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ABSTRACT 

We investigate the asymmetric transmission of oil supply news shocks to the U.S. economy using a 
nonlinear Proxy-SVAR framework. Building on the methodology of Debortoli et al. (2023), we 
identify exogenous oil supply news shocks using high-frequency surprises in oil futures prices around 
OPEC announcements (Känzig, 2021). Our results reveal strong evidence of asymmetries: a positive 
oil supply news shock, which raises oil prices, produces a large and persistent contraction in real 
activity and only a modest and transitory increase in prices. Conversely, a negative shock that reduces 
oil prices has small real effects but triggers a sizeable and persistent decline in inflation. We rationalize 
these asymmetric effects through the behavior of uncertainty. We show that both positive and 
negative shocks increase financial uncertainty and the excess bond premium, leading to higher risk 
premia and delaying investment decisions through “real option” effects. This uncertainty channel 
amplifies the contractionary impact of positive shocks while dampening the expansionary effects of 
negative shocks on output, with the opposite pattern observed for prices. We find little evidence of 
an asymmetric response of monetary policy. 
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NON-TECHNICAL SUMMARY 

Recent developments in the global economy have led to unprecedented decisions by the 
largest oil producing countries. In April 2020, Russia, Saudi Arabia and the United States 
jointly cut production by 9.7 million barrels per day (bpd) to counter the negative effects of 
the COVID-19 pandemic. By mid-2021, a strong recovery in global demand led the 
Organization of the Petroleum Exporting Countries (OPEC) to ease earlier cuts by 2 million 
bpd. But in 2022, Russia, the world's largest oil exporter to global markets, caused supply 
disruptions in the oil market following its invasion of Ukraine. Later that year, OPEC 
reversed its stance and announced oil supply cuts of 2 million bpd for all of 2023, which 
were increased to 3.66 million bpd in April 2023, or about 3.7% of global demand. More 
recently, to support prices, OPEC and its partners (OPEC+) decided to extend oil cuts 
through 2024, and Saudi Arabia and Russia unilaterally cut oil production by an additional 
1.3 to 1.5 million bpd until the end of December. From a policy perspective, these large oil 
supply cuts and easings pose new challenges for stabilization policies, motivating a renewed 
interest in understanding the transmission of oil supply shocks to promote better-informed 
policy decisions.  
 
This paper explores the question of whether the impact of oil supply news shocks on U.S. 
output and prices depends on the sign of the shock. To investigate potential asymmetries, 
we use the nonlinear Proxy-SVAR approach developed by Debortoli et al. (2023) and identify 
an oil supply news shock using the series of surprise changes in oil future prices around 
OPEC announcements provided by Känzig (2021). We find that the transmission of oil 
supply news shocks is asymmetric. A shock raising oil prices produces a large and immediate 
decline in real activity and a small increase in prices. On the other hand, a shock reducing oil 
prices has a modest effect on real activity and a large effect on prices. We rationalize the 
asymmetric transmission of oil supply news shocks in view of two channels. The first is 
related to uncertainty, which includes a “real option” and a “risk premium” effect. According 
to this channel, an oil supply shock, regardless of its sign, increases uncertainty, which 
contributes to depress economic activity. This channel therefore operates by amplifying the 
negative real effects of unexpected oil price increases and dampening the positive real effects 
of unexpected oil price decreases. The opposite holds for prices. The second channel is 
related to the systematic response of monetary policy. As discussed by Bernanke, Gertler, 
and Watson (1997), the endogenous response of the central bank may account for a large 
portion of the recessionary effects of oil price shocks, and monetary policy may adopt an 
asymmetric reaction to such shocks. However, we find little role for this mechanism. This 
confirms that, in principle, monetary policy should not respond to supply shocks unless there 
is a risk of dis-anchoring of inflation expectations.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Bernanke,%20Gertler,%20and%20Watson%20(1997)
Bernanke,%20Gertler,%20and%20Watson%20(1997)
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Figure. Nonlinear responses to a positive (blue line) and a negative (red line) shock. 

 

Transmission asymétrique des chocs 
d’information sur l’offre de pétrole 

RÉSUMÉ 

Nous étudions la transmission asymétrique des chocs liés aux nouvelles informations sur 
l’offre de pétrole à l’économie américaine en utilisant un modèle Proxy-SVAR non linéaire 
novateur. En suivant la méthodologie de Debortoli et al. (2023), nous identifions les chocs 
d’information sur l’offre de pétrole à partir des variations inattendues des prix à terme du 
pétrole autour des annonces de l’OPEP (Känzig, 2021). Nos résultats mettent en évidence 
des non-linéarités significatives selon le signe du choc : un choc positif, qui entraîne une 
hausse des prix du pétrole, provoque une contraction importante et persistante de l’activité 
réelle, mais n’a qu’un effet modéré et transitoire sur les prix. À l’inverse, un choc négatif, 
réduisant les prix du pétrole, a des effets limités sur l’activité réelle mais un impact marqué 
et durable sur les prix à la consommation. 

 

Nous expliquons ces résultats par le rôle de l’incertitude. Les chocs positifs comme négatifs 
accroissent l’incertitude financière et la prime de risque sur les obligations d’entreprises, ce 
qui retarde les décisions d’investissement (« effet d’option réelle ») et renforce la prime de 
risque (« effet de prime de risque »). Ce canal d’incertitude amplifie les effets récessifs des 
chocs positifs et atténue les effets expansifs des chocs négatifs sur l’activité, tandis que 
l’effet inverse est observé pour les prix. L’analyse complémentaire montre peu de signes 
d’une réponse asymétrique de la politique monétaire, indiquant que l’incertitude – plutôt 
que la réaction de la banque centrale – est la principale source de non-linéarité. 

 

Mots-clés : nouvelles sur l’offre de pétrole, proxy-SVAR non linéaire, asymétrie. 
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1 Introduction

Recent developments in the global economy have led to unprecedented decisions by

the largest oil producing countries. In April 2020, Russia, Saudi Arabia and the

United States jointly cut production by 9.7 million barrels per day (bpd) to counter

the negative e↵ects of the COVID-19 pandemic. By mid-2021, a strong recovery in

global demand led the Organization of the Petroleum Exporting Countries (OPEC)

to ease earlier cuts by 2 million bpd. But in 2022, Russia, the world’s largest oil

exporter to global markets, caused supply disruptions in the oil market following its

invasion of Ukraine. Later that year, OPEC reversed its stance and announced oil

supply cuts of 2 million bpd for all of 2023, which were increased to 3.66 million bpd

in April 2023, or about 3.7% of global demand. More recently, in an e↵ort to support

prices, OPEC and its partners (OPEC+) decided to extend oil cuts through 2024,

and Saudi Arabia and Russia unilaterally cut oil production by an additional 1.3 to

1.5 million bpd until the end of December.1 From a policy perspective, these large

oil supply cuts and easings pose new challenges for stabilization policies, motivating

a renewed interest in understanding the transmission of oil supply shocks in order

to promote better-informed policy decisions.2

Our understanding of the relationship between oil prices and the macroeconomy

goes back to Hamilton (1983), who initiated a long-standing debate by arguing

that oil supply shocks are a major driver of economic fluctuations. More recently,

the debate has focused on potential nonlinearities in the transmission of oil price

changes; in particular, whether oil price increases have a greater impact on real

activity than oil price decreases. The debate can be traced back to the 1980s,

when Hamilton (1983) and Mork (1989) observed that oil price increases seemed

to be more important for US business cycles than price decreases. More recently,

using US data, Hamilton (2003, 2011) finds evidence in favor of the asymmetry; in

contrast, Kilian and Vigfusson (2011a, 2017) criticize Hamilton’s empirical approach

and provide evidence against such nonlinearities. Other contributions in support of

a linear relationship between aggregate activity and oil price shocks are Herrera et al.

1OPEC+ controls about 90% of global crude oil reserves and 40% of the global daily production.
Therefore, OPEC+ decisions can have a significant impact on oil prices.

2In our analysis, we end the sample in 2019M12 to avoid including the COVID period in the
sample.
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(2011) for the US and Herrera et al. (2015) for 18 OECD countries.3 Lastly, a recent

work by Caravello and Martinez-Bruera (2024) finds no evidence of asymmetric

e↵ects, suggesting instead the existence of size e↵ects.

In this paper, we contribute to this debate by exploring whether oil supply news

shocks have di↵erent e↵ects on US output and prices, depending on the sign of

the shock. To investigate potential asymmetries we use the nonlinear Proxy-SVAR

approach developed by Debortoli et al. (2023) (DFGS henceforth), and identify an

oil supply news shock. The instrument we use is the series of surprise changes in

oil futures prices around OPEC announcements, developed by Känzig (2021), who

show that this variable a↵ects oil prices and the macroeconomy.

The underlying economy is represented by a structural Vector Moving Average

which includes nonlinear terms of the shock of interest; here we use the absolute

value of the oil shock as the relevant nonlinear function. Under suitable conditions,

the macroeconomic variables have a VARX representation, where the shock and its

absolute value represent the exogenous variables. By combining the e↵ects of the

shock and its absolute value we can estimate the e↵ects of positive and negative

shocks. This is a basic di↵erence with respect to the previous literature on this sub-

ject: we focus on the nonlinear e↵ects of unobservable oil supply news shocks, rather

than observable oil price changes. Since the exogenous variables are unobserved, our

VARX cannot be estimated directly. The key result of DFGS solves this problem.

DFGS shows that, when a suitable instrument is available and the observed variables

are informationally su�cient for the shock of interest, the shock can be estimated

consistently as the fitted value of the regression of the instrument onto the residuals

of a standard linear VAR. Once an estimate of the shock is available, the VARX

and the implied nonlinear impulse response functions can be estimated.

In comparison with alternative nonlinear models we find our method particularly

appealing for a number of reasons. First, the alternative nonlinear Proxy-SVAR im-

plemented in Pellegrino et al. (2023) allows the estimation of impulse responses

across states of the economy but does not have the flexibility of dealing with shock

sign or size nonlinearities. Second, in comparison with the FAIR approach of Barni-

chon and Matthes (2018a), we do not need to assume a specific distribution of the

3While both provide evidence against nonlinearity, the former finds a strong asymmetric trans-
mission of oil price shocks in the US at the disaggregated industry level.
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shock. Compared to a nonlinear local projection, such as the one in Tenreyro and

Thwaites (2016), the benefit of our model is twofold. First, the more parsimonious

parameterization and consequently the smaller estimation uncertainty. A second

advantage is internal consistency as our approach allows the shock identification

and the estimation of nonlinear impulse responses in a unique model.

We find that the transmission of oil supply news shocks is asymmetric. A shock

raising oil prices produces a large and immediate decline in real activity and a small

increase in prices. On the other hand, a shock reducing oil prices has a modest

e↵ect on real activity and a large e↵ect on prices. This evidence confirms the find-

ings of Hamilton (2011), but also suggests an additional nonlinearity, previously

unexplored, concerning prices. These results are robust to an alternative identifica-

tion strategy of oil supply shocks (Baumeister and Hamilton, 2019) and to various

changes in the model specification. Our findings, however, contrast with Caravello

and Martinez-Bruera (2024), who find evidence against asymmetric e↵ects of oil

supply news shocks using Känzig’s proxy variable in a local projection. In Section

2.4 we argue that these contrasting results arise from the di↵erent methods used,

with their approach potentially underestimating the asymmetry we document. We

further elaborate on this issue in Appendix A using a theoretical argument and a

simulation exercise.

The existing literature has suggested two possible explanations for the asym-

metric e↵ects of oil shocks. The first is related to uncertainty. We find that oil

supply shocks, either positive or negative, increase uncertainty. Higher uncertainty,

in turn, increases the returns to waiting for information, causing firms to delay their

investment plans, i.e., the “real option” e↵ect (Bernanke, 1983; Bloom, 2009); more-

over, it raises the risk of investment and therefore the cost of financing, especially

for risky firms, i.e., the “risk premium” e↵ect, (Christiano et al., 2014; Gilchrist

et al., 2014). This channel is in line with Elder and Serletis (2010) and Kilian

and Vigfusson (2011b). Specifically, the latter points out that “Because any unex-

pected change in the real price of oil may be associated with higher expected volatility,

whether the real price of oil goes up or down, this uncertainty e↵ect may amplify the

e↵ects of unexpected oil price increases and o↵set the e↵ects of unexpected oil price

declines” (p. 340). The second explanation focuses on the response of monetary

policy. The central bank may react to oil price increases by raising the interest rate
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to contain inflationary pressures, but may decide not to respond to price reductions,

therefore generating real asymmetries. Bernanke et al. (1997) suggest that “. . . the

endogenous monetary policy response can account for a very substantial portion of

the depressing e↵ects of oil price shocks on the real economy” (p. 94).

To assess these potential channels, we extend the model to include three addi-

tional variables: the federal funds rate, the VXO uncertainty index used by Bloom

(2009) and the excess bond premium of Gilchrist and Zakraǰsek (2012). Consis-

tent with the uncertainty channel above, we find an increase in uncertainty after

both positive and negative shocks. Moreover, these e↵ects are associated with an

increase in the excess bond premium, suggesting that the “risk premium” e↵ect is

at work. These results provide strong evidence in favor of the uncertainty channel.

As for the second channel, our estimates show that the federal funds rate rises after

both shocks. However, these e↵ects are small and not significant, suggesting that

monetary policy cannot be the main source of asymmetry.

The remainder of this paper is organized as follows. Section 2 outlines the

econometric model, including the identification of the shock and the estimation of

nonlinear impulse responses. Section 3 discusses the main empirical results of the

baseline specification and presents several robustness checks. Section 4 explores

potential channels responsible for our findings. Finally, section 5 concludes.

2 Econometric methodology

In this section we discuss the main features of the econometric methodology of

DFGS, adapted to study the nonlinear e↵ects of oil supply shocks.

2.1 Nonlinear representation

Let xt be a n-dimensional vector of stationary macroeconomic variables with the

following structural representation

xt = ⌫ + ↵(L)us
t + �(L)g(us

t) + �(L)⇠t, (1)

where ⌫ is a vector of constants, us
t is the oil supply news shock with impulse response

functions ↵(L) = ↵0+↵1L+↵2L
2
... and g(us

t) is a nonlinear function of the oil supply
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news shock with impulse response functions �(L) = �0 + �1L + �2L
2 + .... The m-

dimensional vector ⇠t includes other structural shocks, collected in vector u�s
t , and

possibly nonlinear functions of these shocks. The vector [us
t , u

�s
t ]0 is i.i.d. zero mean

and has identity covariance matrix.4 Finally, the matrix �(L) = �0+�1L+�2L
2+...

is a n⇥m matrix of impulse response functions to the remaining structural shocks

and, possibly, their non-linear functions.

The nonlinear impulse response functions to the oil shock are derived by com-

bining the two terms ↵(L) and �(L). More specifically, the total e↵ects of an oil

supply news shock u
s
t = ū

s are given by the sum of the linear and nonlinear terms:

IRF (us
t = ū

s) = ↵(L)ūs + �(L)g(ūs). (2)

The total responses defined in equation (2) simply correspond, in this nonlinear

context, to the Generalized Impulse Response Functions defined as E(xt+h|us
t =

ū
s)�E(xt+h|us

t = 0), h = 0, 1, .... We discuss below how to estimate the model and

the implied impulse response functions.

In our baseline empirical specification we use the absolute value as the relevant

nonlinear function, i.e. g(us
t) = |us

t |, since our interest is in the potential sign

asymmetries of the shock. The impulse response functions to a positive shock equal

to 1 and a negative shock equal to -1 are, respectively

IRF (us
t = 1) = ↵(L) + �(L)

IRF (us
t = �1) = �↵(L) + �(L).

(3)

If �(L) 6= 0 the shocks of opposite signs have di↵erent e↵ects.

Stationarity of the term �(L)⇠t implies the existence of the Wold representation

 (L)et. Under the assumption of invertibility of the Wold representation, model (1)

4Notice that shock serial and mutual independence implies that all structural shocks, including
u
s
t , are uncorrelated with the lags of g(us

t ) and xt.
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implies the existence of the following VARX representation:5

A(L)xt = µ+ ↵̃(L)us
t + �̃(L)g(us

t) + et, (5)

where A(L) =  (L)�1, ↵̃(L) =  (L)�1
↵(L) and �̃(L) =  (L)�1

�(L).6

Notice also that stationarity of xt implies the existence of its Wold representation.

Under the assumption that such representation is invertible, the vector xt admits

the VAR representation

xt = #+B(L)xt�1 + "t (6)

where "t is orthogonal to xt�j, j = 1, . . . ,1.7

Next we derive the relation between the VAR representation (6) and the VARX

representation (5). Let us start from equation (5) and consider the linear projection

of ↵̃(L)us
t + �̃(L)g(us

t) onto the constant and the past history of xt, i.e.

↵̃(L)us
t + �̃(L)g(us

t) = ✓ + C(L)xt�1 + wt.

It is easily seen that # = µ+ ✓, B(L) = Ã(L)+C(L), where Ã(L) = �[A(L)� I]/L

and "t = et + wt.

Notice that, if �̃(L) = 0, the structural representation (1) reduces to a lin-

ear model and standard SVAR analysis can be conducted using representation (6).

Hence the linear model is nested in our model. We can test for linearity by testing

either for the null �̃(L) = 0 in equation (5) or for the null �(L) = 0 in the impulse

response functions in (2). In the empirical application below we test for linearity by

adopting the null hypothesis H0 : �(L) = 0.

5This is simply obtained from

xt = ⌫ + ↵(L)us
t + �(L)g(us

t ) + (L)et, (4)

and then multiplying by  (L)�1

6We assume that all the matrices of polynomials in L can be approximated by finite order
matrix polynomials, as it is standard in the VAR literature.

7The cointegration case can be treated as usual by considering a VAR in the levels of the
variables, rather than in first di↵erences.
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2.2 Identification

In the previous subsection we have shown that our nonlinear economy admits a

VARX representation (5). Unfortunately, direct estimation of (5) is unfeasible,

because the exogenous variables are not observable.8 We discuss below how to

obtain a consistent estimate of the exogenous shocks that can be used to estimate

the VARX.

The identification procedure relies on two assumptions. The first assumption is

standard in the proxy-SVAR literature and requires the existence of a valid instru-

ment, as specified below.

Assumption A1 (Proxy). The proxy zt is given by

zt = a+ bu
s
t + �(L)0xt�1 + vt, (7)

where �(L) is a vector of polynomials of degree p in the lag operator L, b 6= 0 and

vt is an error independent of the structural shocks at all leads and lags. Notice

that under Assumption A1, the standard conditions for a valid instrument,9 i.e.

cov(zt, us
t) = b 6= 0 (relevance) and cov(zt, ⇠t) = 0 (exogeneity), are satisfied.

The second assumption ensures that the oil supply news shock can be estimated

as a combination of current and past data.

Assumption A2 (Informational su�ciency). The oil supply news shock is a linear

combination of the current and past values of xt.

Assumption A2 postulates “partial invertibility” of us
t , i.e. that the variables in

xt are informationally su�cient for the oil shock.10 In other words, the nonlinear

term is not needed to estimate the oil supply news shock. Notice that the same

assumption has to hold also in the linear case in order for the standard procedure

to be valid. Fortunately this is a testable assumption. In the empirical section we

will assess whether it holds.
8If the oil shock were perfectly observable, then eq. (5) or a local projection version of it could

be estimated by OLS. In section 2.4 we discuss why such a procedure could be problematic if only
an imperfect measure of the shock is available.

9See Mertens and Ravn (2013) and Stock and Watson (2018a).
10On the concept of informational su�ciency see Forni and Gambetti (2014) and Forni et al.

(2019).
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Under assumptions A1 and A2, DFGS show that the shock of interest can be

obtained as the fitted value of the linear projection of zt onto the VAR innovations "t.

This is the basic result underlying the proposed procedure. First, we get an estimate

of the oil shock by using a standard proxy SVAR method; having an estimate of the

shock, we can use it to estimate our VARX representation (5).

2.3 Estimation

More in detail, the estimation procedure is the following.

I. Estimate the VAR in (6) with OLS to obtain consistent estimates of the resid-

uals "t, call them "̂t.

II. Estimate the linear projection

zt = �
0
"̂t + ⌘t. (8)

Following Forni et al. (2023), an estimate of the normalized shock is obtained

as follows

û
s
t =

�̂
0
"̂tq

�̂
0b⌃"�̂

(9)

where b⌃" is the variance covariance matrix of the residuals "̂t.11

III. Estimate equation (5) using as regressors the current value and the lags of the

estimated shock ûs
t and its nonlinear function g(ûs

t). This gives the estimates of

A(L), �̃(L) and ↵̃(L). Finally, one can obtain estimates of ↵(L) = A(L)�1
↵̃(L)

and �(L) = A(L)�1
�̃(L).

IV. Compute the impulse response functions according to equation (3).

2.4 Discussion

To verify the existence of nonlinearities, Hamilton (2011) uses a censored measure

of oil price changes, named net oil price increases (see also Hamilton, 1996). This

11In equation (9), the covariance matrix ⌃" is estimated over the full sample. The covariances
between zt and "̂t is of course estimated over the sample for which the instrument is available.
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measure distinguishes between oil price increases that set new highs relative to recent

experience and those that simply reverse recent declines, reflecting the apparently

greater importance of oil price increases for business cycles. Kilian and Vigfusson

(2011a) argue that if the conditional forecasting model, e.g., the VAR, involves a

nonlinear function such as the net oil price increases, then we cannot calculate a

multi-period impulse response by iterating as if it was a linear model. In other words,

if one includes in a VAR price increases but not decreases, the usual inference will

be biased: the econometrician should ensure that the model used nests the linear

case when testing for asymmetries. Notice that our approach is not subject to the

criticism above, since in our VARX specification we have both the relevant shock

and its absolute value, which is equivalent to having both positive and negative

shocks (as observed above, the linear case is a special case of our model).

A basic di↵erence of our approach with respect to the previous literature is that

we focus on possible nonlinear e↵ects of oil shocks rather than oil price changes.

From this point of view, our approach is perfectly in line with the structural VAR

literature, where the observed variables are endogenous and are driven by unob-

served exogenous forces.12 Our first step is needed precisely because the oil shock is

unobserved and therefore must be estimated. Once the shock has been estimated,

a valid alternative delivering the same asymptotic result is to use local projections

in place of the VARX to estimate the impulse response functions.

Discrepancies relative to other work. Caravello and Martinez-Bruera (2024)

finds no evidence of asymmetric e↵ects of oil supply news shocks. In that paper, the

authors skip the first step of our procedure and use the proxy of Känzig (2021) and

its absolute value directly in a series of local projections in place of the estimated

shock and its absolute value. To verify whether the conflicting results are due to this,

we applied their methodology to our dataset, and found little evidence of asymmetry,

in line with their result (see Appendix B). Below, we provide the intuition for the

di↵erent results obtained by these authors.

The methodology of Caravello and Martinez-Bruera (2024) is appealing in that

it is simple and does not require invertibility. However, their approach in a nonlinear

12In this respect, our nonlinear approach is similar to the one of Barnichon and Matthes (2018b),
even if the methods are di↵erent.
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framework delivers the correct result only when the instrument is an exact measure

of the shock, zt = u
s
t , or when the di↵erence zt�u

s
t has the same e↵ects as us

t on all

variables. For instance, consider the case us
t = u

s
1t + u

s
2t, where u

s
t is the sum of two

structural shocks, us
1t and u

s
2t and zt captures only the first term, zt = u

s
1t. If the

e↵ects of us
1t and u

s
2t are the same, no problems arise.13 By contrast, if the e↵ects

of us
1t and u

s
2t are di↵erent, then using zt in place of us

t will produce a bias.

A bias will also arise if zt is a noisy measure of the shock with an error which is

unrelated to the variables, as in equation (7). Consider the simple case zt = u
s
t + vt,

where vt is independent of the variables at all leads and lags. In the linear case,

vt produces an attenuation bias, which is proportional for all variables and lags,

and therefore can be corrected by a suitable normalization (see Stock and Watson,

2018b). In the nonlinear case, however, things are more complicated. Assume that

negative shocks, say u
s�
t , do not a↵ect output, whereas positive shock, us+

t , have

e↵ect 1, so that the e↵ects are asymmetric. Clearly zt can be positive even if us
t is

negative, owing to a positive vt greater than |us
t |; hence z

+
t is a mixture, including

both positive and negative shocks. As a consequence, using z
+
t in place of u

s+
t

produces a downward bias (in addition to the attenuation bias) and the estimated

e↵ect on output will be somewhere in the interval (0 1). For the same reason, we

have an upward bias when using z
�
t in place of us�

t , so that the asymmetry will be

underestimated. This confounding e↵ect could in principle explain why Caravello

and Martinez-Bruera (2024)’s finding of no asymmetric e↵ects conflicts with ours.

In Appendix A we present a simple theoretical example together with a simulation

exercise to further elaborate on this point.

3 Results

The baseline monthly linear VAR(12) follows the specification used by Känzig (2021)

and includes the real oil price, world oil production, world oil inventories, world

industrial production, US industrial production and the US consumer price index

(CPI) from 1975M1 to 2019M12.14 All variables enter in logs. After estimating

the model, we identify the structural oil supply news shock over the shorter sample

13We thank an anonymous referee for pointing this out.
14For the data sources, see Känzig (2021).
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1983M4-2019M12, using the proxy constructed by Känzig (2021). This variable

captures high-frequency surprise changes in oil futures prices in a tight window

around OPEC announcements and can only be considered a noisy measure of the

true shock. The choice of estimating the reduced-form model using the longer sample

is done to improve the estimation of the parameters of the model, as typically done

in the Proxy-SVAR literature. Regarding the strength of the instrument, the first-

stage F-statistic in this model is 17.17, which is safely above the threshold of 10.

3.1 Testing for invertibility

To begin, we test whether assumption A2, i.e. invertibility of us
t , holds. To do this,

we use the invertibility test recently proposed by Forni et al. (2023). The test is based

on the theoretical result that, if the shock is non-invertible, then it is a function of

current and future VAR residuals, instead of being a combination of current residuals

only. More specifically, the test is based on regressing the instrument on the current

value and the first r leads of the Wold residuals "̂t.15 Formally:

zt =
rX

k=0

�
0
k"̂t+k + ⌘t (10)

The invertibility test is an F -test for the significance of the r leads, the null

hypothesis being H0 : �1 = �2 = · · · = �r = 0 against the alternative that at least

one of the coe�cients is nonzero. We estimate the regression in equation (10) using

di↵erent numbers of leads (6  r  12).

The p-values, reported in Table 1, are very large. Therefore, we cannot reject

the null of invertibility for all values of r. In the robustness section 3.6 we briefly

discuss the conflicting results of Plagborg-Møller and Wolf (2022, Online Appendix

B.7).

15An alternative with standard VAR identification schemes can be found in Forni and Gambetti
(2014).
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Number of leads r

r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12

p-value 0.98 0.99 0.95 0.96 0.91 0.88 0.85

Table 1: Invertibility test. The table shows the p-values for each regression includ-
ing the current value and up to r leads of the Wold residuals. The null hypothesis is
invertibility, i.e., H0 : �1 = �2 = · · · = �r = 0.

3.2 Linear model

We first present the results for the identification of the oil supply news shock in the

linear Proxy-SVAR. Figure 1 plots the impulse responses to an oil supply news shock

normalized to increase the real oil price by 10% on impact. The black solid lines

are the point estimates and the grey shaded areas are the 68% and 90% confidence

bands. A negative oil supply news shock leads to an immediate increase in real oil

prices. World oil production falls persistently only after few months and world oil

inventories increase significantly at impact and continue to grow sluggishly. World

industrial production does not change much in the first year after the shock, but

then begins to fall significantly and persistently. For US variables, the shock leads to

a delayed and persistent decline in industrial production and an immediate increase

in the consumer price index, which continues to rise for a year before returning to

its initial level. These results are consistent with those in Känzig (2021).
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Figure 1: Linear impulse responses to an oil supply news shock using a linear Proxy-
SVAR. Solid lines are the point estimates and the shaded areas are 68% and 90% confidence
bands.

3.3 Testing asymmetries

In this section, we estimate the VARX and formally test for the assumption of

linearity by testing the null hypothesis H0 : �(L) = 0 in equation (2).16

Figure 2 presents the results of the test, with the responses to the term |us
t |, �(L),

plotted as dashed orange lines. The shaded areas are 68% and 90% bootstrapped

confidence bands.17 The nonlinear function of the shock has a significant and long-

lasting e↵ect on US variables while being small, temporary and hardly statistically

di↵erent from zero for world variables. More specifically, industrial production and

particularly prices respond negatively to the absolute value of the shock, suggesting

16The VARX in (5) includes 6 lags for both endogeneous and exogenous variables. To measure
the instrument validity we follow Forni et al. (2023) and estimate the correlation coe�cient between
the estimated shock and the instrument, which is 0.23.

17The confidence bands take into account also the estimation uncertainty on the estimated
structural shock from the first step projection in (8). Both steps of the estimation are included in
the bootstrapping procedure.
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that the overall recessionary e↵ect of a positive shock on real activity (prices) is

amplified (dampened) by the nonlinear term. Conversely, the overall expansionary

e↵ect of a negative shock on real activity (prices) is dampened (amplified) by the

nonlinear term. Overall, the results indicate that the null hypothesis of linearity is

rejected.

Figure 2: Nonlinear impulse responses to the absolute value of the shock estimated using
a nonlinear Proxy-SVAR. The shaded areas represent the 68% and 90% confidence bands.

3.4 Asymmetric transmission of oil supply shocks

Figure 3 plots the IRFs of positive and negative oil supply shocks according to

equation (3). The impulse responses are normalized to increase or decrease the real

oil price by 10% on impact. The red and blue solid lines are the point estimates for

the positive and negative shock, respectively, and the shaded areas are the 68% and

90% confidence bands. For ease of comparison, we multiply the impulse responses

to a negative shock by minus one. Our results show no significant asymmetries in

the dynamic response of global variables.

Turning our attention to the US economy, we see that a positive shock has larger

14



e↵ects on industrial production than a negative shock. While the nonlinear response

of real activity to oil price shocks has been the focus of a heated debate in the

literature, well described by Hamilton (2011) and Kilian and Vigfusson (2011b), our

results point to an additional nonlinearity not previously explored: a positive shock

leads to a modest e↵ect on prices, while a negative shock leads to a much larger price

response. Overall, our results suggest that following a positive oil supply shock, the

US economy experiences a large and fast decline in real activity and a small increase

in prices, while the opposite is true for a negative shock: a small decline in output

and a large increase in prices.

Figure 3: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock estimated using a nonlinear Proxy-SVAR. Impulse responses
to a negative shock are multiplied by minus one. The functional form for the nonlinear
function of the shock is g(ust ) = |ust |. The shaded areas represent the 68% and 90%
confidence bands.
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3.5 Variance decomposition

Given the long-standing debate on whether oil supply shocks are major drivers of

economic fluctuations (see Hamilton, 1983), we present estimates of the variance

decomposition in our nonlinear framework.

The oil supply news shock u
s
t and its nonlinear function g(us

t) are not necessarily

orthogonal and, as a result, standard formulas to compute the variance decompo-

sition are not appropriate in this setting. Therefore, following Forni et al. (2024),

we address the problem by computing at each horizon the prediction error due to

the linear and nonlinear oil supply shock, respectively u
s
t and g(us

t), along with the

total prediction error. The h-step ahead prediction error implied by equation (1) is

et+h =
h�1X

k=0

↵ku
s
t +

h�1X

k=0

�kg(u
s
t) +

h�1X

k=0

�k⇠t

whereas the prediction error driven by the oil supply shock is composed by the

part relative to the shock of interest, which is

e
s
t+h =

h�1X

k=0

↵ku
s
t +

h�1X

k=0

�kg(u
s
t)

We compute the prediction errors according to the above formulas; then, we

compute the ratio of their sample variances. Table 2 presents the total contribution

of the oil shock to the volatility of our variables in the right panel. In the left panel

we also report the variance decomposition obtained by ignoring the nonlinear term

(i.e., by assuming �(L) = 0). The oil supply news shock accounts for a large part of

the variation of oil prices in the short run. Comparing our results with the literature,

our estimates from the linear shock are in line with those in Känzig (2021). Once

we add the contribution of the nonlinear function, the oil price shock explains a

very large portion of the variance of US industrial production and prices, especially

at longer horizons. Our conclusion is that oil shocks are major drivers of business

cycle fluctuations.

16



Linear Total

h = 0 h = 12 h = 24 h = 36 h = 0 h = 12 h = 24 h = 36

Oil price 72.4 53.9 44.2 40.8 72.4 55.6 46.4 43.5

Oil production 3.0 3.7 18.9 31.1 3.2 5.3 20.7 32.7

Oil inventories 6.1 17.4 34.3 41.3 6.1 18.8 35.4 42.5

World IP 0.3 2.1 9.3 18.3 0.9 4.8 12.1 22.0

US IP 3.2 7.2 17.8 25.6 3.3 12.9 25.7 36.2

US CPI 18.8 36.0 24.0 17.4 19.5 44.9 36.4 34.6

Table 2: Variance Decomposition

3.6 Robustness checks

In this section, we assess the robustness of our results by: (i) implementing a di↵erent

shock identification; (ii) adopting an alternative approach to test for invertibility;

(iii) estimating impulse responses using local projections; (iv) running a horse-race

against size nonlinearities; (v) changing various lag lengths in the model and (vi)

ending the sample at the onset of the Global Financial Crisis.

Shock identification. In the first robustness check, we use the oil supply shock

identified by Baumeister and Hamilton (2019) as a proxy in our nonlinear Proxy-

SVAR.18 Figure 4 plots the impulse responses, with the solid black lines and the

shaded areas representing the point estimates and confidence bands for our baseline

model, respectively. The dashed black lines are the point estimates using the alter-

native oil supply shock. In terms of instrument strength, the first-stage F-statistic in

our model is 49.58, which is well above the recommended safe level of 10. The results

indicate that there are no significant di↵erences among the two proxies in a linear

Proxy-SVAR framework. Figure 5, instead, plots the baseline impulse responses

estimated using the nonlinear Proxy-SVAR and the alternative shock (dashed black

lines) together with our baseline shock (solid lines). The results suggest that the

asymmetries we document with our preferred instrument are robust to the use of

the alternative identification strategy.

18We took the oil supply shock from Baumeister’s webpage.
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Figure 4: Linear impulse responses to our baseline oil supply news shock (black solid
lines) and to the alternative identification strategy of Baumeister and Hamilton (2019)
(black dashed lines) estimated using a linear Proxy-SVAR. The shaded areas are 68% and
90% confidence bands for our baseline impulse responses.
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Figure 5: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock and the alternative identification strategy of Baumeister and
Hamilton (2019) (black dashed lines) estimated using a nonlinear Proxy-SVAR. Impulse
responses to a negative shock are multiplied by minus one. The functional form for the
nonlinear function of the shock is g(ust ) = |ust |. The shaded areas represent the 68% and
90% confidence bands for our baseline impulse responses.

Invertibility. In the second robustness check, we address potential concerns re-

garding the invertibility assumption, in view of the conflicting results with Plagborg-

Møller and Wolf (2022, Online Appendix B.7).

We follow Forni and Gambetti (2014) and assess whether our baseline shock,

estimated using the Känzig (2021) specification, can be predicted by one, three, six

and twelve lags of the first five and the first eight principal components, obtained

from the McCracken and Ng (2016) dataset. The results are reported in Table 3. In

all cases we cannot reject the null hypothesis of orthogonality (lack of predictability).

This result points to partial invertibility of the shock.
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First 5 PCs, k lags First 8 PCs, k lags

k = 1 k = 3 k = 6 k = 12 k = 1 k = 3 k = 6 k = 12

F -stat 0.706 0.968 0.897 0.907 0.555 0.954 0.897 0.821

p-value 0.588 0.486 0.624 0.672 0.793 0.524 0.669 0.879

Table 3: Structuralness test. The table shows the F-statistics and the p-values for
each regression including up to k lags of the first 5 and 8 principal components (PCs).
The null hypothesis is orthogonality.

To further address the conflicting results with Plagborg-Møller and Wolf (2022),

we perform our test described in Section 3.1 using the same set of variables included

in Plagborg-Møller and Wolf (2022) and we confirm the rejection of invertibility.

When we perform their Granger causality test using our set of variables, we cannot

reject invertibility consistently with the results in Section 3.1. The finding suggests

that the di↵erence is attributable to the di↵erent sets of variables included in the

test.

Local projections. We estimate the nonlinear impulse responses using local pro-

jections and the shock estimated from the first-step VAR. Figure 6 plots the results

of the baseline VAR responses together with the local projection responses.19 Reas-

suringly, the two models produce comparable results.

One might wonder why we use the shock estimated in the first stage, instead of

the proxy itself. This is because in this nonlinear framework the use of a noisy mea-

sure of the shock, i.e., the proxy of Känzig (2021), in place of the true shock, would

deliver biased estimates. A theoretical explanation and a simulation in support of

this argument is available in Appendix A.

19In the local projection we control for p lags of all the variables in our baseline VAR model and
compute heteroscedasticity-robust standard errors (see Montiel Olea and Plagborg-Møller, 2021).
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Figure 6: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock estimated using a nonlinear Proxy-SVAR and the nonlinear
estimates from local projections (black dashed lines). Impulse responses to a negative
shock are multiplied by minus one. The functional form for the nonlinear function of the
shock is g(ust ) = |ust |. The shaded areas represent the 68% and 90% confidence bands for
our baseline impulse responses, while dotted and dashed black lines represent the 68% and
90% confidence bands for local projections.

Size nonlinearities. In this paper we use the absolute value as the functional form

for g(us
t). However, it is important to explore whether our results are influenced by

the presence of size nonlinearities. We therefore extend our model to capture both

sign and size nonlinearities.

First, we check whether controlling for size nonlinearities would alter our results.

We proceed as follows. We extend our structural model in equation (1) as follows:

xt = ⌫ + �(L)⇠t + ↵(L)us
t + �(L)|us

t |+  (L)(us
t)

3 (11)
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To control for size nonlinearities we introduce a cubic term of the shock, as in

Tenreyro and Thwaites (2016). Figure 7, Panel (b) presents a test of linearity for

real oil price and US variables in the extended model (11), together with the lin-

earity test in the baseline model (Panel (a)). In Panel (b), the first row reports the

responses associated to the absolute value of the shock, �(L), and the second row

those associated to the cubic term,  (L). The test indicates that (i) sign nonlinear-

ities are still significant and (ii) size nonlinearities on US industrial production and

CPI are hardly significant at the 90% confidence level.

(a) Baseline model

(b) Extended model

Figure 7: Panel (a): Nonlinear impulse responses for the coe�cients associated with
the absolute value (orange dashed line) in the baseline model (1). Panel (b): Nonlinear
impulse responses for the coe�cients associated with the absolute value (orange dashed
line) and the cubic term (black dotted line) in model (11). The shaded areas represent
the 68% and 90% confidence bands for both models.

Next, Figure 8 reports the sign-dependent impulse responses in the extended
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model (11) in black dashed lines together with our baseline point estimates and

confidence bands. These responses indicate that our baseline results are unchanged

when controlling for size nonlinearities. Overall, we have shown that (i) the asym-

metric transmission of oil supply news shocks holds even when controlling for poten-

tial size nonlinearities and (ii) size nonlinearities are qualitatively present but not

quantitatively important for output and prices in comparison with sign nonlineari-

ties.

Figure 8: Nonlinear impulse responses to a positive (blue line) and a negative (red line)
oil supply news shock and the alternative specification which controls for size nonlinear-
ities (black dashed lines) estimated using a nonlinear Proxy-SVAR. Impulse responses to
a negative shock are multiplied by minus one. The functional forms for the nonlinear
functions of the shock are g1(ust ) = |ust | and g2(ust ) = (ust )

3. The shaded areas represent
the 68% and 90% confidence bands for our baseline impulse responses.

Lag length. We now assess the sensitivity of our results to changes in the number

of lags. Specifically, we estimate our nonlinear Proxy-SVAR with lags ranging from 3
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to 9, which also includes our baseline lag selection (p = 6). Figure 9 plots the impulse

responses from all these specifications and the 68% and 90% confidence bands for

our baseline specification. As the figure shows, the nonlinearity we document is not

a↵ected by changes in the lag length of the model.

Figure 9: Nonlinear impulse responses to a positive (blue line) and a negative (red line)
oil supply news shock. Impulse responses to a negative shock are multiplied by minus
one. The functional form for the nonlinear function of the shock is g(ust ) = |ust | estimated
using a nonlinear Proxy-SVAR. Solid lines are the point estimates for models with 3 to 9
lags and the shaded areas represent the 68% and 90% confidence bands for our baseline
specification (6 lags).

Sample specification and the Global Financial Crisis. Lastly, we assess the

robustness of our results by ending the sample at the onset of the Global Finan-

cial Crisis (GFC) in August 2008. This exercise is also motivated by the results in

Baumeister and Peersman (2013), who find greater e↵ects of oil supply shocks on
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prices and real activity around the GFC.20 Figure 10 plots the baseline impulse re-

sponses and confidence bands together with the alternative sample estimates (black

dashed lines). The results indicate that our main findings are not sensitive to the

exclusion of the GFC.21

Figure 10: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock for our baseline model, and for the alternative model when
the sample ends before the GFC, in August 2008 (black dashed lines), estimated using
a nonlinear Proxy-SVAR. Impulse responses to a negative shock are multiplied by minus
one. The functional form for the nonlinear function of the shock is g(ust ) = |ust |. The
shaded areas represent the 68% and 90% confidence bands.

20See Figure 1 (Panel A) in Baumeister and Peersman (2013).
21 This sensitivity check also assures that our results are not driven by the large OPEC surprises

such as the one in November 2014.
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4 Potential indirect channels

The standard theoretical approach in modern dynamic stochastic general equilib-

rium models is to study surprise changes in the price of imported crude oil. Specifi-

cally, the literature has highlighted two channels, demand and supply, as the main

direct e↵ects of exogenous oil price shocks on real activity (see Kilian, 2014, for

a review). The impact of a positive oil price shock through the demand channel

focuses on the reduction in the disposable income of domestic consumers, as higher

energy prices imply a transfer of income abroad.22 The supply channel instead em-

phasizes that a positive oil price shock increases the cost of a factor of production

(e.g., Rotemberg and Woodford, 1996; Finn, 2000). In this regard, Lee and Ni

(2002) noted that while many industries are a↵ected by oil price shocks through the

demand channel, only oil-intensive industries are a↵ected by the supply channel.

In addition to these direct e↵ects, Kilian and Vigfusson (2011b) have highlighted

the importance of other indirect channels, which might explain the asymmetric

response of real activity to oil price shocks. These channels are related to the role

of uncertainty and monetary policy.

In the next two sections, we estimate the response of key variables to explore the

relevance of these indirect channels. To do so, we estimate a nine-variables model

by adding the following three variables to our baseline specification: the financial

uncertainty index used by Bloom (2009), the excess bond premium (EBP) from

Gilchrist and Zakraǰsek (2012) and the federal funds rate.23 Figure 11 reports the

results.

4.1 Uncertainty channel

A first explanation hints at the role that uncertainty about the future price of oil

may play in current investment decisions. Oil supply shocks, both positive and nega-

tive, can in principle increase oil price volatility and therefore financial uncertainty.

The larger is the size of the shock (in absolute value), the larger is the e↵ect on

uncertainty. Uncertainty in turn may reduce private investment both because of

22A recent empirical study by Hamilton (2009) explores the causes and consequences of this
channel by analyzing the 2007-08 oil shock on consumer spending.

23The financial uncertainty index is retrieved from FRED (id: VXOCLS), extended as in Bloom
(2009), and the federal funds rate from FRED (id: DFF).
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a “real option” e↵ect and a “risk premium” e↵ect. According to the “real option”

e↵ect, when individual projects are irreversible, increased uncertainty leads to a re-

duction in investment expenditures, since higher uncertainty increases the returns

to waiting for information, causing firms to delay investment (e.g., Bernanke, 1983;

Bloom et al., 2007). According to the “risk premium” e↵ect, higher uncertainty

increases the probability of bad outcomes for the firm, raising the risk of investment

and therefore the cost of finance (Christiano et al., 2014; Gilchrist et al., 2014).

Given that unexpected changes in the real price of oil are potentially associated

with higher expected volatility, this channel may be responsible for amplifying the

negative real e↵ects of unexpected oil price increases and dampening the positive

real e↵ects of price decreases (see Kilian and Vigfusson, 2011b). The reduction of

private investment can in principle a↵ect prices, amplifying the depressing e↵ect

of an oil price reduction and reducing the inflationary e↵ect of oil price increases.

Along these lines, Baumeister and Kilian (2016) suggest that oil price shocks can

reduce future investment projects through their e↵ect on expectations about the

future path of oil price.

To shed light on the role of uncertainty, we estimate the impulse response func-

tions of an uncertainty index (the VXO) and of the EBP, an indicator of credit

market conditions. Figure 11 shows that both negative and positive shocks raise

financial uncertainty and the EBP. These responses are consistent with the uncer-

tainty channel described above (see also Elder and Serletis, 2010). In Appendix C

we show that the uncertainty argument works through oil price uncertainty. On the

other hand, the responses of the macroeconomic uncertainty indicator of Jurado et

al. (2015) are symmetric.

4.2 Monetary policy channel

Bernanke et al. (1997) suggest that the recessionary e↵ects of an oil price shock

are largely a result of the response of the Federal Reserve to contain inflationary

pressures. The channel they have in mind works as follows: the higher interest

rate set by the central bank in an attempt to contain inflationary pressures may

exacerbate the negative impact of a positive oil price shock on real economic activity.

Later on, this mechanism has been challenged in a number of ways. On one hand,
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Figure 11: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock. The baseline specification is augmented with three additional
variables, giving rise to a nine-variable model. Impulse responses to a negative shock are
multiplied by minus one. World variables are excluded from the plot. The functional form
for the nonlinear function of the shock is g(ust ) = |ust |. The shaded areas represent the
68% and 90% confidence bands.

Hamilton and Herrera (2004) show that these results on the response of the interest

rate are sensitive to model specification and cast doubts on the feasibility of policies

to o↵set the recessionary e↵ects of an oil price shock. On the other hand, Herrera

and Pesavento (2009) show that the systematic response of monetary policy caused

fluctuations in economic activity only in the pre-Volcker period, while Kilian and

Lewis (2011) find that this was not the case even in the pre-Volcker period.

The estimated impulse responses in Figure 11 show that the Fed Funds Rate

increases after both shocks. However, these responses are barely statistically signif-

icant after a positive shock and not statistically di↵erent from zero after a negative

28



shock. This evidence suggests that the systematic response of the central bank can

only explain a residual component of the asymmetries documented in this paper.

4.3 A counterfactual exercise

In this subsection, we report a counterfactual scenario enforced by switching o↵ the

uncertainty channel following the method proposed by McKay and Wolf (2023).

The counterfactual impulse responses are estimated by using three types of fi-

nancial shocks. The first is identified as in Forni et al. (2024), the second with the

high-frequency instrument of Pi↵er and Podstawski (2018), and the third following

Figure 12: Nonlinear impulse responses to a positive (blue line), a negative (red line)
oil supply news shock, and counterfactual responses for a negative shock (grey line with
asterisk markers) when shutting down the uncertainty channel. Impulse responses to a
negative shock are multiplied by minus one. World variables are excluded from the plot.
The shaded areas represent the 68% and 90% confidence bands.
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the optimization-based approach of Caldara et al. (2016). Such shocks are used

within a VARX as exogenous variables and are linearly combined in such a way to

minimize the asymmetric responses of uncertainty. We enforce this counterfactual

by focusing on the baseline responses to a negative shock (red lines). Thus, the coun-

terfactual responses to a negative shock are obtained by combining the responses

under the baseline scenario and the weighted e↵ects of the three uncertainty shocks.

Figure 12 plots the results. The counterfactual responses are the grey lines with

asterisk markers.

The figure shows that the counterfactual responses are very close to those follow-

ing a positive shock (blue lines) and very di↵erent from those following a negative

shock (red lines), so that the asymmetric responses of industrial production and

prices are almost eliminated. Overall, we conclude that the uncertainty channel is

su�cient to explain the asymmetric transmission of oil supply news shocks to output

and prices.

5 Conclusion

We document important asymmetries in the transmission of oil supply news shocks

using the novel nonlinear Proxy-SVAR developed in Debortoli et al. (2023). We

find that a positive shock has large real e↵ects and a small impact on prices. In

contrast, a negative shock has small real e↵ects and a large impact on prices. While

we do find evidence in favor of sign-dependent e↵ects, we do not find any statistically

significant size-dependent e↵ects in the transmission of oil supply news shocks.

We rationalize the asymmetric transmission of oil supply news shocks in view

of two channels. The first is related to uncertainty, which includes a “real option”

and a “risk premium” e↵ect. According to this channel, an oil supply shock, regard-

less of its sign, increases uncertainty, which contributes to depress economic activity.

This channel therefore operates by amplifying the negative real e↵ects of unexpected

oil price increases and dampening the positive real e↵ects of unexpected oil price

decreases. The opposite holds for prices. The second channel is related to the sys-

tematic response of monetary policy, and we find little role for this mechanism. The

quantitative relevance of the first channel is confirmed in a counterfactual exercise,

where second-round e↵ects from uncertainty explain much of the di↵erence in the
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estimates between a positive and a negative shock.
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Appendix A

In this Appendix we discuss the potential problems which arise using LP in a non-

linear setting when the shock is not perfectly observed but rather is contaminated

by noise.

Consider the following simple model:

xt = ↵xut + �xg(ut) + ⌘
x
t

yt = ↵yut + �yg(ut) + ⌘
y
t

where ut ⇠ iid(0, 1). The impulse response functions to a shock ut = u
⇤ are ↵xu

⇤ +

�xg(u⇤) and ↵yu
⇤+�yg(u⇤). The relative responses are ↵xu⇤+�xg(u⇤)

↵yu⇤+�yg(u⇤) . The shock is not

observed but a noisy measure of the shock is available to the econometrican: zt =

ut+vt, where vt ⇠ iid(0, 1) is independent from ut at all lead and lags. Also assume

for simplicity that the distribution of ut and g(ut) are such that Cov(zt, g(zt)) =

Cov(ut, g(ut)) = Cov(ut, g(zt)) = Cov(zt, g(ut)) = 0. Consider estimating the two

regressions using the instrument instead of the shock:

xt = ↵̃xzt + �̃xg(zt) + e
x
t

yt = ↵̃yzt + �̃yg(zt) + e
y
t .

The OLS population parameters are

↵̃x = ↵x�, �̃x = �x�

↵̃y = ↵y�, �̃y = �y� (A1)

where � = Cov(zt,ut)
V ar(zt)

and � = Cov(g(zt),g(ut))
V ar(g(zt))

represent the e↵ects of the distortions

arising from the presence of measurement error. Of course these parameters will

fail to deliver the correct impulse response functions. This is true also in linear

LP settings and justifies the use of the LP-IV approach which delivers the impulse

response functions to a shock with a unit e↵ect on a given variable, i.e. the rescaled

impulse response functions. Is there a way to correct the distorted parameters in

(A1) in order to get a reliable estimate of the relative responses? The answer is no,

unless the distortions are equal: � = �. To see this, let us define the bias as the
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di↵erence between the distorted and true responses:

b =
�↵xu

⇤ + ��xg(u⇤)

�↵yu
⇤ + ��yg(u⇤)

� ↵xu
⇤ + �xg(u⇤)

↵yu
⇤ + �yg(u⇤)

.

Rearranging terms we obtain

b =
(↵x�y � ↵y�x)u⇤

g(u⇤)

(�↵yu
⇤ + ��yg(u⇤))(↵yu

⇤ + �yg(u⇤))
(� � �)

Except in the special case where ↵x�y = ↵y�x, the bias in the relative responses will

be zero if and only if � = �, a condition which of course does not hold in general.

This example shows that in a nonlinear context, not even the relative responses in

general can be correctly estimated using a noisy measure of the shock. In the case

of sign asymmetries, sometimes researchers use positive and negative values of the

shock as regressors. Again, if the shock is not available, using positive and negative

values of the instrument yields correct results only if the sign of the instrument is

equal to the sign of the shock, so that the conditioning set is correct. Otherwise,

splitting the instrument in positive and negative values would deliver biased results.

It should be noted that, in this simple example, the parameters of the linear and

nonlinear term can be corrected separately as in the LP-IV approach. The intuition

is that zt is a valid instrument for ut and g(zt) a valid instrument for g(ut). Since

the bias is constant across equations, the rescaled parameters (those obtained in the

LP-IV approach) are the correct ones:

Cov(xtzt)

Cov(ytzt)
=
↵̃x

↵̃y
=
↵x

↵y
,

Cov(xtg(zt))

Cov(ytg(zt))
=
�̃x

�̃y

=
�x

�y
.

But of course the combination ↵x
↵y
c+ �x

�y
g(c) (where c is the value of the shock) will

not deliver, in general, the correct responses. To see this notice that ↵x
↵y
c corresponds

to the response of xt to a shock of size u
⇤ = ↵

�1
y c. This means that the consistent

e↵ect of the nonlinear term is �xg(↵�1
y c). So the term �x

�y
g(c) would correspond to

the correct nonlinear e↵ect if and only if ��1
y g(c) = g(↵�1

y c), which of course will

not be true in general. For instance, in the case g(ut) = u
2
t the correct estimation

of the total e↵ects requires �y = ↵
2
y (from c

2
�
�1
y = ↵

�2
y c

2). This shows that the

rescaled parameters, despite being non-distorted, are not useful to obtain the IRF
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simply because the correct weights associated to the two parameters is unknown.

We run a simulation to have a better assessment of the above implications. We

generate data from the model

yt = Ayt�1 +B⌫t

where

A =

 
0.9 0.4

�0.2 0.7

!
B =

 
1 0.2 0.4

�0.2 0.5 0.8

!

and ⌫t = [u1t u2t |u1t|]0 where [u1t u2t]0 ⇠ N(0, I) and u1t is the shock of interest.

We also generate an instrument zt = u1t + vt where vt ⇠ N(0, 1). We generate 500

datasets of 500 observations each (large samples) and apply both our procedure (see

Section 2) and the nonlinear LP using the noisy instrument.

Results are displayed in Figure A.1. Panel A shows results with our approach,

Panel B shows results obtained using local projections with a noisy measure of the

shock (zt). The solid lines are the true IRF, the gray areas are the 5th and 95th

percentile of the distribution of the point estimates. When using LP, distortions

are evident: solid lines are outside the bands for several horizons, especially for

negative shocks. Of course, by setting the variance of the noise to zero, LP works

perfectly, suggesting that the problem is not with the model used to obtain the

impulse responses, but rather with the shock measure used.
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Panel A

Panel B

Figure A.1

Appendix B

To investigate discrepancies with the results of Caravello and Martinez-Bruera (2024)

we have used their replication codes with our dataset. We use the proxy of Känzig

(2021) and its absolute value as the exogenous variables. We include as controls 18

lags for real oil price, oil production, oil stocks, world industrial production, US in-

dustrial production and US CPI. Results are reported in Figure B.1. The first row

reports the linear coe�cients, the second row those associated with the absolute

value of the shock, and the third row the combined nonlinear impulse responses.

The black lines represents the impulse responses to a positive shock and the red

lines those to a negative shock (multiplied by minus 1). Since red and black lines

are very close to each other, we do not have evidence of asymmetry, in line with
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Caravello and Martinez-Bruera (2024). Hence the di↵erent results are due to the

di↵erent method used; more specifically, to the use of the proxy and its absolute

value in place of the estimated shock and its absolute value.

Figure B.1: Linear IRF (first row), Nonlinear IRF (second row), and Combined IRF
(third row) estimated using local projections and the proxy measure of Känzig (2021).
The black lines represents those to a positive shock and the red lines those to a negative
shock (multiplied by minus 1). Shaded areas in the first two plots are 68% and 90%
confidence bands. Shaded areas in the third plot are 90% confidence bands.

Appendix C

In this Appendix, we estimate the e↵ects of the oil supply news shock on two addi-

tional uncertainty measures.

The former is the measure of oil price uncertainty constructed using textual

analysis techniques by Abiad and Qureshi (2023). The result is reported in Figure

C.1. The figure shows that both positive and negative oil supply shocks lead to a
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significant increase in oil price uncertainty (the e↵ect of negative shocks are taken

as usual with the minus sign). This result provides an intuition for the uncertainty

channel documented in the paper.24

Figure C.1: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock estimated using a nonlinear Proxy-SVAR. The core six-variable
model is extended including the oil price uncertainty measure of Abiad and Qureshi (2023).
Impulse responses to a negative shock are multiplied by minus one. The shaded areas
represent the 68% and 90% confidence bands.

The latter measure is the macroeconomic uncertainty measure of Jurado et al.

24The results hold for a di↵erent measure of oil price uncertainty calculated using a GARCH
model as in Elder and Serletis (2010).

Figure C.2: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock estimated using a nonlinear Proxy-SVAR. The core six-variable
model is extended including the macroeconomic uncertainty indicator of Jurado et al.
(2015). Impulse responses to a negative shock are multiplied by minus one. The shaded
areas represent the 68% and 90% confidence bands.
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(2015). The result, reported in Figure C.2, is that the e↵ects on macroeconomic

uncertainty are symmetric, suggesting that the second-round e↵ects do not come

from macroeconomic uncertainty.
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