradually in-
creasing fraction of delivery-time variance (toward ~0.2 by the end of the horizon).
Third, world industrial production is dominated by the global demand shock at short
horizons with a share close to one on impact; both input-production shocks account
for non-negligible fractions at medium to long horizons rising toward ~0.2 while the

transportation shock plays only a minor role for industrial production.

Figure 4: Forecast error variance decomposition
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Notes: Rows are shocks (transportation supply; input-production supply; global demand). Columns
are variables (transportation costs; supplier delivery time; world industrial production). Dark band:
68% robust credible set; light band: 90% robust credible set (GKR). Monthly horizons (0-60).

3.4 Measuring global sectoral supply chain tensions

We use the estimated model to construct an indicator of tensions in global supply
chains from the SVAR’s historical decomposition. For each month, we sum the con-

tributions of the two sectoral supply shocks —transportation and input production
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— for the two variables (i) supplier delivery time and (ii) real transportation costs.
Summing the share each shock explains in the historical evolution of these two series
seems to be an intuitive measure of global disruptions at the sectoral level.

Fig. 5a plots our favourite measure as solid blackline, which we label 'Global sup-
ply chain tension index’ (GSTIX). The shaded area around are the credible sets, as
before. As a benchmark, the chart also features the Global Supply Chain Pressure
Index (GSCPI) Benigno et al. (2022). As becomes clear, the two measures co-move
strongly around major episodes—including the pandemic surge—with a contempora-
neous correlation of about 0.65 over the overlapping sample. During early 2020 the
GSTIX spikes on impact and remains elevated through subsequent waves and reopen-
ings; a shorter rise appears around the Shanghai lockdown in 2022m4. During the first
ten years of the 2000s, our measure shows more persistence and pronounced swings in
global supply chains.

The identification of two shocks along the supply chain allows us to differentiate
these alternative sources of disturbances. We construct two sub-indices analogously:
Global supply chain tensions due to transportation (GSTIX-T, Fig. 5b) sum over
transportation-shock contributions, and global supply chain tensions related to input
production sum over input-production-shock contributions (GSTIX-I, Fig. 5¢). By
construction, these two components add up to the GSTIX. Decomposition shows that
most of the pandemic surge is attributable to transportation-supply disruptions, con-
sistent with capacity reductions and logistics frictions documented during Covid-19
(Heiland and Ulltveit-Moe, 2020). Before the pandemic, the GSTIX displays marked
cycles that align with the global shipping cycle: a peak in 2003-2004 associated with
the China-led trade expansion and subsequent fleet growth (Stopford, 2008), and a
peak around the 2008-2009 crisis amid the collapse in trade, fleet imbalances, and
scrapping (Notteboom et al., 2021). Input-production disruptions contribute episod-
ically, including around natural-disaster and supply-network events, consistent with
the propagation of shocks through production networks (Acemoglu and Tahbaz-Salehi,
2020). Overall, the GSTIX provides a structural, model-based gauge of supply-side
strain that complements the reduced-form GSCPI, while allowing a clean split between
transportation and input-production sources.

Finally, we build on the third identified shock that purged our analysis on supply
shocks from global aggregate demand effects and associate the share explained by the
aggregate demand shock to supplier delivery time and transportation cost with the
extent of congestion in supply chains, labeling it as Global Supply Chain Congestion
Indez. Fig. 6 reports the GSCIX, which isolates demand-driven tightness. The index
falls steeply in global downturns (e.g., 2009; early 2020) and rises during rebounds
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Figure 5: Global Supply Chain Tension Indicators
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(2003-2005; 2010-2011; 2021-2022), consistent with demand surges elongating deliv-
ery times and supporting freight rates even absent additional supply frictions. Relative
to the supply components, the congestion index is more symmetric around zero over

medium horizons.

Figure 6: Global Supply Chain Congestion Index
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Notes: Sum of the global demand shock’s contributions to supplier delivery time and transportation
costs. Black line = mean; shaded bands = 68% and 90% robust credible sets. This is a demand-driven
congestion measure, separate from the supply-side indices.

4 Macroeconomic effects

4.1 Robust block-exogenous VAR

We quantify spillovers using a monthly block-exogenous VAR in which the identified
global sectoral shocks are predetermined with respect to all variables that enter the
exogenous block (Cushman and Zha, 1997). Let Y; collect the three baseline global
variables—transportation cost s;, supplier delivery time z;, and world industrial pro-
duction y,—ordered as (sq, 2, y:)'. For each block b € {US, COM} with block vector

X t(b) , we estimate

v,] [a ALY 0 Y, B o[ -
x| = || oy pow| |x0| T ee po| [0 1P

with p = 12 lags and a deterministic trend. The upper-right zero block rules out
contemporaneous feedback from Xt(b) to Y;, while baseline shocks & may load con-

temporaneously into X\” via E®.
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The U.S. block Xt(US) includes industrial production, inventories, PCE inflation,
core PCE inflation, the producer price inflation, the 1-year treasury rate, and the

Xt(COM) includes the real price of oil

unemployment rate. The commodity/oil block
and a broad commodity price index. The two models are estimated over the sample
period 1968-01 to 2025-06, see Online Appendix B.1 for a description of the data. For
each accepted baseline draw, these series load contemporaneously on the identified
global shocks through b"), allowing us to trace price pass-through conditional on the
same dynamics at a global level.

All quantity and price variables enter in first differences of logs (except inventories
that are in first difference of level); interest rates and unemployment rates are in levels.
IRFs for differenced series are shown in cumulative form. Regarding estimation, we
keep the same approach as in the baseline VAR and implement the robust Bayesian
procedure of Giacomini and Kitagawa (2021) and Giacomini et al. (2023) under our
sign, boundary, and narrative restrictions. We retain 1,000 accepted (¢, Q) draws that
satisfy all restrictions. For each accepted draw, we (i) recover the baseline structural
shocks &), (ii) estimate each block in (12) by OLS conditional on those shocks and on
lags of (Y7, Xt(b)) (point estimate for the block), and (iii) build the implied augmented
system to compute IRFs and historical decompositions. We report 68% and 90% GKR
volume-optimized robust credible regions C';, which are valid regardless of the choice

of unrevisable prior on the flat part of the likelihood.

4.2 Dynamic response of the U.S. economy

This section quantifies how the two identified global sectoral supply shocks propagate
to U.S. real activity, prices, and monetary policy within the block-exogenous VAR.
Fig. 7a and Fig. 7b display impulse responses to a one-standard-deviation shock;
shaded (solid) bands are 68% (90%) robust credible regions based on the accepted
draws from the baseline identification. For differenced series the figures report cumu-
lative responses.

A negative transportation supply shock is contractionary for U.S. real activity and
pushes prices up, but the monetary-policy response is limited. Industrial production
falls on impact by a few tenths of a percentage point, briefly recovers, and then declines
again so that output remains below baseline at medium horizons, although by less than
under the input-production shock. Inventories show a modest short-run accumulation
followed by a prolonged drawdown, consistent with goods being delayed and then
worked off once bottlenecks ease. The unemployment rate rises gradually and peaks
after roughly three years, pointing to a persistent though moderate weakening of the

labor market. Producer prices display a pronounced hump, with PPI peaking at

23



Figure 7: IRFs of transportation and input-production supply shocks on U.S. variables

(a) Transportation supply shock
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be read as percentage deviations from the pre-shock level, whereas responses for the unemployment
rate and the short-term interest rate are measured in percentage points.

around 1 percentage point after about one year before slowly retracing. The pass-
through to consumer prices is more muted: the PCE and core PCE price levels drift up

by only a few tenths of a percentage point and flatten after roughly two years. The one-
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year interest rate moves slightly down over the horizon, indicating that monetary policy
mostly looks through the temporary cost-push inflation associated with transportation
tensions.

A negative input production shock generates a stronger and more persistent stagfla-
tionary pattern. Industrial production drops sharply on impact, remains persistently
below baseline, and shows no clear recovery within the five-year window. Inventories
decline steadily as firms run them down in response to shortages of inputs, while the
unemployment rate rises more markedly and stays elevated, signaling a deeper and
longer-lasting contraction than under a transportation shock. Price dynamics are also
stronger: PPI increases quickly and reaches a sizeable hump that persists over several
years, and both the PCE and core PCE price levels rise more and for longer than
under a transportation shock, with peaks occurring toward the end of the horizon. In
contrast to the transportation case, the one-year interest rate increases persistently
by several tenths of a percentage point, revealing a systematic monetary tightening
in response to the more durable inflationary pressures generated by input-production
bottlenecks.

4.3 Commodity prices

This section summarizes how the two global sectoral supply shocks propagate to world
commodity prices. The commodity block includes the real price of oil and a broad com-
modity price index. Figure 8a displays impulse responses to a one-standard-deviation
transportation supply shock, and Figure 8b displays the corresponding responses to
an input production shock.

A negative transportation supply shock raises commodity prices on impact. The
real price of oil jumps in the very short run, reaches a clear peak after roughly one year,
and then gradually declines toward baseline, with the credible regions overlapping zero
at longer horizons. The broad commodity price index exhibits a pronounced hump-
shaped response: it increases during the first year, peaks within that window, and
then retraces, with effects that become small and may turn slightly negative at very
long horizons. Overall, transportation shocks generate a sizable but largely temporary
spike in the broad commodity basket and a more modest, uncertain medium-run effect
on oil prices.

An adverse input production shock delivers a more persistent pattern. The real
price of oil moves below baseline initially and remains negative for several quarters,
then turns positive around the one-year mark and continues to rise, reaching a peak
after about two to three years and remaining clearly above zero at the end of the

horizon. The broad commodity price index increases more smoothly: it drifts upward
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over the first year and stays persistently positive over the medium run, with little
sign of a complete reversion. Compared with transportation shocks, input production
shocks generate more sustained medium-run increases in both oil and the broader

commodity index, consistent with more durable upstream cost pressures.

Figure 8: IRFs of transportation and input-production supply shocks in the commodity
block

(a) Transportation supply shock

Real price of oil 3Commodity price index

2
0 12 24 36 48 600 12 24 36 48 60
Horizon Horizon

(b) Input-production supply shock

Real price of oil 3Commodity price index

1
0 12 24 36 48 600 12 24 36 48 60
Horizon Horizon

Notes: Shaded bands are 68% for the darker and 90% for the lighter robust credible regions. Responses
are to a one—standard-deviation shock of the indicated type. Impulse responses for the real price of
oil and for the broad commodity price index are shown in cumulative form and should be read as
percentage deviations from the pre-shock level.

4.4 Post-pandemic inflation

Tab. 3 reports annual historical-decomposition contributions of the two global sectoral
supply shocks to post-pandemic inflation outcomes in the United States over 2022—
2024. The reported values are obtained from the historical decompositions of the block-
exogenous VAR and measure the cumulative contribution of each identified shock to

year-over-year consumer and producer price inflation. We focus here on the behavior
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of U.S. in the immediate post-pandemic period. Online Appendix D.1 documents the
full set of historical decompositions over the entire sample.

In 2022, both transportation and input-production shocks pushed up consumer
prices, as shown by positive contributions to PCE and core PCE, with input-production
playing at least as important a role as transportation. The inflation impulse is even
stronger in producer prices: PPI records large positive contributions, with input-
production shocks accounting for the bulk of the increase. In 2023, transportation
shocks reverse and exert a disinflationary influence on PCE and PPI, while input-
production shocks continue to add modestly to PCE and core PCE and provide at
most a small positive contribution to PPI. By 2024, the contributions of both shocks
to consumer prices are small and often not statistically different from zero, whereas
transportation shocks again provide a clearly positive contribution to PPI, consistent

with lingering cost pressures upstream even as headline and core inflation normalize.

Table 3: Post-pandemic contributions

2022 2023 2024

Series Transp. Input Transp. Input Transp. Input
United States
PCE 4.62 2.05 2.09

[0.53, 2.06] [0.88, 4.51] [-1.66, -0.12] [0.38, 4.03] [-0.48, 0.94] [-0.07, 3.63]
Core PCE 4.00 2.29 2.25

[0.62, 2.06] [0.97, 4.55] [-0.99, 0.41] [0.60, 4.31] [-0.81, 0.57] [-0.03, 3.68]
PPI 6.27 -3.40 1.30

[-1.50, 2.02] [2.97, 6.49] [-7.73,-4.03] [-0.70, 3.24] [2.96, 5.62] [-0.14, 3.76]

Notes: Entries are annual historical-decomposition contributions to year-over-year rates, in percent-
age points. Columns are years x shocks; for each series, the first row is the demeaned series value
spanning all shocks per year, and the second row lists the 68% robust credible region for each shock’s
contribution, shown in square brackets.

These post-pandemic patterns are in line with the dynamic propagation as reported
in the impulse responses. Transportation bottlenecks account for much of the 2022
run-up in consumer and especially producer prices, while input-production shortages
generate more persistent contributions, particularly to producer-price inflation. As
tensions in supply chains fade during 2023, transportation contributions shrink or
turn negative; by 2024, sectoral-supply effects on consumer inflation are small and the
remaining influence of these shocks is concentrated upstream in producer prices. This
interpretation is consistent with evidence on capacity constraints and port congestion
during 2021-2022 (Comin et al., 2023; Bai et al., 2024), and with concurrent roles
for labor-market tightness and demand rebalancing (Benigno and Eggertsson, 2023;
Fornaro and Romei, 2022). Our estimates for supply-side contributions are below

those of other studies that incorporate supply-chain indicators (Ferrante et al., 2023;
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di Giovanni et al., 2022).

5 Conclusion

We propose a structural vector autoregressive (SVAR) model to identify two global
sectoral supply shocks: a transportation supply shock and an input-production supply
shock. Augmenting the model by global demand disturbances, we are able to trace
tensions in global supply chains from three distinct sources: supply-tensions arising in
the transportation sector, supply-tensions arising from intermediate input production,
and demand-induced congestion effects. We build indices at monthly frequency from
1969 to 2024 that allow to track the evolution and dynamic implications over time, by
summing over the historical contribution of each shock to supplier delivery time and
real transportation costs.

We interpret the resulting shocks as global and explore the dynamic propagation
to the U.S. economy and commodity markets. The shocks pass through to prices
and monetary policy in a systematic, but shock-specific, way. Transportation shocks
generate a moderate and relatively short-lived increase in consumer prices, with a
pronounced but temporary hump in producer prices and little evidence of systematic
tightening in the one-year interest rate, consistent with monetary policy largely looking
through a transitory cost-push episode. Input-production shocks, by contrast, induce a
deeper and more persistent decline in industrial production, a larger and longer-lasting
rise in PPI, and more sustained increases in PCE and core PCE, to which monetary
policy responds with a clear and persistent tightening.

The model also provides new insights for the post-pandemic inflation surge. In
2022, both sectoral shocks contributed positively to U.S. consumer prices, with par-
ticularly large contributions to producer prices from input-production shocks. In
2023, transportation shocks became disinflationary, as congestion eased, while input-
production shocks still added modestly to inflation. By 2024, the contributions of both
shocks to consumer inflation were small and often indistinguishable from zero, with
the remaining influence of sectoral supply shocks concentrated upstream in producer
prices.

Overall, the evidence highlights that distinguishing transportation from input-
production tensions is an important differentiation for understanding global supply
chain bottlenecks and the resulting dynamic real and nominal effects. The devel-
oped indices should provide useful information for policymakers to design adequate

stabilization policies.
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