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ABSTRACT

Conventional strategies to identify monetary policy shocks rest on the implicit assumption
that systematic monetary policy is time-invariant. In an environment with time-varying
systematic monetary policy, we formally show that these strategies yield shocks that are
contaminated, leading to bias in estimated impulse responses. In line with our theoretical
results, we empirically show that conventional monetary policy shocks are predictable by
measured fluctuations in systematic monetary policy. We propose new shocks that are purged
of this predictability. Our preferred new shocks show that U.S. monetary policy affects

inflation and output more strongly and faster compared to the corresponding conventional
shocks.
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NON-TECHNICAL SUMMARY

Our understanding of how monetary policy affects the economy hinges on the accurate
measurement of exogenous monetary policy shocks and their impact on GDP and inflation.
This generated a whole literature to identify exogenous monetary policy shocks, through
different methods, either quantitative or qualitative, e.g. Romer and Romer (2004) based on
Federal Reserve's internal forecasts and narrative records from the reading of transcripts of
FOMC meetings.

These shocks are a cornerstone of empirical research in macroeconomics. They underpin
studies of how central banks influence the economy, guide policy evaluation, and inform the
design of economic models. The usefulness of these shocks rests on a simple but critical
requirement: they must capture only unexpected and exogenous changes in policy, free from
other macroeconomic influences.

This paper shows that a key assumption behind conventional identification strategies—the
idea that systematic monetary policy, or the policy rule, is constant over time—is
problematic. If, in reality, the rule changes—due to shifts in policymakers’ preferences or
other factors—these systematic changes are embedded in the estimated shocks. As a result,
the shocks are contaminated by other macroeconomic influences, biasing the estimated
impulse responses of how monetary policy shocks affects the economy.

Our theoretical framework shows that in the presence of time-varying systematic policy,
conventional shocks are predictable from interactions between the policy rule’s inputs and
measures of the policy rule’s variation. Empirically, we operationalize this prediction by
measuring fluctuations in U.S. systematic monetary policy using the “hawk—dove”
composition of the Federal Open Market Committee (FOMC), following Istrefi (2019).
Hawks are relatively more concerned about inflation, while doves place greater emphasis on
employment and growth. Our focus is the identification of monetary policy shocks as in
Romer and Romer (2004) (RR). The RR shocks are the estimated residuals of a Taylor rule-
type regression with constant coefficients on its inputs, such as forecasts for inflation and
unemployment. We show that RR shocks are significantly predictable from the FOMC
hawk—dove balance interacted with Taylor-rule inputs. Across different samples—1969—
1996, 1969-2007, and the post-Volcker disinflation period 1983-2007—the explanatory
power ranges from 10% to 54%.

Motivated by this evidence, we propose new shock series that are orthogonal to measured
fluctuations in systematic monetary policy. The new shocks differ substantially from the
originals, with a correlation of 0.67 and many instances of sign reversals. They also display
lower dispersion. Comparing impulse responses over the post-1983 period, we find that the
new monetary policy shocks generate less persistent Federal Funds Rate (FFR) movements
but substantially larger and quicker declines in real GDP and inflation (see Figure 1). The
differences from the original RR shocks are statistically significant at many horizons,
suggesting that removing the influence of time-varying systematic policy yields a more
accurate assessment of the effects of monetary policy in the U.S.
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Figure 1: Comparing the effects of new and RR monetary policy shocks on the economy
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tightening monetary policy shock. The red line show responses to the new (RR) monetary policy shock that is

corrected for the effect of time-varying systematic monetary policy, represented by the Hawk-Dove balance of
the FOMC. The black dashed line shows the responses to the original RR shock estimated as in Romer and

Romer (2004). Both shocks are normalized to a peak FFR increase of 100 basis points to facilitate comparability.

The shaded areas indicate 68% and 95% confidence bands using standard errors robust to serial correlation

and heteroskedasticity.

Les origines systématiques des chocs
de politique monétaire

RESUME

Les stratégies classiques d’identification des chocs de politique monétaire reposent sur
I’hypothése implicite que la politique monétaire systématique est invariante dans le temps.
Dans un contexte ou cette politique varie au cours du temps, nous montrons formellement
que ces stratégies produisent des chocs altérés, ce qui entraine un biais dans 'estimation
des fonctions de réponse impulsionnelle. Conformément a nos résultats théoriques, nous
montrons empiriquement que les chocs de politique monétaire conventionnels sont
prévisibles a partir des fluctuations mesurées de la politique monétaire systématique. Nous
proposons de nouveaux chocs purgés de cette prévisibilité. Nos nouveaux chocs montrent
que la politique monétaire américaine influence 'inflation et la production de maniere plus

forte et plus rapide que les chocs conventionnels correspondants.
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1 Introduction

Empirical monetary policy shock series form the backbone of a large literature in monetary
economics. The estimated responses to these shocks are used to assess the effectiveness of
monetary policy, construct policy counterfactuals, study the optimality of monetary policy,
estimate structural macroeconomic equations, and estimate DSGE models.! These appli-
cations require empirical monetary policy shocks that are well identified, meaning they
capture unpredictable and exogenous changes in monetary policy that are orthogonal to
other macroeconomic shocks.
The central point of this paper is that fluctuations in systematic monetary policy pose a
challenge to conventional strategies for identifying monetary policy shocks. The fundamental
problem of conventional identification strategies is the implicit assumption that systematic
monetary policy is constant across time. Any time variation in systematic monetary policy
will be contained in conventional empirical monetary policy shocks, consistent with common
views about these shocks:?

We do not have many good economic theories for what a structural monetary policy shock

should be. Other than “random coin flipping,” the most frequently discussed source of

monetary policy shocks is shifts in central bank preferences, caused by changing weights

on inflation vs unemployment in the loss function or by a change in the political power of
individuals on the FOMC. Ramey (2016, Handbook of Macroeconomics, Vol. 2A; p.89)

This paper makes a theoretical and empirical contribution to the identification of monetary
policy shocks. Our theoretical contribution is to formally show that conventional empirical
identification strategies do not isolate monetary policy shocks in an environment with time-
varying systematic monetary policy. Instead, they are contaminated by other macroeconomic
shocks, leading to bias in estimated impulse response functions. Empirically, we revisit the
monetary policy shocks (i) in the seminal Romer and Romer (2004), (ii) their refinement in
Aruoba and Drechsel (2022), and (iii) the shocks Miranda-Agrippino and Ricco (2021) iden-
tify using high-frequency identified monetary policy surprises as external instruments. The
empirical contribution is threefold. First, we show that the three types of monetary policy
shocks are predictable by a measure of time-varying systematic monetary policy. Second, we

propose new monetary policy shock series that are orthogonal to measured fluctuations in

1See, e.g., Romer and Romer (1989); Bernanke and Blinder (1992); Bernanke, Gertler, and Watson
(1997); Christiano, Eichenbaum, and Evans (1999); Romer and Romer (2004); Christiano, Eichenbaum, and
Evans (2005); Gertler and Karadi (2015); Barnichon and Mesters (2020, 2023); McKay and Wolf (2023).

2Similarly, in the first Handbook of Macroeconomics, Christiano et al. (1999, p.71-72) argue that an
empirical monetary policy shock [../ reflects exogenous shocks to the preferences of the monetary authority,
perhaps due to stochastic shifts in the relative weight given to unemployment and inflation. These shifts
could reflect shocks to the preferences of the members of the Federal Open Market Committee (FOMC), or
to the weights by which their views are aggregated.



systematic monetary policy. Third, we find that inflation and output respond significantly
more strongly and quickly to the new shocks of type (i) and (ii) compared to the corre-
sponding original shocks. For type (iii), we also uncover significant differences in responses
between the original and the new shock.

Our theoretical analysis builds on a general type of time-varying monetary policy rule. The
rule determines a policy instrument as a function of inputs to the rule, e.g., inflation and
output, time-varying slope coefficients describing the policy response to macroeconomic
conditions, i.e., systematic monetary policy, and a monetary policy shock.® In contrast,
many conventional empirical identification strategies implicitly assume a policy rule with
time-invariant slope coefficients. Empirical monetary policy shocks are estimated as devia-
tions from such rule. Identification strategies following this approach include Taylor rule-type
regressions (e.g., Romer and Romer, 2004) and linear monetary VAR models using exclu-
sion restrictions (e.g., Christiano et al., 1999), sign restrictions (e.g., Uhlig, 2005), narrative
restrictions (e.g., Antolin-Diaz and Rubio-Ramirez, 2018), or external instruments (e.g.,
Gertler and Karadi, 2015).

Against the backdrop of a time-varying Taylor rule, we show that the conventionally esti-
mated monetary policy shock contains the (actual) monetary policy shock but also time
variation in systematic monetary policy interacted with the inputs to the policy rule. To the
extent that other macroeconomic shocks (present and past) affect the inputs, the empirical
monetary policy shock is contaminated by these macroeconomic shocks.

We formally show that contaminated shocks do not identify the causal effects of (actual)
monetary policy shocks, but lead to biased impulse responses. We characterize three sources
of bias reflecting endogeneity and attenuation. The estimated impulse response function
remains biased even if time variation in systematic monetary policy is exogenous, i.e., if time
variation in the slope coefficients of the Taylor rule is independent of other macroeconomic
shocks. The bias also remains if the inputs to the policy rule are predetermined. The
bias only disappears under strong assumptions, such as assuming monetary policy is fully
€X0genous.

Our theoretical insights similarly apply to monetary policy shocks constructed from high-
frequency monetary policy surprises (e.g., Nakamura and Steinsson, 2018). Identification
rests on the implicit assumption that systematic monetary policy, as perceived by financial
market participants, is constant in a time window around monetary announcements. Other-
wise, the shocks are contaminated and lead to biased estimates. Bauer and Swanson (2023a)

provide evidence consistent with such high-frequency belief changes. We further show that

3For evidence on fluctuations in the coefficients of the policy rule, see, e.g., Clarida, Gali, and Gertler
(2000), Orphanides (2004), Bordo and Istrefi (2023), and Hack, Istrefi, and Meier (2023).



regressing high-frequency monetary surprise on publicly available macroeconomic forecasts
(Bauer and Swanson, 2023b) or Greenbook forecasts (Miranda-Agrippino and Ricco, 2021)
does generally not resolve the contamination problem.

While previous work has noted that time-varying systematic monetary policy may complicate
the identification of monetary policy shocks (e.g., Coibion, 2012; Bauer and Swanson, 2023a;
MecMahon and Munday, 2023), our paper is the first to formally characterize (i) how time-
varying systematic monetary policy leads to contamination in the monetary policy shocks
obtained from a broad set of conventional empirical identification strategies, and (ii) how
contamination leads to biased impulse response estimates. We further go beyond previous
work by providing new empirical evidence on shock contamination and a new identification
strategy that tackles this problem.

Our empirical analysis starts from the testable prediction of the theory that conventional
monetary policy shocks are predictable by time variation in systematic monetary policy
interacted with the inputs to the policy rule. We measure time variation in systematic
U.S. monetary policy through the historical composition of hawks and doves in the Federal
Reserve’s Federal Open Market Committee (FOMC). This composition builds on the narra-
tive classification of FOMC members by Istrefi (2019). Hawks are more concerned about
inflation. Doves are more concerned about supporting employment and growth.* We consider
two measures of systematic monetary policy, the Hawk-Dove balance across all voting FOMC
members and the balance across the four FOMC members currently with voting rights
through the annual rotation. The former is a more comprehensive measure, whereas the
latter primarily reflects exogenous variation through the rotation.

We test our prediction using empirical monetary policy shocks as estimated in Romer and
Romer (2004), hereafter RR.®> We regress the RR shock on the Taylor rule inputs considered
by RR, notably Greenbook forecasts for various macroeconomic variables and horizons, inter-
acted with measured fluctuations in systematic monetary policy. We consider the original
RR sample 1969-1996, the extended Wieland and Yang (2020) sample 1969-2007, and the
post-Volcker disinflation sample 1983-2007. The regression explains between 10 and 54% of
the variance of RR shocks depending on sample and regressors (contemporaneous or lagged).
Using the regressors lagged by one FOMC meeting yvields the highest R?, ranging between
0.33 and 0.54. Overall, our evidence strongly suggests that RR shocks are contaminated by

4strefi (2019) shows that these preferences match with narratives on monetary policy, preferred interest
rates, dissents, and forecasts of FOMC members. Bordo and Istrefi (2023) study the origins of these prefer-
ences, linking them to early-life experiences and education. Hack et al. (2023) use the Hawk-Dove classifica-
tion to study the effects of systematic monetary policy on the propagation of macroeconomic shocks.

°The RR identification strategy has been applied to the UK. (Cloyne and Hiirtgen, 2016), Germany
(Cloyne, Hiirtgen, and Taylor, 2022), Norway (Holm, Paul, and Tischbirek, 2021), Canada (Champagne and
Sekkel, 2018) and many other countries (Choi, Willems, and Yoo, 2024).



fluctuations in systematic monetary policy.

The empirical evidence motivates us to construct new series of monetary policy shocks that
are not predictable by fluctuations in measured systematic monetary policy. We estimate an
extension of the Taylor rule regression in RR that includes the interaction of the Hawk-Dove
balance with the Taylor rule inputs. The correlation between the original RR shock and
our new shock is 0.67. The sign-correlation between the two series is lower, meaning many
shocks flip sign. The distribution of new shocks is less dispersed, with a standard deviation
of 0.23, compared to 0.34 for the RR shock.

Finally, we compare impulse responses between our new monetary policy shock and the RR
shock. We focus on the post-Volcker disinflation sample 1983-2007 because the estimated
responses to many conventional monetary policy shock series appear puzzling in this sample
(e.g., Ramey, 2016).% For comparability, we normalize the size of both shocks to the same
peak increase of the FFR. The dynamic FFR response to our new shock is less persistent.
In contrast, the decline in GDP and inflation is substantially larger for the new shock. The
trough GDP response is about twice as large for the new shock compared to the RR shock.
The differences between the responses to the two shocks are statistically significant at the
five percent level for many horizons. Importantly, the RR shock seems to operate with a
long lag, not affecting inflation up until two years after the shock. The GDP response is
broadly insignificant. In contrast, inflation and GDP respond to our new shock with a lag of
one year. Beyond the first year, the responses of inflation and GDP are significantly different
from zero at the 5% level.” Our findings suggest that the puzzling effects of RR shocks in
the 1983-2007 sample reflect contamination from time-varying systematic monetary policy.
We further revise the refined RR shocks in Aruoba and Drechsel (2022), who use textual
analysis to create sentiment indicators about the Fed staff’s assessment of the economy
to better capture the Fed’s information set about the state of the economy. Measured
systematic monetary policy also has predictive power for the refined RR shocks in Aruoba
and Drechsel (2022). In addition, orthogonalizing the Aruoba and Drechsel (2022) shock with
respect to measured systematic monetary policy leads to similar differences in the estimated
responses compared to the RR shock. Finally, we also provide evidence on contamination
and bias in the impulse responses to the monetary policy shocks estimated in a proxy VAR
with high-frequency monetary policy surprises as external instruments in Miranda-Agrippino
and Ricco (2021). A limitation of our revision of the Miranda-Agrippino and Ricco (2021)

shocks is that we cannot clean the underlying instrument, the high-frequency monetary policy

6Relatedly, Barakchian and Crowe (2013) show that a variety of conventional monetary policy shock
series raise GDP when raising the federal funds rate in a post-1988 sample.

"In the 1969-2007 sample, we also find that output and inflation respond more strongly to the new shock,
albeit with a sluggish inflation response.



surprises, from potential contamination arising from expectation revisions about systematic
monetary policy. The reason is that we only have a low-frequency measure of time variation
in systematic monetary policy but no high-frequency measure of expectation revisions around
monetary announcements. Therefore, our preferred shocks in this paper are the new versions
of the Romer and Romer (2004) and the Aruoba and Drechsel (2022) shocks.

Our paper highlights the importance of accounting for the time-varying nature of systematic
monetary policy when identifying monetary policy shocks. An alternative approach addresses
time-varying systematic monetary policy by modeling it as latent variable or time-varying
coefficients, see, for example, regime-switching models (e.g., Owyang and Ramey, 2004; Sims
and Zha, 2006), time-varying coefficient monetary VAR models (e.g., Primiceri, 2005), and
Taylor rules with time-varying coefficients (e.g., Boivin, 2006; Coibion, 2012; Bauer, Pflueger,
and Sunderam, 2022). Particularly related is Coibion (2012) who uses the latter approach
to estimate a monetary policy shock series. The estimated shock is highly correlated with
the RR shock and yields similar impulse responses as the RR shock. The difference between
this finding and ours might reflect the challenge of time-varying coefficient models to identify

genuine time variation in the parameters of interest while avoiding overfitting.

2 Identification challenge in theory

In this section, we study the identification of monetary policy shocks in an environment
with time-varying systematic monetary policy. We show that a wide spectrum of conven-
tional identification strategies yield monetary policy shocks that are contaminated by other
macroeconomic shocks. The contaminated shocks lead to bias in estimated impulse response

functions unless we impose strong assumptions on monetary policy.

2.1 Time-varying systematic monetary policy

We depart from the common assumption that systematic monetary policy is constant across

time, and assume monetary policy follows the time-varying Taylor rule
i =a+ 0+ @) +w, Elp] = Elz,] = Ew"] = E[pw"] = 0, (2.1)

where i, € R is a policy instrument, x, € R™ ! are the n inputs of the policy rule, e.g.,
present and lagged inflation and GDP (forecasts), &, € R™1 is a vector of time-varying
(slope) coefficients describing fluctuations in systematic monetary policy, with ¢ € R™!

the average coefficient vector, and w}" denotes a random monetary policy (intercept) shock.



We assume the inputs in z; are mean zero and set a = —E[(ﬁt:vt], which simplifies some
subsequent derivations but is not critical for our results.®

Time variation in the coefficients of the rule ¢, may be driven by changes in the preferences
of central bankers. Preference changes can occur for exogenous reasons, e.g., the FOMC
rotation of voting rights (Hack et al., 2023), or for endogenous reasons, e.g., monetary policy
may become more responsive to inflation when inflation is high (Davig and Leeper, 2008).
Our main results hold even if ¢, fluctuates only for exogenous reasons. Finally, we assume
that ¢, does not co-move with monetary policy shocks, E [¢,w]"] = 0, which allows for a sharp

conceptual distinction between systematic monetary policy and monetary policy shocks.

2.2 Contamination under conventional shock identification

In this section, we show that the presence of fluctuations in systematic monetary policy poses
a challenge for conventional strategies to identify monetary policy shocks. Conventionally
identified shocks are contaminated, they do not isolate the monetary policy shock.

We consider as conventional identification strategies (a) Taylor rule-type regressions (e.g.,
Romer and Romer, 2004), (b) linear structural vector-autoregressive (SVAR) models iden-
tified using inter alia exclusion restrictions (e.g., Christiano et al.; 1999), sign restrictions
(e.g., Uhlig, 2005), narrative restrictions (e.g., Antolin-Diaz and Rubio-Ramirez, 2018), or
external instruments (e.g., Gertler and Karadi, 2015), and (c) using high-frequency monetary
policy surprises directly as shock series (e.g., Nakamura and Steinsson, 2018).
Identification strategies of type (a) and (b) both estimate monetary policy shocks as residual

from a time-invariant Taylor rule-type model
i =bx + e, (2.2)

where the estimated residual, €}, is an empirical monetary policy shock. This is a broad
description of a wide variety of identification strategies which differ mainly in how the coef-
ficients in equation (2.2), and thus the residual, are estimated. In particular, SVAR models
to identify monetary policy shocks contain an equation consistent with equation (2.2) irre-

spective of identifying assumptions and estimation method.’

8A richer formulation of (2.1) may contain time-varying target variables, e.g., iy = a + (¢ + &) (z; —
x}) + w, where 7 € R™*! is the target, e.g., the inflation target. Shocks to the target generate a third
type of monetary policy shock, the effect of which is correlated with fluctuations in systematic monetary
policy. Throughout this paper, we abstract from fluctuations in target variables.

9A SVAR model is defined by B(L)Y; = W;, where Y; is a vector of variables, B(L) a lag polynomial,
and Wy a vector of structural shocks. Let Y; include the policy instrument i;, and W; include a monetary
policy shock, wlog the first element of W;. Then, the first equation of the SVAR model is a monetary policy
rule, identical with equation (2.2) given a corresponding specification of Y;.



Against the backdrop of the time-varying monetary policy rule in (2.1), the time-invariant
regression in (2.2) is misspecified, leading to contamination in the estimated monetary policy
shock. The following proposition formally characterizes the estimated empirical shocks for

a given estimate b.

Proposition 1 (Shock contamination). Let monetary policy follow (2.1). Given an esti-

mate 13, the associated estimate of the monetary policy shock é* in (2.2) is given by
e = w + w? +uf,
with the two wedges defined by

W= (@ =z, and wf = dz —E[dw]

The proof is straightforward when combining (2.1) and (2.2). The proposition characterizes

two wedges between the actual monetary policy shock w;” and the estimated shock é€}".

The first wedge, w?, arises whenever the estimate b does not equal the average policy coeffi-

cient vector ¢. This wedge may be present even in the absence of time-variation in systematic
monetary policy ¢, = 0. For example, if b is estimated via OLS, a well-known endogeneity
bias arises if the monetary policy shock correlates with z; (Cochrane, 2011; Carvalho, Nechio,
and Tristao, 2021). The presence of time-varying systematic monetary policy generates an
additional type of endogeneity bias. Formally, the OLS estimate b of the regression model
(2.2) satisfies b - ¢ + E [z2)] ' E [zow] + E [z,2)] ' E {xtxggz;t} Hence, the bias remains
even if E[z;w™ = 0.1 Whatever the method by which (2.2) is estimated, if b # ¢ the
estimated monetary policy shock é}* will correlate with ;.

The second wedge captures the misspecification of (2.2) in the presence of fluctuations in
systematic monetary policy. Fluctuations in ¢, interacted with z, are therefore captured by
the regression residual. The wedge disappears if we assume away fluctuations in systematic
monetary policy ¢, = 0 V¢. If systematic monetary policy fluctuates, the wedge is present
regardless of the estimate b. Even if b = ¢, the estimated monetary policy shock is still
contaminated by é;xt In the next two subsections, we impose additional structure to study

the nature of contamination and its implications.

Finally, we study contamination for conventional identification strategy (c). High-frequency
monetary policy surprises are constructed as changes in interest rate futures (or swaps) in

a narrow window around monetary announcements. The idea is that they capture changes

10Tn a New Keynesian model with time-varying systematic monetary policy, which we study in Section 2.3,
it generally holds that E [z;2]¢;] is non-zero.



in expectations about monetary policy. For simplicity, we assume that financial markets
precisely captures changes in expectations around monetary announcements. Formally, the
high-frequency identified monetary policy surprise then corresponds to é}" = E;ali¢yr] —
Ei_ali¢sr], where Eyaliz,] denotes the period t + A expectation of period ¢ + 7 interest
rates as measured by the price of a future (or swap) contract. If monetary policy follows

(2.1), the monetary policy surprise for 7 = 0 is given by

e = wi" + ¢ (Bpyalw] — Epoalm]) + (EH—A (0] — Et—A[ﬁggxt]) : (2:3)

The first term is the actual monetary policy shock. The second term captures expecta-
tion revisions about x;, which is the private central bank information effect (Nakamura
and Steinsson, 2018; Jarocinski and Karadi, 2020). The third term reflects time-varying
systematic monetary policy. If monetary announcements convey no news about x;, the third
term becomes (EHA[@] —E;. A[q%]) E;_a[x:]. Thus, expectation revisions about systematic
monetary policy in a narrow window around monetary policy announcements contaminate
monetary policy surprises. This result has previously been noted by Bauer and Swanson

1

(2023a), who also provide evidence consistent with such contamination.!* Compared to

Proposition 1, whether (perceived) systematic monetary policy varies outside the narrow

announcement windows is irrelevant for strategy (c), but not for (a) and (b).

2.3 A New Keynesian model

In this section, we impose structure on the macroeconomy in the form of a stylized New
Keynesian (NK) model, which allows us to think about the nature of contamination and its
implications. The subsequent section considers a more general environment.

We depart from the textbook NK model of Gali (2015) and enrich it with time-varying

systematic monetary policy. The model is given by the following four equations:

Yo = Eely] — (i — Eofmea]) + (di — E[dys1])
m = BEmia] + kyr — Kay

ip = a4+ (¢ + d)m +my

G = podi-1 + Vdy + Vs +

HTmportantly, regressing high-frequency identified monetary policy shocks on E;_a[z;], whether that is
publicly available macroeconomic forecasts (Bauer and Swanson, 2023b) or Greenbook forecasts (Miranda-
Agrippino and Ricco, 2021), does not resolve the contamination by time-varying systematic monetary policy.
In general, the residual of the regression é]" = vE;_a[z:] + v still contains variation in @xt A special case
in which such variation is not contained in v; is the absence of expectation revisions about x; together with
expectation revisions about ¢, which are constant in sign and magnitude across monetary announcements.



Variable y; denotes output, m; the inflation rate, i; the nominal interest rate, all in (log)
deviation from steady state. The first equation is the dynamic IS equation followed by the
New Keynesian Phillips Curve, a time-varying Taylor rule and a law of motion for system-
atic monetary policy in line with (2.1). The economy fluctuates in response to exogenous
movements in the discount rate (demand) d;, technology (supply) a;, monetary policy (inter-
cept) my, and systematic monetary policy (slope) ¢;. Fluctuations in systematic monetary
policy are (partly) endogenous if 9% # 0 or 9* # 0. All exogenous variables are mutually
independent and follow stable stable AR(1) process with with shocks w{, w®, wi™, wf.

Based on Hack et al. (2023), the approximate equilibrium dynamics of z; € {y;, 7} follow
2 = o, + 0%d; + 6%ay + 07" my + ngtﬁgt + V,Zatﬁl;t + V?mtﬁgt + 52@- (2.8)

It is straightforward to show (given (5,x > 0) that the demand shock raises output and

d sd
y’(sw

inflation, ¢ > 0, and both responses are dampened by a higher ¢, that is, fy‘yi, 4 < 0.
The supply shock raises output and lowers inflation, 53 > 0 and 62 < 0, and ¢, increases
both responses, 75, 4 > 0.

In the context of our model, the wedges in Proposition 1 are given by

wf = (¢ — l;)wt, and wf = ¢y — E[¢ymy].

Given that the inflation rate responds to all macroeconomic shocks, the conventionally esti-
mated monetary policy shock é;" does not isolate the monetary policy shock but is contami-
nated by the demand and supply shocks. This holds even if b= ¢ and even if we additionally

assume ¢, fluctuates only for exogenous reasons (p? = = 0).

2.4 Bias in impulse response estimates

Empirical monetary policy shocks are often not the object of interest per se, but rather
impulse response functions (IRF) estimated based on these shocks. We analytically show
that the contamination of monetary policy shocks generally leads to biased IRF estimates,
including relative IRF estimates. We provide results for a general data-generating process
and use the New Keynesian model from Section 2.3 as illustrative example.

Suppose we are interested in the causal effects of the monetary policy shock w;"* on some

scalar outcome z;.j, that is, h periods after the shock. Let z; follow the stationary Moving



Average (MA) process
=7t Z (0,’; wiy, + U?,t—h) ) E[“thh] = E[wzhvztfj] =0 Vh,j, (2.9)
h=0

where 0? denotes the causal effect of w]™ on 2,1y and +, is a constant. All fluctuations in z;
not explained by {w;”,} are explained by the ‘residual’ {v,_,}. The MA process describes
a general data generating process in the sense that we leave the residual largely unrestricted
other than assuming that vgt +p, 1s uncorrelated with the monetary policy shock at all lags
and leads. In general, #" can be defined as the best linear prediction.

In the NK model of Section 2.3, the residual v, collects all terms on the right-hand side of
(2.8) except 6™w!™.1? Given our assumptions that all shocks are mutually independent and
that systematic monetary policy does not respond to wj”, the residual in the NK model is
uncorrelated with the monetary policy shock, in line with the assumption in (2.9). In the
model, the causal effect of wi™ on z; is given by 09 = §™.

To state the next proposition, it is convenient to rewrite (2.9) as

Zepn =7 + 00w + @Z,Hha zt+h = Z Votih—g T Z 0! Wty (2.10)
Jj=0, j#h
and it follows from (2.9) that E[w;"o], hoonl =0 Vh > 0.1 Next, suppose an econometrician

aims to estimate the effects of monetary policy via the local projection
Zin = LA dRE Ul (2.11)

where €7 denotes the estimated monetary policy shock as described in Proposition 1.14 If
& = w!™, the econometrician will uncover the causal effect via the OLS estimate as d - 67

In general, however, the estimate d" will be biased, as the following proposition shows.

Proposition 2 (IRF bias). Let monetary policy follow (2.1) and z; follow the MA process
n (2.9). Consider the local projection in (2.11) with €]* as described in Proposition 1. As
T — oo, the OLS estimate CZ’Z‘ of the local projection satzsﬁes

d" s o 9t 4 92 4 e

12Given the AR( ) process 2zt = p*zi—1 + w§, the residual also contains 67" p%z;_1.

13We assume ¢y, x4, 24, U . t 41, jointly follow a stable and ergodic process with finite fourth moments.

M\We further consider an extension of the local projection in (2.11) that includes lagged control variables.
This leads to broadly similar results, as we discuss further below.
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with the three bias terms given by

(S0

0t =E[(&")?] -1 (6 - 0) (0 [xw?] + E [, ,,])
92 =E[(&)?] " (01E [Fziwf] +E [l ,])
e =E[E?] " o (B [wr?] - E[Ery]).

The proof is straightforward and omitted here.

We next discuss the three bias terms. The first bias 192 derives from the wedge wf. A sufficient
condition for the wedge to be zero is b= ¢. But, as we argued in Section 2, the presence of
time-varying systematic monetary policy further complicates obtaining an unbiased estimate
of ¢. Another sufficient condition is E [z,w}"] = 0 and E[z,0!,,,] = 0. In the context of the
NK model, the first subcondition requires the strong assumption that the inflation rate does
not respond to the monetary policy shock. Beyond the model, the subcondition is satisfied if
x¢ only includes variables that are predetermined with respect to w;", e.g., forecasts shortly
before a monetary policy decision (cf. Romer and Romer, 2004). The second subcondition
requires the even stronger assumption that z; does not respond to any other macroeconomic
shock (present or past), or the knife-edge case that the terms in E[mtf}zt +») sum up to zero.
Even the case in which x; includes only predetermined variables does not necessarily help as
long as ﬁiﬁt 45, contains past macroeconomic shocks, as is the case in the NK model.

The second bias 19?3 derives from the wedge wZE , which captures the misspecification of
the linear Taylor rule regression. The bias depends on two expectations, E[¢|z,w}"] and
E[(Z)Q:Ctﬁf’t +n)- Similar to the first wedge, the first expectation is not zero in our NK model
but becomes zero if x; includes only predetermined variables. The second expectation is only
zero under much stronger assumptions. In particular, assuming that x; is predetermined is
not sufficient. Similarly, it is not sufficient to assume that ¢, is predetermined or that b= 0.
Instead, we need to assume that é;xt is exogenous, which effectively assumes that monetary
policy is fully exogenous. That is, it does not respond to macro conditions.!® Alternatively,
we need to assume away time-varying systematic monetary policy ¢, = 0 Vt. Hence, the bias
arising from E[&;xtﬁgt +n) # 0 is unlikely zero.

The third term, 9%, can be interpreted as a type of attenuation bias. If the estimated
monetary policy shock satisfies E [(&7)2] > E [(w}™)?], the estimate d” will be biased toward
zero relative to 67, However, given that w!™ may correlate with the wedges wf and wf; , the
estimated monetary policy shock is not classical measurement error. If E[(é/")?] < E [(w")?],

the estimate cz;‘ will be biased away from zero. Even if the first two biases are zero, the third

5 Importantly, neither assuming exogeneity of ¢; or x; separately is sufficient.

11



bias remains non-zero as long as ¢, # 0 Vt.

The local projection specified in (2.11) is highly parsimonious. It does not include any
endogenous control variables. Consider instead the extended local projection 2y, = c? +
dhe+D (L)Y, +ul, ,, where I'(L) = 3%, T; LY is a lag polynomial, and Y a vector of control
variables. The additional control vector means we need to replace ;" and ﬁ?jt 41, by projections
of these variables on {Y;_1,Y; o,...} in the bias terms in Proposition 2. Importantly, the
control variables do not eliminate the bias. To see this, consider a macroeconomic shock
that realizes between t and t — 1. This shock may affect z; even if x; is predetermined
regarding the monetary policy decision.!® If the shock is persistent, then it may also affect
zi+n, and, hence, 172t +n- Since the lagged controls are determined before the realization of

the oil shock, we have that E[z,0",,,] and E[é;xtﬁgt +») are generally non-zero.

In some empirical applications, the econometrician aims to identify the relative effect of
monetary policy shocks rather than its absolute effect. If 67 is the absolute causal effect of
wy" on 21 444, the relative causal effect is 9?1 / 9?2, where 29,5, denotes another outcome. For
example, it is common to study the effects of monetary policy shocks that raise the nominal
interest rate by 25 or 100 basis points. This requires dividing the response of some outcome
variable of interest by the interest rate response. For some empirical questions, a bias in the
estimated absolute effect may be acceptable as long as the bias cancels out in the estimated
relative effect. The following proposition provides a condition for the relative estimate to be

unbiased.

Proposition 3 (Relative IRF bias). Let monetary policy follow (2.1) and z1; and za,
follow MA processes as in (2.9). Consider two local projections as in (2.11) to estimate the
effects of €*, as described in Proposition 1, on 21441, and zovh. As T — 0o, the two OLS

estimates cigl and @2 satisfy
& v, O
dl;z 022

if and only if

(6= B)E [l 1] +E [t 1] (06— 0)E [0l 1] +E [ Gt 1]
on = o

The condition under which the relative IRF is not biased is a knife-edge condition, which is

generally not satisfied. A (strong) sufficient condition is b= ¢ and ¢, = 0 V¢, which assumes

16Tn practice, e.g., an oil shock that materializes at the beginning of the month should affect Greenbook
forecasts for a monetary policy meeting taking place later in the same month.
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away the identification problem by imposing time-invariant systematic monetary policy.

3 Empirical evidence on shock contamination

In this section, we show that fluctuations in U.S. systematic monetary policy, measured by
the composition of hawks and doves in the FOMC, are strongly predictive for the empirical
monetary policy shocks identified from Taylor rule-type regressions in Romer and Romer
(2004), the refinement in Aruoba and Drechsel (2022), but also the shocks identified from

high-frequency monetary policy surprises in Miranda-Agrippino and Ricco (2021).

3.1 Measuring time-varying systematic monetary policy

We describe two time series of systematic monetary policy, the Hawk-Dove balance among all
FOMC members, and the Hawk-Dove balance among the subset of rotating FOMC members.
The FOMC decides U.S. monetary policy and consists of 12 voting members, among which
four members serve one-year terms on a rotating basis. We use the narrative classification
of FOMC members as hawks and doves in Istrefi (2019). Hawks are perceived to be more
concerned with inflation, while doves are more concerned with employment and growth.
The hawk-dove classification is a panel that tracks FOMC members over time at FOMC
meeting frequency.!” Tstrefi (2019) shows that the perceived policy preferences match well
with policy tendencies that are unknown in real-time to the public, as expressed by preferred
interest rates, with forecasting patterns of individual FOMC members, and with dissents. In
addition, Bordo and Istrefi (2023) show that the FOMC members’ educational background
and early life experience have predictive power for individual policy preferences.

To measure variation in systematic monetary policy over time, we aggregate the individual
FOMC member preferences into a Hawk-Dove balance for each meeting (cf. Istrefi, 2019).
We do so because the nature of monetary policy-making involves the aggregation of diverse
individual policy preferences in a collective decision. We first map the qualitative hawk-
dove classification on a numerical scale for FOMC member ¢ at meeting 7 ranging from
Hawk;; =+1 for consistent hawks, +1/2 for hawks who have been doves before, 0 for

unclassified member, and -1/2 (-1) for swinging (consistent) doves.'® We then construct

17 Among the 147 FOMC members between 1960 and 2023, 129 are classified as hawk or dove. The news
coverage for the remaining 18 members is insufficient for classification. 95 classified members are consistently
hawks or doves, while the others switch camps at least once. The 34 swinging members switch camps at
1.8% of member-meeting pairs.

BHack et al. (2023) show that alternative aggregation schemes lead to similar empirical findings.
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the aggregate Hawk-Dove balance in the FOMC by

1
Hawk!? = > Hawk;, (3.1)
ol 7,

where F, denotes the (full) set of voting FOMC members i at meeting 7.'° The Hawk-Dove
balance may respond to the state of the economy, through swings in types or through new
appointments. For example, the Federal Reserve may become more dovish in response to
high unemployment or more hawkish in response to high inflation (cf. Davig and Leeper,
2008). Systematic monetary policy may also change in response to political pressure (e.g.,
Abrams, 2006; Bianchi, Gémez-Cram, Kind, and Kung, 2023). To address the endogeneity
of the Hawk-Dove balance, we construct the Hawk-Dove balance among the set of FOMC
members who currently have voting rights through the annual rotation.? The mechanical
nature of the rotation renders it orthogonal to the state of the economy and political cycles.

Formally, the Rotation Hawk-Dove balance is defined by

1
R+|

Hawk? = > Hawk;,, (3.2)

i€R+

where R, denotes the set FOMC members at meeting 7 that had voting right through the
rotation.?? While Hawk? is a more comprehensive measure of systematic monetary policy,
Hawk® has the advantage of primarily reflecting exogenous variation through the rotation.
We present the evolution of Hawk? and Hawk? from 1960 through 2023 in Figure 1. Both
balances vary considerably, featuring hawkish and dovish majorities. The variation reflects
the turnover of rotating FOMC members, the turnover of non-rotating FOMC members,
and changes in policy preferences of incumbent FOMC members. The correlation between
Hawk? and HawkR is 0.60; see Table A.1 for further descriptive statistics. Fluctuations in
Hawk® are more short-lived, reflecting the annual rotation of voting rights.

The Hawk-Dove balances are informative about systematic monetary policy. First, the clas-
sification matches well with narratives of monetary policy in the U.S. (Istrefi, 2019). Second,
a hawkish FOMC responds to higher inflation by raising the policy rate more aggressively
(Bordo and Istrefi, 2023; Hack et al., 2023). Finally, a hawkish FOMC tightens monetary
policy more aggressively in response to expansionary government spending shocks, leading

to a significantly dampened GDP expansion (Hack et al., 2023).

90ccasionally, |F,| < 12 because of absent members and vacant positions.

20This was originally proposed in Hack et al. (2023) as instrument for systematic monetary policy. Hack
et al. (2023) discuss in detail that swings and new appointments are not a concern for the rotating group.

2n our sample, |R,| = 4 for 625 out of 634 FOMC meetings and |R,| = 3 for the remaining meetings.
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Figure 1: Hawk-Dove balance in the FOMC

1.00

0.50

0.00

-0.50

Hawk-Dove balance

-1.00 —— Hawk? (all members) Hawk? (rotating members)| |

I I \ \ \ !
1970 1980 1990 2000 2010 2020
Notes: The solid red line shows the aggregate Hawk-Dove balance of the full FOMC Hawk at FOMC meeting

frequency from 1960 through 2023. The dashed red line shows the aggregate Hawk-Dove balance of the rotation
panel Hawk. Grey bars indicate NBER dated recessions.

3.2 Predictability of Taylor rule residuals

We show that the monetary policy shocks in the seminal Romer and Romer (2004) (hence-
forth RR) are predictable by fluctuations in measured systematic monetary policy in a way
that supports our theoretical results. This empirical finding extends to the refined RR shocks
in Aruoba and Drechsel (2022) (henceforth AD).

RR shocks. The RR shocks are the estimated residuals " of a Taylor rule-type regression
ir=a+bx, +e, (3.3)

estimated via OLS and where 7 denotes FOMC meetings. RR specify i, as the change in the
intended federal funds rate between two FOMC meetings. The right-hand side z, includes
18 variables: the Greenbook forecast of output growth and inflation, prepared in advance
of FOMC meeting 7, respectively for the quarter preceding the FOMC meeting, the current
and the two subsequent quarters; the revision of all 8 Greenbook forecasts relative to the
same forecasts prepared for the preceding FOMC meeting; the Greenbook forecast of the

unemployment rate in the current quarter; and the intended federal funds rate before FOMC

rr
T

meeting 7. We use the estimated monetary policy shocks " and associated regressors x,
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from Wieland and Yang (2020) who extend the RR sample 1969-1996 to 1969-2007.%2

Predictability of RR shocks. If systematic monetary policy is time-varying, as in (2.1),
the estimated residuals €I" in (3.3) will contain fluctuations in systematic monetary policy
multiplied with the inputs of the Taylor rule, corresponding to gETxT in Proposition 1. Hence,
a testable prediction of a time-varying Taylor rule is that fluctuations in measured systematic
monetary policy interacted with z, (partly) explain RR shocks éI". To test this prediction,

we estimate the following regression

e =By + By xr—pHawk._, + By r._,AHawk,_,
+ By Hawk,_, + By AHawk, _, + B5 ., + u,, (3.4)

where 7 denotes an FOMC meeting, €7" is the RR shock and z, the RR regressors. Hawk-
is either Hawk? or HawkR, and AHawk, is the first difference of Hawk,.?* We consider
contemporaneous regressors (p = 0) or lags up to two meetings (p = 1,2). Our motivation
to consider lags is to capture that it may take time for FOMC members to affect policy
decisions (Hack et al., 2023).24

Table 1 presents the R? for various specifications of (3.4), as well as the p-values for the
null hypothesis that all regression coefficients are jointly zero. We consider the full sample,
the original RR sample, as well as a post-Volcker disinflation sample. Across regression
specifications, we obtain an R? between 0.10 and 0.54. Using a one-meeting lag (p = 1)
yields the largest R? ranging from 0.33 to 0.54, consistent with the sluggish nature of decision-
making in the FOMC. In other words, a sizable fraction of the variation in RR shocks can
be explained by past variables, irrespective of the type of Hawk-Dove balance and the three
sample specifications. For p = 1, we can reject the null hypothesis that all coefficient
estimates are zero at the 1% significance level. The R? tends to be lower for p = 0 and
p = 2 across sub-samples, except for the post-Volcker disinflation sample. We further find
that Hawk® tends to predict the RR shocks somewhat better than Hawk? .

22We follow Wieland and Yang (2020) and implement their Greenbook data corrections and adjustments.
We end the sample just before the Great Recession, thus avoiding the subsequent period with interest rates
close to the zero lower bound and a large expansion of unconventional monetary policy.

2In Hack et al. (2023), the rotation Hawk-Dove balance is proposed as an instrument to provide causal
evidence on the state-dependent effects of macroeconomic shocks regarding time-variation in systematic
monetary policy. In this paper, we do not use the rotation Hawk-Dove balance explicitly as an instrument
because the high number of regressors in our empirical application would render an IV approach unreliable.

24For example, former Governor Laurence Meyer remarks: I came to see policy decisions as often evolving
over at least a couple of meetings. The seeds were sown at one meeting and harvested at the next. |[...J
Similarly, while in my remarks to my colleagues it sounded as if I were addressing today’s concerns and today’s
policy decisions, in reality I was often positioning myself, and my peers, for the next meeting. Laurence Meyer
(2004), A Term at the Fed: An Insiders’ View, Harper Business.
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Table 1: Explaining RR shocks by systematic monetary policy

Hawk? HawkF
Sample 69-07 69-96 83-07 69-07 69-96 83-07

(a) Contemporaneous FOMC meeting (p=0)

R? 0.098 0.134 0.426 0.165 0.216 0.462
p-value 0.189 0.243 0.000 0.012 0.000 0.000
T 353 265 200 353 265 200

(b) One FOMC meeting lag (p=1)

R? 0.333 0.431 0.452 0.432 0.543 0.441
p-value 0.003 0.001 0.000 0.000 0.000 0.000
T 349 261 200 349 261 200

(¢) Two FOMC meetings lag (p=2)

R? 0.241 0.310 0.369 0.278 0.359 0.423
p-value 0.000 0.000 0.000 0.000 0.000 0.000
T 347 259 200 347 259 200

Notes: The table shows results from regressions based on (3.4). The rows of the three subtables show R?, the
p-values for the null hypothesis that all coefficient estimates are jointly zero, and the number of observations 7'
The three left columns show results for the Hawk-Dove balance across all FOMC members, and the three right
columns for the Hawk-Dove balance across all rotating FOMC members with voting rights. The three subtables
differ by the specification of FOMC meeting lag p. Columns one to three differ by the sample period between
1969-2007, 1969-1996, and 1983-2007, and analogously for columns four to six.

We next investigate the contribution of subsets of regressors for explaining variation in RR
shocks. We focus on the regression specification with H awkf_p and p = 1 because it yields
a comparatively large R? across subsamples, but we obtain similar results for other speci-
fications. Table 2 reports the R? and p-value when regressing the RR shock é" separately
on subsets of the regressors included in equation (3.4). Interactions between x,_; and,
respectively, Hawk® | and AHawk? | yield high R?. In contrast, the (non-interacted) level
of Hawk® | and AHawk? | has practically no predictive power for the RR shock. This
finding further supports the interpretation of the Hawk-Dove balance as capturing varia-
tion in systematic monetary policy, the slope of the monetary policy rule rather than its
intercept. Finally, the regressor x._; has some predictive power in explaining RR shocks,

in particular for the post-Volcker disinflation sample. Overall, our results suggest that a
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substantial fraction of the RR shocks can be explained by variation in systematic monetary

policy.

Table 2: Explaining RR shocks by subsets of regressors

Interactions Levels
Sample 69-07 69-96 83-07 69-07 69-96 83-07
(a) HawkR | x o, (b) Hawk? | & AHawkR |
R? 0.111 0.136 0.121 0.007 0.011 0.002
p-value 0.087 0.050 0.032 0.325 0.286 0.826
(c) AHawkR | x 2,1 (d) xr—1
R? 0.251 0.290 0.066 0.091 0.133 0.256
p-value 0.000 0.000 0.000 0.029 0.005 0.000
(e) All interactions (f) All level terms
R? 0.343 0.399 0.197 0.097 0.154 0.257
p-value 0.000 0.000 0.000 0.034 0.001 0.000
T 349 261 200 349 261 200

Notes: The table shows results from regressions based on (3.4), considering different subsets of the regressors.
The rows of the three subtables show R? and the p-values for the null hypothesis that all coefficient estimates are
jointly zero, and the number of observations 7. The three left columns show results for the interactions between
the Hawk-Dove balance and xr_1, and the three right columns show the results for the non-interacted (level)
regressors. Columns one to three differ by the sample period between 1969-2007, 1969-1996, and 1983-2007, and
analogously for columns four to six.

A potential concern with our results is that the large set of regressors might lead to over-
fitting. We may mechanically absorb variation, although there is no systematic relationship
in the data. We address this concern with two exercises. First, we present the adjusted R?
in Table B.1 in Appendix B. A positive adjusted R? means the regressors have explanatory
power beyond the power obtained from adding unrelated random regressors in finite samples.
The specification with H awk’f_p and p = 1 yields the adjusted R? ranging between 0.22 and
0.42.%° As a second exercise, we present a Lasso estimation. The Lasso minimizes the sum
of squared residuals (as OLS) but additionally penalizes the number of estimated parame-

ters to keep the set of included regressors small. We choose the penalization parameter to

25Moreover, in Section 4.1, we compare the original RR regression with a version augmented by the
regressors from (3.4). We find that the adjusted R? more than doubles in the augmented regression, see
Table 4.
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gradually increment the number of regressors from one to four. We present the results in
Table B.2, in Appendix B. We find that four (scalar) regressors are sufficient to yield an
R? of 0.15 in the full sample. All four regressors are interactions with AHawk® ; and have
signs consistent with our interpretation of the hawk-dove balance. In particular, interactions
between the hawk-dove balance and inflation are positive, meaning that hawkish policy-
makers respond more strongly to higher inflation. We conclude that the predictability of RR
shocks is unlikely driven by overfitting.

Predictability of AD shocks. In related work, Aruoba and Drechsel (2022) refine the
RR shock by using a large vector x; with the goal of better capturing the Fed’s information
set about the state of the economy. They use textual analysis to create sentiment indicators
about the Fed staff’s assessment of the economy before FOMC meetings. The sentiment
indicators are used as additional regressors in a Taylor rule-type Ridge regression. The
estimated residual is the AD monetary policy shock. To assess whether the AD shock is
predictable by systematic monetary policy, we estimate the regression in (3.4) but with the
AD shock as left-hand side variable. We provide the results in Table B.3 in Appendix B.
The full sample runs from 1983 until 2007 because this is the period for which the AD shock
is available. In this sample, we find an R? between 0.26 and 0.36 depending on lag order
(p = 0,1,2) and the type of Hawk-Dove balance. Thus, even their refined shock is predictable

and, hence, may be contaminated by time variation in systematic monetary policy.

3.3 High-frequency identified monetary policy shocks

We show that monetary policy shocks identified from high-frequency monetary policy surprises
in Miranda-Agrippino and Ricco (2021) (henceforth MAR) are also predictable by time-

variation in systematic monetary policy.

MAR shocks. MAR identify monetary policy shocks via a proxy VAR with high-frequency
monetary policy surprises as an external instrument (proxy) for a monthly sample from
1980M1 through 2014M12. Similar proxy VAR approaches are used in the literature (e.g.,
Gertler and Karadi, 2015; Jarociniski and Karadi, 2020; Bauer and Swanson, 2023b). In the
proxy VAR, predictability may arise from the misspecification of the linear VAR or from
contaminated high-frequency monetary policy surprises. Using the identified shock allows
us to capture both sources of predictability. We consider the monetary policy shock series

associated with the maximum likelihood estimation of their six-variate proxy VAR model.
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Table 3: Explaining HF identified shocks by systematic monetary policy

Hawk] HawkF
Sample 80-14 80-96 83-07 80-14 80-96 83-07

(a) Contemporaneous FOMC meeting (p=0)

R? 0.274 0.548 0.265 0.244 0478 0.299
p-value 0.000 0.000 0.000 0.000 0.000 0.000
T 283 139 200 283 139 200

(b) One FOMC meeting lag (p=1)

R? 0.265 0.511 0.260 0.279 0.550 0.267
p-value 0.000 0.000 0.000 0.000 0.000 0.000
T 282 138 200 282 138 200

(¢) Two FOMC meetings lag (p=2)

R? 0.267 0.514 0.302 0.264 0.494 0.263
p-value 0.000 0.000 0.000 0.000 0.000 0.000
T 283 138 201 283 138 201

Notes: The table shows results from regressions based on (3.4), but the left-hand side is the shock from Miranda-
Agrippino and Ricco (2021) at monthly frequency, which is identified via their six-variate proxy VAR and their
high-frequency instrument. The rows of the three subtables show R?, the p-values for the null hypothesis that
all coefficient estimates are jointly zero, and the number of observations 7". The three left columns show results
for the Hawk-Dove balance across all FOMC members, and the three right columns for the Hawk-Dove balance
across all rotating FOMC members with voting rights. The three subtables differ by the specification of FOMC
meeting lag p. Columns one to three differ by the sample period between 1980-2014, 1980-1996, and 1983-2007,
and analogously for columns four to six.

Predictability of MAR shocks. To test whether the MAR shock is predictable by
systematic monetary policy, we estimate the regression in (3.4) but with the MAR shock as
left-hand side variable. The regression results are provided in Table 3. The R? is always
above 0.24 and gets as high as 0.53. Thus, the MAR shock also seems predictable by time
variation in systematic monetary policy. For two out of the three subsamples, we find that
the specification with H awkf_p and p = 1 yields the largest R?, comparable to the RR shock.
The subsample from 1983 until 2007 is suitable for a quantitative comparison with the RR
results in Table 1 since we have an identical subsample. The R? is generally lower for MAR
shocks. However, the R? for the MAR shock is at least 60 percent of the R? for RR, across
all specifications. Thus, we still find considerable predictability relative to RR shocks.
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Overall, we conclude that the predictability of monetary policy shocks is supported by empir-
ical evidence and not limited to shocks computed as Taylor rule-type residuals. This confirms
the empirical relevance of our theory for various types of monetary policy shocks, including

those identified from high-frequency changes in asset prices.

4 New monetary policy shocks

The results in Section 3 motivate us to construct new monetary policy shocks that are no
longer predictable by measured systematic monetary policy. We estimate new RR shocks
that are orthogonal to interactions between Greenbook forecasts and measured time variation
in systematic monetary policy. We find that our new shock affects output and inflation with
a substantially shorter delay, more strongly, and at higher statistical significance compared to
the RR shock, in particular for a post-Volcker disinflation sample. We further document that

impulse responses change significantly when estimated via new AD and new MAR shocks.

4.1 New (RR) shock

We estimate a new monetary policy shock series via the augmented RR regression

ir :ﬁo + ﬂix‘r + ﬁéx‘rfl + Bé v, 1 Hawk, 1 + lel v AHawk,
+ B85 Hawk,_1 + B AHawk,_; + ", (4.1)

where the policy instrument 7, and the Greenbook forecast z, are specified as in Section 3,
and Hawk, is the Rotation Hawk-Dove balance. Our new monetary policy shock is the
estimated residual é"* when estimating (4.1) via OLS.%6 The specification nests the original
RR regression if we restrict 8; = 0 Vj > 1, in which case we denote the estimated residual by
ér’. Our baseline sample to identify the shock is the full sample from 1969 through 2007. We
discuss the sensitivity of our results to alternative samples towards the end of Section 4.2.

Table 4 provides descriptive statistics comparing the RR shock and our new (RR) shock.?”
The regression R? increases from 0.28 in the RR regression to 0.68 in our augmented regres-

sion. The new shock displays no serial correlation, and the correlation between new and RR

26While we follow RR. in using OLS, this leads to endogeneity bias as discussed in Section 2. If the mone-
tary policy shocks explain a sufficiently small fraction of aggregate fluctuations, the endogeneity bias may
be quantitatively negligible (Carvalho et al., 2021). Finally, note that estimating (4.1) via IV is practically
infeasible because it would require a large number of instruments.

2"For five FOMC meetings, x, is missing because not all Greenbook forecasts are available. The regression
for the new shock (4.1) includes x,_; creating five additional missing observations relative to the RR shock.
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Table 4: Descriptive statistics of monetary policy shocks

R? Adj. R* SD Autocorr Corr Sign-corr Min Max N

RR shock 0.28 0.24 0.34 0.12 - - -3.25 1.86 353
New (RR) shock 0.68 0.59 0.23 -0.08 0.67 0.44 -1.02 1.04 348

Notes: The table shows descriptive statistics for the new shock (€7¢") and the RR shock (é7") at FOMC meeting frequency
from 1969 through 2007. R? and adjusted R? refer to the regression used to estimate the shocks in equation (4.1). Autocorr
refers to the meeting-over-meeting autocorrelation. Corr refers to the correlation between new and RR shock. Sign-corr
refers to the correlation of the sign of both shock series.

shock is 0.67. The correlation between the sign of both shocks is 0.44, meaning both shocks
frequently have the opposite sign.

The new (RR) shock series is substantially less dispersed than the RR shock, with the
standard deviation falling from 0.34 to 0.23. The RR shock includes a few exceptionally
large shocks, as can be seen from the shock time series in Figure C.1 in Appendix C. These
shocks are concentrated during the Volcker disinflation between 1979 and 1982. RR argue
that their shocks in this period reflect changes in the Federal Reserve’s operating procedures
and an increased distaste for inflation. In fact, we do observe a relatively hawkish FOMC,
in particular among rotating FOMC members, see Figure 1. Hence, one reason for our new
shocks being smaller is that accounting for variation in systematic monetary policy better
explains monetary policy decisions during this episode.

The key advantage of our new (RR) shock is that it is orthogonal to measured time-variation
in systematic monetary policy. This is valuable because we have demonstrated in Sections 2
and 3 that many conventional shocks, including high-frequency identified shocks, may suffer
from contamination by systematic monetary policy, leading to biased impulse responses.
Even abstracting from contamination and bias, our new shock has some advantages compared
to high-frequency identified shocks. First, our new shock series features substantially larger
fluctuations. That is an advantage because it may reduce the need to extrapolate from small
local effects to construct typical policy scenarios. Second, we span a long time series for

which high-frequency identified shocks are largely unavailable.

4.2 Responses to the new (RR) shock

We study the impulse responses to our new and, for comparison, to the original RR shock.
We find that the effects of monetary policy are stronger, monetary transmission is faster,

and the effects are more precisely estimated when using the new shock.
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Econometric framework. We estimate impulse responses using the local projections
Zon — 21 =al+ B e+ T Y+ 0, h=0,...,H, (4.2)

where z; is an outcome variable of interest. The main outcomes of our analysis are the
effective federal funds rate, the inflation rate, and the natural logarithm of real GDP. The
monetary policy shock é! is either the new (RR) shock é7¢“ or the RR shock é;". The control
vector Y; includes twelve lags of the federal funds rate, the inflation rate, the log of real
GDP, and a linear time trend. A period ¢ is a month, which limits the need to aggregate the
monetary policy shocks.?® Monthly log real GDP and the monthly GDP deflator inflation
rate are obtained by interpolation using the procedure of Chow and Lin (1971).22 The
baseline sample of our analysis is 1983M1 through 2007M12, so post-Volcker disinflation and
pre-Great Recession. We consider this sample particularly interesting because the estimated
responses to many conventional monetary policy shock series appear to be implausible in
post-Volcker disinflation samples (e.g., Ramey, 2016). This sample further avoids potential
structural breaks around the Great Inflation episode. Toward the end of this section, we
present evidence on the sensitivity of our results with respect to various modeling choices,

including control variables, interpolation, and the sample.

Responses of main outcomes. Figure 2 presents the estimated responses of our main
outcome variables, the federal funds rate (FFR), the inflation rate, and the log of real GDP,
to the new shock and the RR monetary policy shock. The left column shows the 68% and
95% confidence bands for the new shock, and the right column shows the corresponding
confidence bands for the RR shock. All confidence bands are based on standard errors
robust to serial correlation and heteroskedasticity. Both shocks are normalized to a peak
FFR increase of 100 basis points to facilitate comparability.

Panel (a) shows the estimated responses of the FFR. The FFR significantly increases in
response to both the RR and the new shock. The response to the new shock is moderately
more transitory. It becomes statistically insignificant at the five percent level after 9 months,
and the point estimate is virtually zero after 12 months. In contrast, the response to the
RR shock remains significant at 5% for 17 months, and the point estimate reaches zero only

after 28 months. Given that the new monetary policy shock leads to a more transitory

280nly 4 months (all between 1969 through 1971) contain more than one FOMC meeting with a monetary
policy shock é%, while a large fraction of quarters across the entire sample contain multiple é%. In months in
which we observe at least one é%, we construct éi as the sum of & contained in ¢. Otherwise, we set éi = 0.

29The related monthly series we use for interpolating GDP and the GDP deflator are CPI, industrial
production, one-year treasury yield, and excess bond premium. For similar monthly interpolations based on
Chow and Lin (1971), see, e.g., Bernanke et al. (1997) and Uhlig (2005).
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Figure 2: Responses of main outcomes to monetary policy shocks
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Notes: The figure shows responses of the federal funds rate, log real GDP, and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). The new (RR) monetary policy shock is identified as the residual
from the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression when b; = 0 for j > 1, as in
Romer and Romer (2004). The shaded areas indicate 68% and 95% confidence bands using standard errors robust to serial
correlation and heteroskedasticity.
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dynamic federal funds rate response, we might expect a larger demand contraction from the
RR shock, at least if both shocks are well-identified.

Panel (b) shows, however, that the estimated response of real GDP is substantially stronger
for the new (RR) shock. The new shock leads to a contraction of GDP that is significant at
the 5% level between 17 and 37 months after the shock. In contrast, the GDP response to
the RR shock is not significantly different from zero at the 5% level for all horizons that we
consider. If we use the (much) lower 32% significance standard, the new (RR) shock leads to
a significant GDP contraction starting 9 months after the shock, while it takes 20 months for
the RR shock. In addition, the RR shock generates a short-lived expansion around 6 months
after the shock (an output puzzle). Panel (b) of Figure 3 displays the difference between the
two GDP responses, along with confidence bands.?® The difference is statistically significant
at the 5% level for most horizons between 13 and 37 months after the shock. The shocks
further differ strongly in the magnitude of the GDP response. The trough response is -1.34%
for the new (RR) shock and -0.46% for the RR shock.

Figure 3: Response to new (RR) shock “minus” response to RR shock
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Notes: The figure shows the differences across impulse responses for the federal funds rate, log real GDP, and the inflation
rate to a monetary policy shock based on the local projection as specified along with (4.2). The difference is computed as the
response to the new shock minus the response to the old shock for each outcome, respectively. The new (RR) monetary policy
shock is identified as the residual from the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression
when b; = 0 for j > 1, as in Romer and Romer (2004). The shaded areas indicate 68% and 95% confidence bands using standard
errors robust to serial correlation and heteroskedasticity.

Finally, panel (c) shows the estimated responses of inflation. Arguably, the most striking
finding of Figure 2 is the difference in the lag of monetary policy affecting inflation. The
inflation response becomes significant at the 5% level only after 27 months for the RR shock
but after 13 months for the new (RR) shock. Thus, our new shock shows that monetary
policy shocks affect inflation at substantially shorter lags compared to the RR shock. The
difference between inflation responses is particularly significant between 13 and 39 months,

see panel (c) of Figure 3. Quantitatively, the trough response is -0.62 percentage points for

30The standard errors for the difference across impulse responses are constructed by estimating both local
projections as seemingly unrelated regressions and estimating the joint covariance matrix via Driscoll-Kraay.
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the RR shock but sizable -1.15 percentage points for the new (RR) shock.

Overall, our results suggest that accounting for time variation in systematic monetary policy
is critically important when identifying monetary policy shocks. Disregarding variation in
systematic monetary policy may lead to strongly biased impulse response estimates and an
inaccurate assessment of the effectiveness of monetary policy. It may further bias analyses
that use the estimated impulse responses for structural estimation (e.g., Barnichon and
Mesters, 2020), to assess the optimality of monetary policy (e.g., Barnichon and Mesters,

2023), or to construct policy counterfactuals (e.g., McKay and Wolf, 2023).

Impulse response decomposition. To further understand the differences across the
responses to the RR and the new shock, we propose an exact impulse response decomposi-
tion that can be implemented via the local projection from (4.2). We define the difference

Anew

between RR and the new shock by &¥° = &/ — & where &;”° captures interest rate fluc-
tuations due to variation in systematic monetary policy that the RR shock treats as if it
was an exogenous shock to the intercept of the Taylor rule. We then decompose the impulse

response for any outcome z as

h __ nph h h h
z,rr — Mznew Whew + Bz,sys wsys? (43)

where BZZ- denotes the response of zy,;, to &l for i € {rr, new, sys}, estimated from the local
projection in (4.2). The weight w? = E[((£)1)?]/E[((£;")})?] measures the variance contri-
bution to the RR shock, and (£{)* denotes the shocks residualized with respect to the control
vector. Two remarks are in order. First, the decomposition relies only on the properties of
linear projections, notably the Frisch-Waugh-Lovell Theorem, and, therefore, holds exactly
even in finite samples. Second, the decomposition does not rely on the particular relation

Anew

of &" and £7°". Instead, the decomposition can be applied to any two arbitrary shocks or
regressors of interest.
Figure 4 presents the results for all three components of the decomposition. The responses

~new

to the new shock, £7% and to systematic monetary policy (Sys MP), &;¥° are scaled by the
respective variance weight so that they add up to the response to £;”. Focusing on the impulse
response to the systematic monetary policy term, £;Y°, one can see that this component of
the RR shock leads to a significant increase in the FFR, as expected. However, it also leads

to a significant increase in real GDP and inflation. This suggests that £¥°

captures the
systematic monetary policy response to demand shocks and not a shock to the intercept
of the Taylor rule. This rationalizes that the responses to the RR shock are considerably

attenuated compared to the responses to our new shock.
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Figure 4: Decomposition of the responses to the RR shock
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Notes: The figure shows an exact decomposition of the impulse responses to the RR shock into the responses to the new shock
and the responses to the systematic monetary policy component (sys MP) that is contained in the RR shock, based on (4.3),
and based on the local projection as specified along with (4.2). The outcomes are the federal funds rate, log real GDP, and the
inflation rate. The new (RR) monetary policy shock is identified as the residual from the Taylor rule regression in (4.1) whereas
the RR shock is based on the same regression when b; = 0 for 7 > 1, as in Romer and Romer (2004). The shaded areas indicate
68% and 95% confidence bands using standard errors robust to serial correlation and heteroskedasticity.

Further outcome variables. In Figure 5, we extend the analysis to additional outcome
variables, notably capacity utilization, unemployment, hours worked (in manufacturing),
consumption, inventories, and a corporate credit spread. The local projection remains spec-
ified as for the main outcome variables presented above. The additional outcomes are infor-
mative about the transmission mechanism of monetary policy. The estimated responses
further underscore that accounting for systematic monetary policy matters.

In response to the new (RR) shock, we find a decrease in capacity utilization, an increase
in the unemployment rate, and a decrease in hours worked, all significant at the 5% level.
All measures suggest an increase of slack in the economy. The responses to the RR shock
are broadly similar. However, they suggest (again) a substantially longer lag of monetary
policy, and the responses are less precisely estimated. The differences between RR and the
new shock are significant at the 5% level for all variables and at many response horizons, see
Figure C.2 in Appendix C.

The response of consumption expenditures to the new shock is much quicker and occurs
within the first six months. Beyond the short-run, however, the response of consumption
is similar across the new shock and the RR shock, suggesting that investment, government
spending, or net exports respond quite differently to the two shocks. Business inventories
initially increase, consistent with a surprise reduction in demand, and then fall. The reduc-
tion in inventories is significantly more pronounced for the new shock consistent with the
more rapid decline in capacity utilization. Finally, the yield spread between BAA- and
AAA-rated corporate bonds responds more strongly and significantly to the new shock.
Overall, the difference between the responses to the RR and new shock are similar as for the

main outcome variables. Monetary policy transmission appears to be stronger and faster,
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Figure 5: Response of further outcomes to monetary policy shocks
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Notes: The figure shows responses of capacity utilization, the unemployment rate, log consumption expenditures, log business
inventories, log hours (in manufacturing), and credit spreads (BAA- minus AAA-rated corporate bond yield) to a monetary
policy shock based on the local projection as specified along with (4.2). The new (RR) monetary policy shock is identified as
the residual from the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression when b; = 0 for
j > 1, as in Romer and Romer (2004). The shaded areas indicate 68% and 95% confidence bands for the new shock, and the

dotted lines indicate the 95% confidence band for the conventional shock using standard errors robust to serial correlation and
heteroskedasticity for all bands.

with more significant responses, when using the new shock. This underscores the value of
our new (RR) shock relative to the original RR shock.

Responses to new (AD) shocks. Section 3 provides evidence suggesting that the AD
shock constructed by Aruoba and Drechsel (2022) is also contaminated by systematic mone-
tary policy. Thus, we compare impulse responses to the AD shock with responses to a new
(AD) shock, which we estimate as the residual in (4.1), when using the AD shock as left-
hand side variable. Figure C.3 shows that the new (AD) shock leads to a more short-lived
response of the FFR, a stronger decline of real GDP, and a substantially shorter lag in the
inflation response, when compared to the original AD shock. The differences are sizeable
and statistically significant at the 5% level for multiple horizons. Overall, impulse responses
change in similar ways as for the RR shock.

Alternative shock identification. The additional regressors by which we augment the

original RR regression are partly motivated by the evidence from Section 3. In particular,
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we choose to use the rotation hawk-dove balance since it performs best in predicting the
existing shocks. We next investigate how the results change when using the overall hawk-
dove balance, Hawk:* | instead. We provide the impulse responses to this alternative new
shock in Figure C.4. We find that our baseline results are quite robust, although the responses
to this version of the new shock become slightly less significant.

The regression to identify our new (RR) shock augments the original specification from RR
by additional regressors involving Hawk™ ; but also an additional lag of the RR regressors
x-—1 in levels. We do so to separately capture the level effects of the RR regressors and
their dependence on systematic monetary policy. However, one may be concerned that the
properties of our new shock are primarily driven by the inclusion of x,_;. To address this
concern, we run a regression where we drop all regressors involving Hawk™ | but keep x,_;.
In Figure C.5, we present the responses to this alternative shock and compare it with the
original RR shock. We find that responses hardly differ, confirming that the inclusion of

Hawk® | in the regression is responsible for the change in responses with the new shock.

Alternative sample periods. Our new (RR) shock is estimated on the full sample of
Greenbook forecasts from 1969 through 2007, but the impulse responses presented above are
estimated on the post-Volcker disinflation subsample. We analyze whether our estimated
responses differ if the shock identification regressions (4.1) for both the RR shock and our
new shock are estimated on the post-Volcker disinflation subsample. Figure C.6 shows that
the inflation response to the RR shock features a similarly long lag as in the baseline. The
GDP response to the RR shock is insignificant but rather expansionary. In contrast, the
response of inflation to our new shock remains similar to the baseline. The GDP response
remains negative and significant at the 5% level for a few horizons.

We further estimate impulse responses on the full sample (1969-2007) and report the results
in Figure C.7. Similar to the baseline, we find that the new (RR) shock delivers a significantly
stronger contraction in real GDP. Interestingly, the inflation response is similar across both
shocks for around two years and features a price puzzle.' At longer horizons, however, the

new shock leads to a stronger inflation decline.

Additional control variables. Romer and Romer (2004) and Coibion (2012) impose a
recursiveness assumption by including contemporaneous real GDP and inflation as control
variables. In effect, these variables cannot contemporaneously respond to the monetary
policy shock. Figure C.8 shows that our results are highly similar to the baseline imposing

the recursiveness assumption. Parts of the related literature control for lags of the log

3ncluding twelve lags of the log commodity price index (or its growth rate) resolves the price puzzle.
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S&P 500 and the Gilchrist and Zakrajsek (2012) excess bond premium (e.g., Jarocinski and
Karadi, 2020). Figure C.9 shows that our estimated responses are similar to the baseline
when adding twelve lags of the two control variables. Finally, some of the related literature
controls for lags of the RR shocks (see, e.g., Ramey, 2016). Figure C.10 shows that our results
hardly change when adding twelve lags of the shock under consideration to the baseline set

of control variables.

Alternative outcome variables. Our baseline results use interpolated real GDP and
the GDP deflator to measure economic activity and prices at monthly frequency as similarly
done in Jarocinski and Karadi (2020) and Aruoba and Drechsel (2022). An alternative is
to use industrial production (IP) and CPI inflation, which are readily available at monthly
frequency (e.g. Gertler and Karadi, 2015; Bauer and Swanson, 2023b). Figure C.11 shows the
responses of IP and CPI. The differences between the new and the RR shock remain similar
to the baseline. However, the IP response is less precisely estimated (compared with the
GDP response) for the new shock. If we further control for twelve lags of the Gilchrist and
Zakrajsek (2012) excess bond premium and the log S&P 500, then the IP response becomes

statistically significant at the 5% level for many response horizons, see Figure C.12.

4.3 High-frequency identified monetary policy shocks

In Section 3.3, we demonstrated that even the high-frequency identified monetary policy
shocks from Miranda-Agrippino and Ricco (2021) (MAR) are predictable by fluctuations in
systematic monetary policy. Thus, we hypothesize that responses to their shock may be

biased, similar to the RR shock. Our empirical evidence is consistent with this hypothesis.

A new (MAR) shock. As in Section 3.3, our investigation rests on MAR’s identified
monetary policy shock from their six-variate proxy VAR model. We propose a new version of
their shock, the new (MAR) shock, that is given by the regression residual from the predictive
regression from Section 3.3. Specifically, we use the specification with Hawk]* pand p=1,
consistent with (4.1) that yields the new RR shock. The monthly sample runs from 1980 until
2014. In the scope of this paper, a downside of the Miranda-Agrippino and Ricco (2021)
shocks is that we cannot clean the underlying instrument, the high-frequency monetary
policy surprises, from contamination arising from expectation revisions about systematic
monetary policy. The reason is that we only have a low-frequency measure of time variation in
systematic monetary policy, but no high-frequency measure of expectation revisions around

monetary announcements.
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Figure 6: Responses of main outcomes to high-frequency identified shocks
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based on the local projection as specified along with (4.2). The new (MAR) shock is identified as the residual from the predictive
regression in (3.4) where we put the MAR shock on the left-hand side. The MAR shock is taken directly from the six-variate
VAR in Miranda-Agrippino and Ricco (2021). The shaded areas indicate 68% and 95% confidence bands using standard errors
robust to serial correlation and heteroskedasticity.

Responses to the new (MAR) shock. To analyze the differences in impulse responses
between the original and our new (MAR) shock, we run the local projection from (4.2) as
specified in Section 4.2 with the estimation sample from 1983M1 to 2007M12. This choice
facilitates comparability with our baseline results.

Figure 6 presents the estimated responses. The FFR responds persistently to the MAR shock,
but the estimates are largely insignificant at the 5% level. Instead, the FFR response to the
new (MAR) shock is slightly more significant for some horizons. The difference between
both responses is small. The MAR shock leads to a significant fall in GDP and inflation in
the month of the impact. The GDP response is very transitory. Instead, the GDP response
to the new (MAR) shock reaches its trough only after roughly two years and is considerably
smaller. For inflation, we find that the MAR shock delivers a more persistent decline that
fades away after two years. Instead, the inflation response to the new (MAR) shock is zero for
around one year before inflation starts to fall. This pattern somewhat resembles the inflation
response to the new (RR) shock. However, the inflation response to the new (MAR) shock
becomes significant with a substantially longer delay.

Overall, there are two key results. First, the high-frequency identified shock from MAR
performs relatively well compared with the original RR shock, as the responses have signs

consistent with theory, and are statistically significant. Second, the impulse responses to the
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new (MAR) shock differ meaningfully from the responses to the original MAR shock.

Finally, we acknowledge that the responses to the original MAR shock differ from the
responses reported in their paper. This is not surprising because our setup necessarily yields
an imperfect replication of the original results by MAR since the sample, the choice of control
variables, and the estimation method differ. That said, our local projection approach is more
immune to misspecification (Olea, Plaghorg-Moller, Qian, and Wolf, 2024). Further, when
the MAR shock is well identified, then the results should be robust across subsamples, and

the choice of lagged control variables is irrelevant for causal identification in large samples.

5 Conclusion

This paper revisits conventional empirical strategies to estimate monetary policy shock series.
We show theoretically that fluctuations in systematic monetary policy lead to contaminated
shocks and bias in the estimated impulse responses for a broad set of identification strategies.
These strategies include Taylor rule-type regressions (e.g., Romer and Romer, 2004) and
linear monetary VAR models using exclusion restrictions (e.g., Christiano et al.; 1999), sign
restrictions (e.g., Uhlig, 2005), narrative restrictions (e.g., Antolin-Diaz and Rubio-Ramirez,
2018), or external instruments (e.g., Gertler and Karadi, 2015). The problematic assumption
common among these approaches is that systematic monetary policy ought to be constant
over time. Similar problems arise for high-frequency identified monetary policy surprises,
which also impose a time-constancy assumption regarding beliefs about systematic monetary
policy around monetary policy announcements.

Our theory predicts that contaminated monetary policy shocks should be predictable by
measured time-variation in systematic monetary policy. We provide empirical evidence
suggesting that the monetary policy shocks from Romer and Romer (2004), Aruoba and
Drechsel (2022), and Miranda-Agrippino and Ricco (2021) are indeed predictable and contam-
inated. To address this problem, we construct respective new shock series that are orthogonal
to systematic monetary policy and assess their effects on the U.S. economy. Importantly,
evidence from our new shocks suggests that monetary policy has shorter lags and stronger
effects on inflation and output compared to the corresponding evidence for the shocks in
Romer and Romer (2004) and Aruoba and Drechsel (2022).
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Appendix A Data

Table A.1: Descriptive statistics of the Hawk-Dove balances

Mean Median SD Autocorr Corr Min Max T
Hawk?  0.06 0.10 0.34 0.95 - -0.80 0.73 630
Hawk:f 0.24 0.25 0.47 0.91 0.60 -0.75 1.00 630

Notes: This table shows descriptive statistics for the time series at FOMC meeting frequency from 1960 through
2023. Hawk? is the average Hawk-Dove balance of the FOMC. HawkR is the FOMC rotation instrument.
"Autocorr" refers to the meeting-over-meeting autocorrelation. "Corr" refers to the correlation between both series.
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Appendix B Additional results for Section 3

Table B.1: Explaining RR shocks by systematic monetary policy, adjusted R?

Hawk? HawkR}
Sample 69-07  69-96 83-07 69-07 69-96 83-07

(a) Contemporaneous FOMC meeting (p=0)

adjusted R -0.072 -0.099 0.201 0.007 0.005 0.251

p-value 0.189 0.243 0.000 0.012 0.000 0.000

T 353 265 200 353 265 200
(b) One FOMC meeting lag (p=1)

adjusted B2 0.205 0.275 0.238 0.323 0.417 0.222

p-value 0.003  0.001 0.000 0.000 0.000 0.000

T 349 261 200 349 261 200
(¢) Two FOMC meetings lag (p=2)

adjusted R* 0.095 0.119 0.123 0.139 0.181 0.197
p-value 0.000  0.000 0.000 0.000 0.000 0.000
T 347 259 200 347 259 200

Notes: The table shows results from regressions based on (3.4). The rows of the three subtables show the adjusted
R?, the p-values for the null hypothesis that all coefficient estimates are jointly zero, and the number of observations
T. The three left columns show results for the Hawk-Dove balance across all FOMC members, and the three right
columns for the Hawk-Dove balance across all rotating FOMC members with voting rights. The three subtables
differ by the specification of FOMC meeting lag p. Columns one to three differ by the sample period between
1969-2007, 1969-1996, and 1983-2007, and analogously for columns four to six.
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Table B.2: Lasso estimation to explain RR shocks

(1) (2)

(3)

(4)

AHawkf_l X Am;_1p  0.212 0.159 0.266 0.234
(0.153) (0.106) (0.123) (0.118)
AHawkEl X Yr_12 -0.146 -0.111  -0.098
(0.163) (0.108) (0.099)

AHawk:f_l X Amr_11 0.239 0.232
(0.116) (0.106)

AHCLU)]CZ_Q_l X Mr_1,2 0.096
(0.084)

Constant -0.004  0.001 0.006 0.006
(0.020) (0.017) (0.017) (0.017)

Observations 349 349 349 349
R? 0.046 0.069 0.139 0.149

Standard errors in parentheses

Notes: The table shows Lasso regression results based on (3.4). The Lasso shrinkage parameter is chosen to
increment the number of regressors from one to four, and the associated results are presented in columns one to
five, respectively. The time sample runs from 1969 through 2007, and standard errors robust to serial correlation

and heteroskedasticity are in parentheses.
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Table B.3: Explaining AD shocks by systematic monetary policy

Hawk? HawkF
Sample 83-07 83-96 83-07 83-96
(a) Contemp. FOMC meeting (p=0)

R? 0.315 0.649 0.328 0.616
p-value 0.000 0.000 0.000  0.000
T 192 104 192 104

(b) One FOMC meeting lag (p=1)

R? 0.291  0.600 0.263 0.629
p-value 0.000 0.000 0.000  0.000
T 192 104 192 104

(¢) Two FOMC meetings lag (p=2)

R? 0.330 0.515 0.362  0.668
p-value 0.000 0.000 0.000  0.000
T 192 104 192 104

Notes: The table shows results from regressions based on (3.4), but the left-hand side is the shock from Aruoba
and Drechsel (2022), which is identified via their ridge regression. The rows of the three subtables show R2, the
p-values for the null hypothesis that all coefficient estimates are jointly zero, and the number of observations 7'
The two left columns show results for the Hawk-Dove balance across all FOMC members, and the two right columns
for the Hawk-Dove balance across all rotating FOMC members with voting rights. The three subtables differ by
the specification of FOMC meeting lag p. Columns one to two differ by the sample period between 1983-2007 and

1983-1996, and analogously for columns three to four.
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Appendix C Additional results for Section 4

Figure C.1: Time series of monetary policy shocks

2 = x x w
1 i
1L E | ]
2L i
3L i
——RR shock e New (RR) shock
N 1375 19185 19195 20105

Notes: The solid black line shows the RR shock €7 based on the regression in (4.1) when restricting 3; = 0Vj > 1.
The dotted red line shows the new shock é2¢% based on the regression in (4.1). The sample period is 1969 through
2007. Grey bars indicate NBER recession.
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Figure C.2: Response of further outcomes to new shock “minus” response to RR shock
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Notes: The figure shows the differences across impulse responses for capacity utilization, the unemployment rate, log consump-
tion expenditures, log business inventories, log hours (in manufacturing), and credit spreads (BAA- minus AAA-rated corporate
bond yield) to a monetary policy shock based on the local projection as specified along with (4.2). The difference is computed
as the response to the new shock minus the response to the old shock for each outcome, respectively. The new (RR) monetary
policy shock is identified as the residual from the Taylor rule regression in (4.1) whereas the RR shock is based on the same
regression when b; = 0 for j > 1, as in Romer and Romer (2004). The shaded areas indicate 68% and 95% confidence bands
using standard errors robust to serial correlation and heteroskedasticity.
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Figure C.3: Comparison of main responses with Aruoba and Drechsel (2022) shock
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Notes: The figure shows responses of the federal funds rate, log real GDP, and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). The new (AD) monetary policy shock is identified as the residual
from the Taylor rule regression in (4.1) where we put the AD shock on the left-hand side. The AD shock is taken directly from
the ridge regression in Aruoba and Drechsel (2022). The shaded areas indicate 68% and 95% confidence bands using standard
errors robust to serial correlation and heteroskedasticity.
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Figure C.4: Responses when using Hawk?* | in augmented RR regression
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Notes: The figure shows responses of the federal funds rate, log real GDP, and the inflation rate to a monetary policy shock

based on the local projection as specified along with (4.2). We use HawkA , instead of Hawk®

—

in the augmented RR

T—1

regression in (4.1). The new (RR) monetary policy shock is identified as the residual from the Taylor rule regression in (4.1)
whereas the RR shock is based on the same regression when b; = 0 for j > 1, as in Romer and Romer (2004). Columns 1 and
2 display the response to the new shock and conventional shock, respectively. Column 3 display the response to the new shock
minus the response to the conventional shock. The shaded areas indicate 68% and 95% confidence bands using standard errors
robust to serial correlation and heteroskedasticity.
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Figure C.5: Responses when dropping the hawk-dove balance from augmented RR regression
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Notes: The figure shows responses of the federal funds rate, log real GDP, and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). We drop all regressors involving the hawk-dove balance from the
augmented RR regression in (4.1), i.e., we impose 8; = 0, Vi > 2. The new (RR) monetary policy shock is identified as the
residual from the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression when b; = 0 for j > 1, as in
Romer and Romer (2004). Columns 1 and 2 display the response to the new shock and conventional shock, respectively. Column
3 display the response to the new shock minus the response to the conventional shock. The shaded areas indicate 68% and 95%
confidence bands using standard errors robust to serial correlation and heteroskedasticity.
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Figure C.6: Responses for identification sample
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Notes: The figure shows responses of the federal funds rate, log real GDP, and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). The new (RR) monetary policy shock is identified as the residual from
the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression when b; = 0 for j > 1, as in Romer and
Romer (2004). The estimation sample for shock identification coincides with the impulse response estimation sample, running
from 1983 until 2007. Columns 1 and 2 display the response to the new shock and conventional shock, respectively. Column 3
display the response to the new shock minus the response to the conventional shock. The shaded areas indicate 68% and 95%
confidence bands using standard errors robust to serial correlation and heteroskedasticity.
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Figure C.7: Responses for estimation sample 1969-2007
(a) FFR (b) Real GDP (c) Inflation
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Notes: The figure shows responses of the federal funds rate, log real GDP, and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). The new (RR) monetary policy shock is identified as the residual
from the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression when b; = 0 for j > 1, as in
Romer and Romer (2004). The results correspond to the full sample, running from 1969 until 2007. Columns 1 and 2 display
the response to the new shock and conventional shock, respectively. Column 3 display the response to the new shock minus the
response to the conventional shock. The shaded areas indicate 68% and 95% confidence bands using standard errors robust to
serial correlation and heteroskedasticity.
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Figure C.8: Responses when imposing a recursiveness assumption
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Notes: The figure shows responses of the federal funds rate, log real GDP, and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). Additionally, we control for contemporaneous log real GDP and
inflation imposing the recursiveness assumption that monetary policy shocks affect these variables only with a one-month
lag. The new (RR) monetary policy shock is identified as the residual from the Taylor rule regression in (4.1) whereas the RR
shock is based on the same regression when b; = 0 for j > 1, as in Romer and Romer (2004). Columns 1 and 2 display the
response to the new shock and conventional shock, respectively. Column 3 display the response to the new shock minus the
response to the conventional shock. The shaded areas indicate 68% and 95% confidence bands using standard errors robust to
serial correlation and heteroskedasticity.
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Figure C.9: Responses when controlling for S&P 500 and EBP
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Notes: The figure shows responses of the federal funds rate, log real GDP, and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). Additionally, we control for 12 lags of both, the S&P 500 and the
excess bond premium from Gilchrist and Zakrajsek (2012). The new (RR) monetary policy shock is identified as the residual
from the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression when b; = 0 for j > 1, as in
Romer and Romer (2004). Columns 1 and 2 display the response to the new shock and conventional shock, respectively. Column
3 display the response to the new shock minus the response to the conventional shock. The shaded areas indicate 68% and 95%
confidence bands using standard errors robust to serial correlation and heteroskedasticity.
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Figure C.10: Responses when controlling for lagged shocks
(a) FFR (b) Real GDP (c) Inflation
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Notes: The figure shows responses of the federal funds rate, log real GDP and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). Additionally, we control for 12 lags of monetary policy shock under
consideration. The new (RR) monetary policy shock is identified as the residual from the Taylor rule regression in (4.1) whereas
the RR shock is based on the same regression when b; = 0 for j > 1, as in Romer and Romer (2004). Columns 1 and 2 display
the response to the new shock and conventional shock, respectively. Column 3 display the response to the new shock minus the
response to the conventional shock. The shaded areas indicate 68% and 95% confidence bands using standard errors robust to
serial correlation and heteroskedasticity.
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Figure C.11: Responses of IP and CPI
(a) FFR (b) Real GDP (c) Inflation
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Notes: The figure shows responses of the federal funds rate, log industrial product, and the CPI inflation rate to a monetary
policy shock based on the local projection as specified along with (4.2). We control for 12 lags of both, the log of industrial
production and CPI inflation instead of real GDP and inflation based on the GDP deflator. The new (RR) monetary policy
shock is identified as the residual from the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression
when b; = 0 for j > 1, as in Romer and Romer (2004). Columns 1 and 2 display the response to the new shock and conventional
shock, respectively. Column 3 display the response to the new shock minus the response to the conventional shock. The shaded
areas indicate 68% and 95% confidence bands using standard errors robust to serial correlation and heteroskedasticity.
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percentage points

Figure C.12: Responses of IP and CPI when controlling for S&P 500 and EBP
(a) FFR (b) Real GDP (c) Inflation
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Notes: The figure shows responses of the federal funds rate, log industrial product, and the CPI inflation rate to a monetary
policy shock based on the local projection as specified along with (4.2). We control for 12 lags of both, the log of industrial
production and CPI inflation instead of real GDP and inflation based on the GDP deflator. Additionally, we control for 12 lags
of both, the S&P 500 and the excess bond premium from Gilchrist and Zakrajsek (2012). The new (RR) monetary policy shock
is identified as the residual from the Taylor rule regression in (4.1) whereas the RR shock is based on the same regression when
bj = 0 for j > 1, as in Romer and Romer (2004). Columns 1 and 2 display the response to the new shock and conventional
shock, respectively. Column 3 display the response to the new shock minus the response to the conventional shock. The shaded
areas indicate 68% and 95% confidence bands using standard errors robust to serial correlation and heteroskedasticity.
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