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ABSTRACT

We investigate the asymmetric transmission of oil supply news shocks to the U.S. economy using a
nonlinear Proxy-SVAR framework. Building on the methodology of Debortoli et al. (2023), we
identify exogenous oil supply news shocks using high-frequency surprises in oil futures prices around
OPEC announcements (Kénzig, 2021). Our results reveal strong evidence of asymmetries: a positive
oil supply news shock, which raises oil prices, produces a large and persistent contraction in real
activity and only a modest and transitory increase in prices. Conversely, a negative shock that reduces
oil prices has small real effects but triggers a sizeable and persistent decline in inflation. We rationalize
these asymmetric effects through the behavior of uncertainty. We show that both positive and
negative shocks increase financial uncertainty and the excess bond premium, leading to higher risk
premia and delaying investment decisions through “real option” effects. This uncertainty channel
amplifies the contractionary impact of positive shocks while dampening the expansionary effects of
negative shocks on output, with the opposite pattern observed for prices. We find little evidence of
an asymmetric response of monetary policy.
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NON-TECHNICAL SUMMARY

Recent developments in the global economy have led to unprecedented decisions by the
largest oil producing countries. In April 2020, Russia, Saudi Arabia and the United States
jointly cut production by 9.7 million barrels per day (bpd) to counter the negative effects of
the COVID-19 pandemic. By mid-2021, a strong recovery in global demand led the
Organization of the Petroleum Exporting Countries (OPEC) to ease earlier cuts by 2 million
bpd. But in 2022, Russia, the world's largest oil exporter to global markets, caused supply
disruptions in the oil market following its invasion of Ukraine. Later that year, OPEC
reversed its stance and announced oil supply cuts of 2 million bpd for all of 2023, which
were increased to 3.66 million bpd in April 2023, or about 3.7% of global demand. More
recently, to support prices, OPEC and its partners (OPEC+) decided to extend oil cuts
through 2024, and Saudi Arabia and Russia unilaterally cut oil production by an additional
1.3 to 1.5 million bpd until the end of December. From a policy perspective, these large oil
supply cuts and easings pose new challenges for stabilization policies, motivating a renewed
interest in understanding the transmission of oil supply shocks to promote better-informed
policy decisions.

This paper explores the question of whether the impact of oil supply news shocks on U.S.
output and prices depends on the sign of the shock. To investigate potential asymmetries,
we use the nonlinear Proxy-SVAR approach developed by Debortoli et al. (2023) and identify
an oil supply news shock using the series of surprise changes in oil future prices around
OPEC announcements provided by Kinzig (2021). We find that the transmission of oil
supply news shocks is asymmetric. A shock raising oil prices produces a large and immediate
decline in real activity and a small increase in prices. On the other hand, a shock reducing oil
prices has a modest effect on real activity and a large effect on prices. We rationalize the
asymmetric transmission of oil supply news shocks in view of two channels. The first is
related to uncertainty, which includes a “real option” and a “risk premium” effect. According
to this channel, an oil supply shock, regardless of its sign, increases uncertainty, which
contributes to depress economic activity. This channel therefore operates by amplifying the
negative real effects of unexpected oil price increases and dampening the positive real effects
of unexpected oil price decreases. The opposite holds for prices. The second channel is
related to the systematic response of monetary policy. As discussed by Bernanke, Gertler,
and Watson (1997), the endogenous response of the central bank may account for a large
portion of the recessionary effects of oil price shocks, and monetary policy may adopt an
asymmetric reaction to such shocks. However, we find little role for this mechanism. This
confirms that, in principle, monetary policy should not respond to supply shocks unless there
is a risk of dis-anchoring of inflation expectations.
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Figure. Nonlinear responses to a positive (blue line) and a negative (red line) shock.
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Transmission asymétrique des chocs
d’information sur Poffre de pétrole

RESUME

Nous étudions la transmission asymétrique des chocs liés aux nouvelles informations sur
loffre de pétrole a ’économie américaine en utilisant un modéle Proxy-SVAR non linéaire
novateur. En suivant la méthodologie de Debortoli et al. (2023), nous identifions les chocs
d’information sur 'offre de pétrole a partir des variations inattendues des prix a terme du
pétrole autour des annonces de TOPEP (Kinzig, 2021). Nos résultats mettent en évidence
des non-linéarités significatives selon le signe du choc : un choc positif, qui entraine une
hausse des prix du pétrole, provoque une contraction importante et persistante de 'activité
réelle, mais n’a qu’un effet modéré et transitoire sur les prix. A Tinverse, un choc négatif,
réduisant les prix du pétrole, a des effets limités sur P'activité réelle mais un impact marqué
et durable sur les prix a la consommation.

Nous expliquons ces résultats par le role de I'incertitude. Les chocs positifs comme négatifs
accroissent I'incertitude financiére et la prime de risque sur les obligations d’entreprises, ce
qui retarde les décisions d’investissement (« effet d’option réelle ») et renforce la prime de
risque (« effet de prime de risque »). Ce canal d’incertitude amplifie les effets récessifs des
chocs positifs et atténue les effets expansifs des chocs négatifs sur I'activité, tandis que
Peffet inverse est observé pour les prix. ’analyse complémentaire montre peu de signes
d’une réponse asymétrique de la politique monétaire, indiquant que l'incertitude — plutot
que la réaction de la banque centrale — est la principale source de non-linéarité.

Mots-clés : nouvelles sur I'offre de pétrole, proxy-SVAR non linéaire, asymétrie.

Les Documents de travail refletent les idées personnelles de leurs auteurs et n'expriment pas
nécessairement la position de la Banque de France. Ils sont disponibles sur publications.banque-france.fr
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1 Introduction

Recent developments in the global economy have led to unprecedented decisions by
the largest oil producing countries. In April 2020, Russia, Saudi Arabia and the
United States jointly cut production by 9.7 million barrels per day (bpd) to counter
the negative effects of the COVID-19 pandemic. By mid-2021, a strong recovery in
global demand led the Organization of the Petroleum Exporting Countries (OPEC)
to ease earlier cuts by 2 million bpd. But in 2022, Russia, the world’s largest oil
exporter to global markets, caused supply disruptions in the oil market following its
invasion of Ukraine. Later that year, OPEC reversed its stance and announced oil
supply cuts of 2 million bpd for all of 2023, which were increased to 3.66 million bpd
in April 2023, or about 3.7% of global demand. More recently, in an effort to support
prices, OPEC and its partners (OPEC+) decided to extend oil cuts through 2024,
and Saudi Arabia and Russia unilaterally cut oil production by an additional 1.3 to
1.5 million bpd until the end of December.! From a policy perspective, these large
oil supply cuts and easings pose new challenges for stabilization policies, motivating
a renewed interest in understanding the transmission of oil supply shocks in order
to promote better-informed policy decisions.?

Our understanding of the relationship between oil prices and the macroeconomy
goes back to Hamilton (1983), who initiated a long-standing debate by arguing
that oil supply shocks are a major driver of economic fluctuations. More recently,
the debate has focused on potential nonlinearities in the transmission of oil price
changes; in particular, whether oil price increases have a greater impact on real
activity than oil price decreases. The debate can be traced back to the 1980s,
when Hamilton (1983) and Mork (1989) observed that oil price increases seemed
to be more important for US business cycles than price decreases. More recently,
using US data, Hamilton (2003, 2011) finds evidence in favor of the asymmetry; in
contrast, Kilian and Vigfusson (2011a, 2017) criticize Hamilton’s empirical approach
and provide evidence against such nonlinearities. Other contributions in support of

a linear relationship between aggregate activity and oil price shocks are Herrera et al.

LOPEC+ controls about 90% of global crude oil reserves and 40% of the global daily production.
Therefore, OPEC+ decisions can have a significant impact on oil prices.

’In our analysis, we end the sample in 2019M12 to avoid including the COVID period in the
sample.



(2011) for the US and Herrera et al. (2015) for 18 OECD countries.® Lastly, a recent
work by Caravello and Martinez-Bruera (2024) finds no evidence of asymmetric
effects, suggesting instead the existence of size effects.

In this paper, we contribute to this debate by exploring whether oil supply news
shocks have different effects on US output and prices, depending on the sign of
the shock. To investigate potential asymmetries we use the nonlinear Proxy-SVAR
approach developed by Debortoli et al. (2023) (DFGS henceforth), and identify an
oil supply news shock. The instrument we use is the series of surprise changes in
oil futures prices around OPEC announcements, developed by Kénzig (2021), who
show that this variable affects oil prices and the macroeconomy.

The underlying economy is represented by a structural Vector Moving Average
which includes nonlinear terms of the shock of interest; here we use the absolute
value of the oil shock as the relevant nonlinear function. Under suitable conditions,
the macroeconomic variables have a VARX representation, where the shock and its
absolute value represent the exogenous variables. By combining the effects of the
shock and its absolute value we can estimate the effects of positive and negative
shocks. This is a basic difference with respect to the previous literature on this sub-
ject: we focus on the nonlinear effects of unobservable oil supply news shocks, rather
than observable oil price changes. Since the exogenous variables are unobserved, our
VARX cannot be estimated directly. The key result of DFGS solves this problem.
DFGS shows that, when a suitable instrument is available and the observed variables
are informationally sufficient for the shock of interest, the shock can be estimated
consistently as the fitted value of the regression of the instrument onto the residuals
of a standard linear VAR. Once an estimate of the shock is available, the VARX
and the implied nonlinear impulse response functions can be estimated.

In comparison with alternative nonlinear models we find our method particularly
appealing for a number of reasons. First, the alternative nonlinear Proxy-SVAR im-
plemented in Pellegrino et al. (2023) allows the estimation of impulse responses
across states of the economy but does not have the flexibility of dealing with shock
sign or size nonlinearities. Second, in comparison with the FAIR approach of Barni-

chon and Matthes (2018a), we do not need to assume a specific distribution of the

3While both provide evidence against nonlinearity, the former finds a strong asymmetric trans-
mission of oil price shocks in the US at the disaggregated industry level.



shock. Compared to a nonlinear local projection, such as the one in Tenreyro and
Thwaites (2016), the benefit of our model is twofold. First, the more parsimonious
parameterization and consequently the smaller estimation uncertainty. A second
advantage is internal consistency as our approach allows the shock identification
and the estimation of nonlinear impulse responses in a unique model.

We find that the transmission of oil supply news shocks is asymmetric. A shock
raising oil prices produces a large and immediate decline in real activity and a small
increase in prices. On the other hand, a shock reducing oil prices has a modest
effect on real activity and a large effect on prices. This evidence confirms the find-
ings of Hamilton (2011), but also suggests an additional nonlinearity, previously
unexplored, concerning prices. These results are robust to an alternative identifica-
tion strategy of oil supply shocks (Baumeister and Hamilton, 2019) and to various
changes in the model specification. Our findings, however, contrast with Caravello
and Martinez-Bruera (2024), who find evidence against asymmetric effects of oil
supply news shocks using Kéanzig’s proxy variable in a local projection. In Section
2.4 we argue that these contrasting results arise from the different methods used,
with their approach potentially underestimating the asymmetry we document. We
further elaborate on this issue in Appendix A using a theoretical argument and a
simulation exercise.

The existing literature has suggested two possible explanations for the asym-
metric effects of oil shocks. The first is related to uncertainty. We find that oil
supply shocks, either positive or negative, increase uncertainty. Higher uncertainty,
in turn, increases the returns to waiting for information, causing firms to delay their
investment plans, i.e., the “real option” effect (Bernanke, 1983; Bloom, 2009); more-
over, it raises the risk of investment and therefore the cost of financing, especially
for risky firms, i.e., the “risk premium” effect, (Christiano et al., 2014; Gilchrist
et al., 2014). This channel is in line with Elder and Serletis (2010) and Kilian
and Vigfusson (2011b). Specifically, the latter points out that “Because any unezx-
pected change in the real price of oil may be associated with higher expected volatility,
whether the real price of oil goes up or down, this uncertainty effect may amplify the
effects of unexpected oil price increases and offset the effects of unexpected oil price
declines” (p. 340). The second explanation focuses on the response of monetary

policy. The central bank may react to oil price increases by raising the interest rate



to contain inflationary pressures, but may decide not to respond to price reductions,
therefore generating real asymmetries. Bernanke et al. (1997) suggest that “ .. the
endogenous monetary policy response can account for a very substantial portion of
the depressing effects of oil price shocks on the real economy” (p. 94).

To assess these potential channels, we extend the model to include three addi-
tional variables: the federal funds rate, the VXO uncertainty index used by Bloom
(2009) and the excess bond premium of Gilchrist and Zakrajsek (2012). Consis-
tent with the uncertainty channel above, we find an increase in uncertainty after
both positive and negative shocks. Moreover, these effects are associated with an
increase in the excess bond premium, suggesting that the “risk premium” effect is
at work. These results provide strong evidence in favor of the uncertainty channel.
As for the second channel, our estimates show that the federal funds rate rises after
both shocks. However, these effects are small and not significant, suggesting that
monetary policy cannot be the main source of asymmetry.

The remainder of this paper is organized as follows. Section 2 outlines the
econometric model, including the identification of the shock and the estimation of
nonlinear impulse responses. Section 3 discusses the main empirical results of the
baseline specification and presents several robustness checks. Section 4 explores

potential channels responsible for our findings. Finally, section 5 concludes.

2 Econometric methodology

In this section we discuss the main features of the econometric methodology of

DFGS, adapted to study the nonlinear effects of oil supply shocks.

2.1 Nonlinear representation

Let x; be a n-dimensional vector of stationary macroeconomic variables with the

following structural representation
vy = v+a(L)u; + B(L)g(u;) + T(L)S, (1)

where v is a vector of constants, u; is the oil supply news shock with impulse response

functions a(L) = ap+a; L+asL2... and g(uf) is a nonlinear function of the oil supply
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news shock with impulse response functions 3(L) = By + S1L + B2L? + .... The m-
dimensional vector &; includes other structural shocks, collected in vector u, *, and
possibly nonlinear functions of these shocks. The vector [u, u; *)" is i.i.d. zero mean
and has identity covariance matrix.* Finally, the matrix I'(L) = To+T' L+T5L?+...
is a n x m matrix of impulse response functions to the remaining structural shocks
and, possibly, their non-linear functions.

The nonlinear impulse response functions to the oil shock are derived by com-
bining the two terms a(L) and S(L). More specifically, the total effects of an oil

supply news shock uj = u® are given by the sum of the linear and nonlinear terms:
IRF(uj = @’) = a(L)u® + B(L)g(u"). (2)

The total responses defined in equation (2) simply correspond, in this nonlinear
context, to the Generalized Impulse Response Functions defined as E(x;p|uf =
u®) — E(xip|u; =0), h=0,1,.... We discuss below how to estimate the model and
the implied impulse response functions.

In our baseline empirical specification we use the absolute value as the relevant
nonlinear function, i.e. g(uf) = |uf|, since our interest is in the potential sign
asymmetries of the shock. The impulse response functions to a positive shock equal

to 1 and a negative shock equal to -1 are, respectively

[RF(u} = 1) = a(L) + B(L)

s (3)
IRF(uj = —1) = —a(L) + B(L).

If (L) # 0 the shocks of opposite signs have different effects.
Stationarity of the term I'(L)&; implies the existence of the Wold representation
U(L)e;. Under the assumption of invertibility of the Wold representation, model (1)

“Notice that shock serial and mutual independence implies that all structural shocks, including
uf, are uncorrelated with the lags of g(uf) and z;.



implies the existence of the following VARX representation:’
A(L)zy = p+ a(L)ui + B(L)g(u;) + e, (5)

where A(L) = U(L)™!, a(L) = V(L) a(L) and B(L) =U(L)"1B(L).5
Notice also that stationarity of x; implies the existence of its Wold representation.
Under the assumption that such representation is invertible, the vector x; admits
the VAR representation
xy =9+ B(L)xi_1 + & (6)

where ¢, is orthogonal to z;_;, j =1,...,00.7

Next we derive the relation between the VAR representation (6) and the VARX
representation (5). Let us start from equation (5) and consider the linear projection
of &(L)uf + B(L)g(u) onto the constant and the past history of , i.e.

a(L)u; + B(L)g(uf) = 0 + C(L)xi—1 + wy.

It is easily seen that ¥ = u+6, B(L) = A(L)+ C(L), where A(L) = —[A(L) —I]/L
and g; = e; + wy.

Notice that, if 3(L) = 0, the structural representation (1) reduces to a lin-
ear model and standard SVAR analysis can be conducted using representation (6).
Hence the linear model is nested in our model. We can test for linearity by testing
either for the null 5(L) = 0 in equation (5) or for the null S(L) = 0 in the impulse
response functions in (2). In the empirical application below we test for linearity by
adopting the null hypothesis Hy : (L) = 0.

SThis is simply obtained from
= v+a(l)uf+ B(L)g(uf) + ¥(L)e, (4)

and then multiplying by (L)1

6We assume that all the matrices of polynomials in L can be approximated by finite order
matrix polynomials, as it is standard in the VAR literature.

"The cointegration case can be treated as usual by considering a VAR in the levels of the
variables, rather than in first differences.



2.2 Identification

In the previous subsection we have shown that our nonlinear economy admits a
VARX representation (5). Unfortunately, direct estimation of (5) is unfeasible,
because the exogenous variables are not observable.® We discuss below how to
obtain a consistent estimate of the exogenous shocks that can be used to estimate
the VARX.

The identification procedure relies on two assumptions. The first assumption is
standard in the proxy-SVAR literature and requires the existence of a valid instru-

ment, as specified below.

Assumption A1l (Prozxy). The proxy z; is given by
2z = a+buf + (L) x_q + vy, (7)

where 0(L) is a vector of polynomials of degree p in the lag operator L, b # 0 and
v is an error independent of the structural shocks at all leads and lags. Notice
that under Assumption Al, the standard conditions for a valid instrument,’ i.e.

cov(z,uf) = b # 0 (relevance) and cov(z, &) = 0 (exogeneity), are satisfied.

The second assumption ensures that the oil supply news shock can be estimated

as a combination of current and past data.

Assumption A2 (Informational sufficiency). The oil supply news shock is a linear

combination of the current and past values of z;.

Assumption A2 postulates “partial invertibility” of uf, i.e. that the variables in
x, are informationally sufficient for the oil shock.!” In other words, the nonlinear
term is not needed to estimate the oil supply news shock. Notice that the same
assumption has to hold also in the linear case in order for the standard procedure
to be valid. Fortunately this is a testable assumption. In the empirical section we

will assess whether it holds.

8If the oil shock were perfectly observable, then eq. (5) or a local projection version of it could
be estimated by OLS. In section 2.4 we discuss why such a procedure could be problematic if only
an imperfect measure of the shock is available.

9See Mertens and Ravn (2013) and Stock and Watson (2018a).

00n the concept of informational sufficiency see Forni and Gambetti (2014) and Forni et al.
(2019).



Under assumptions Al and A2, DFGS show that the shock of interest can be

obtained as the fitted value of the linear projection of z; onto the VAR innovations ;.

This is the basic result underlying the proposed procedure. First, we get an estimate

of the oil shock by using a standard proxy SVAR method; having an estimate of the

shock, we can use it to estimate our VARX representation (5).

2.3

Estimation

More in detail, the estimation procedure is the following.

L.

II.

I1I.

IV.

24

Estimate the VAR in (6) with OLS to obtain consistent estimates of the resid-

uals &, call them é&;.

Estimate the linear projection
2 = Né + 1. (8)

Following Forni et al. (2023), an estimate of the normalized shock is obtained

as follows
!

i = ——=—= (9)

~

'S

o
my

P

where ¥, is the variance covariance matrix of the residuals &;.'!

Estimate equation (5) using as regressors the current value and the lags of the

estimated shock @ and its nonlinear function g(u;). This gives the estimates of
A(L), B(L) and &(L). Finally, one can obtain estimates of (L) = A(L)'a(L)
and A(L) = A(L)™B(L).

Compute the impulse response functions according to equation (3).

Discussion

To verify the existence of nonlinearities, Hamilton (2011) uses a censored measure

of oil price changes, named net oil price increases (see also Hamilton, 1996). This

"Tn equation (9), the covariance matrix Y. is estimated over the full sample. The covariances
between z; and &; is of course estimated over the sample for which the instrument is available.



measure distinguishes between oil price increases that set new highs relative to recent
experience and those that simply reverse recent declines, reflecting the apparently
greater importance of oil price increases for business cycles. Kilian and Vigfusson
(2011a) argue that if the conditional forecasting model, e.g., the VAR, involves a
nonlinear function such as the net oil price increases, then we cannot calculate a
multi-period impulse response by iterating as if it was a linear model. In other words,
if one includes in a VAR price increases but not decreases, the usual inference will
be biased: the econometrician should ensure that the model used nests the linear
case when testing for asymmetries. Notice that our approach is not subject to the
criticism above, since in our VARX specification we have both the relevant shock
and its absolute value, which is equivalent to having both positive and negative
shocks (as observed above, the linear case is a special case of our model).

A basic difference of our approach with respect to the previous literature is that
we focus on possible nonlinear effects of oil shocks rather than oil price changes.
From this point of view, our approach is perfectly in line with the structural VAR
literature, where the observed variables are endogenous and are driven by unob-
served exogenous forces.'? Our first step is needed precisely because the oil shock is
unobserved and therefore must be estimated. Once the shock has been estimated,
a valid alternative delivering the same asymptotic result is to use local projections

in place of the VARX to estimate the impulse response functions.

Discrepancies relative to other work. Caravello and Martinez-Bruera (2024)
finds no evidence of asymmetric effects of oil supply news shocks. In that paper, the
authors skip the first step of our procedure and use the proxy of Kéanzig (2021) and
its absolute value directly in a series of local projections in place of the estimated
shock and its absolute value. To verify whether the conflicting results are due to this,
we applied their methodology to our dataset, and found little evidence of asymmetry,
in line with their result (see Appendix B). Below, we provide the intuition for the
different results obtained by these authors.

The methodology of Caravello and Martinez-Bruera (2024) is appealing in that

it is simple and does not require invertibility. However, their approach in a nonlinear

12Tn this respect, our nonlinear approach is similar to the one of Barnichon and Matthes (2018b),
even if the methods are different.



framework delivers the correct result only when the instrument is an exact measure
of the shock, z; = uy, or when the difference z; — u; has the same effects as u; on all
variables. For instance, consider the case u; = uj, + u3,, where v} is the sum of two
structural shocks, u§, and w3, and z; captures only the first term, 2, = uj,. If the
effects of uf, and u$, are the same, no problems arise.'® By contrast, if the effects
of uf, and u3, are different, then using z; in place of u{ will produce a bias.

A bias will also arise if z; is a noisy measure of the shock with an error which is
unrelated to the variables, as in equation (7). Consider the simple case z; = uj + vy,
where v; is independent of the variables at all leads and lags. In the linear case,
vy produces an attenuation bias, which is proportional for all variables and lags,
and therefore can be corrected by a suitable normalization (see Stock and Watson,
2018b). In the nonlinear case, however, things are more complicated. Assume that
negative shocks, say u;~, do not affect output, whereas positive shock, u;*, have
effect 1, so that the effects are asymmetric. Clearly z; can be positive even if u; is
negative, owing to a positive v; greater than |uf|; hence z;” is a mixture, including
both positive and negative shocks. As a consequence, using z; in place of uf"
produces a downward bias (in addition to the attenuation bias) and the estimated
effect on output will be somewhere in the interval (0 1). For the same reason, we
have an upward bias when using z, in place of u;~, so that the asymmetry will be
underestimated. This confounding effect could in principle explain why Caravello
and Martinez-Bruera (2024)’s finding of no asymmetric effects conflicts with ours.
In Appendix A we present a simple theoretical example together with a simulation

exercise to further elaborate on this point.

3 Results

The baseline monthly linear VAR (12) follows the specification used by Kénzig (2021)
and includes the real oil price, world oil production, world oil inventories, world
industrial production, US industrial production and the US consumer price index
(CPI) from 1975M1 to 2019M12.' All variables enter in logs. After estimating

the model, we identify the structural oil supply news shock over the shorter sample

13We thank an anonymous referee for pointing this out.
For the data sources, see Kinzig (2021).
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1983M4-2019M12, using the proxy constructed by Kéanzig (2021). This variable
captures high-frequency surprise changes in oil futures prices in a tight window
around OPEC announcements and can only be considered a noisy measure of the
true shock. The choice of estimating the reduced-form model using the longer sample
is done to improve the estimation of the parameters of the model, as typically done
in the Proxy-SVAR literature. Regarding the strength of the instrument, the first-
stage F-statistic in this model is 17.17, which is safely above the threshold of 10.

3.1 Testing for invertibility

To begin, we test whether assumption A2, i.e. invertibility of «}, holds. To do this,
we use the invertibility test recently proposed by Forni et al. (2023). The test is based
on the theoretical result that, if the shock is non-invertible, then it is a function of
current and future VAR residuals, instead of being a combination of current residuals
only. More specifically, the test is based on regressing the instrument on the current

value and the first r leads of the Wold residuals £,.'° Formally:

Zp = Z Nelirk + M (10)

k=0

The invertibility test is an F-test for the significance of the r leads, the null
hypothesis being Hy : Ay = Ay = --- = A\, = 0 against the alternative that at least
one of the coefficients is nonzero. We estimate the regression in equation (10) using
different numbers of leads (6 < r < 12).

The p-values, reported in Table 1, are very large. Therefore, we cannot reject
the null of invertibility for all values of r. In the robustness section 3.6 we briefly
discuss the conflicting results of Plaghorg-Mgller and Wolf (2022, Online Appendix
B.7).

15 Ay alternative with standard VAR identification schemes can be found in Forni and Gambetti
(2014).
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Number of leads r
r=6 r=7 r=8 r=9 r=10 r=11 r =12
p-value 0.98 099 095 0.96 0.91 0.88 0.85

Table 1: Invertibility test. The table shows the p-values for each regression includ-
ing the current value and up to r leads of the Wold residuals. The null hypothesis is
invertibility, i.e., Hy : Ay = g =--- = A, = 0.

3.2 Linear model

We first present the results for the identification of the oil supply news shock in the
linear Proxy-SVAR. Figure 1 plots the impulse responses to an oil supply news shock
normalized to increase the real oil price by 10% on impact. The black solid lines
are the point estimates and the grey shaded areas are the 68% and 90% confidence
bands. A negative oil supply news shock leads to an immediate increase in real oil
prices. World oil production falls persistently only after few months and world oil
inventories increase significantly at impact and continue to grow sluggishly. World
industrial production does not change much in the first year after the shock, but
then begins to fall significantly and persistently. For US variables, the shock leads to
a delayed and persistent decline in industrial production and an immediate increase
in the consumer price index, which continues to rise for a year before returning to

its initial level. These results are consistent with those in Kanzig (2021).
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Figure 1: Linear impulse responses to an oil supply news shock using a linear Proxy-
SVAR. Solid lines are the point estimates and the shaded areas are 68% and 90% confidence
bands.

3.3 Testing asymmetries

In this section, we estimate the VARX and formally test for the assumption of
linearity by testing the null hypothesis Hy : 3(L) = 0 in equation (2).1°

Figure 2 presents the results of the test, with the responses to the term |uf|, 5(L),
plotted as dashed orange lines. The shaded areas are 68% and 90% bootstrapped
confidence bands.!” The nonlinear function of the shock has a significant and long-
lasting effect on US variables while being small, temporary and hardly statistically
different from zero for world variables. More specifically, industrial production and

particularly prices respond negatively to the absolute value of the shock, suggesting

6The VARX in (5) includes 6 lags for both endogeneous and exogenous variables. To measure
the instrument validity we follow Forni et al. (2023) and estimate the correlation coefficient between
the estimated shock and the instrument, which is 0.23.

1"The confidence bands take into account also the estimation uncertainty on the estimated
structural shock from the first step projection in (8). Both steps of the estimation are included in
the bootstrapping procedure.
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that the overall recessionary effect of a positive shock on real activity (prices) is
amplified (dampened) by the nonlinear term. Conversely, the overall expansionary
effect of a negative shock on real activity (prices) is dampened (amplified) by the

nonlinear term. Overall, the results indicate that the null hypothesis of linearity is

rejected.
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Figure 2: Nonlinear impulse responses to the absolute value of the shock estimated using
a nonlinear Proxy-SVAR. The shaded areas represent the 68% and 90% confidence bands.

3.4 Asymmetric transmission of oil supply shocks

Figure 3 plots the IRFs of positive and negative oil supply shocks according to
equation (3). The impulse responses are normalized to increase or decrease the real
oil price by 10% on impact. The red and blue solid lines are the point estimates for
the positive and negative shock, respectively, and the shaded areas are the 68% and
90% confidence bands. For ease of comparison, we multiply the impulse responses
to a negative shock by minus one. Our results show no significant asymmetries in
the dynamic response of global variables.

Turning our attention to the US economy, we see that a positive shock has larger
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effects on industrial production than a negative shock. While the nonlinear response
of real activity to oil price shocks has been the focus of a heated debate in the
literature, well described by Hamilton (2011) and Kilian and Vigfusson (2011b), our
results point to an additional nonlinearity not previously explored: a positive shock
leads to a modest effect on prices, while a negative shock leads to a much larger price
response. Overall, our results suggest that following a positive oil supply shock, the
US economy experiences a large and fast decline in real activity and a small increase

in prices, while the opposite is true for a negative shock: a small decline in output

and a large increase in prices.
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Figure 3: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock estimated using a nonlinear Proxy-SVAR. Impulse responses
to a negative shock are multiplied by minus one. The functional form for the nonlinear
function of the shock is g(ui) = |uf|. The shaded areas represent the 68% and 90%
confidence bands.
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3.5 Variance decomposition

Given the long-standing debate on whether oil supply shocks are major drivers of
economic fluctuations (see Hamilton, 1983), we present estimates of the variance
decomposition in our nonlinear framework.

The oil supply news shock ] and its nonlinear function g(uj) are not necessarily
orthogonal and, as a result, standard formulas to compute the variance decompo-
sition are not appropriate in this setting. Therefore, following Forni et al. (2024),
we address the problem by computing at each horizon the prediction error due to
the linear and nonlinear oil supply shock, respectively u; and g(u]), along with the

total prediction error. The h-step ahead prediction error implied by equation (1) is

h-1 h—1 h—1
Corh = Z aguy + Z Brg(ug) + Z L&t
k=0 k=0 k=0

whereas the prediction error driven by the oil supply shock is composed by the

part relative to the shock of interest, which is

h—1 h—1
ein = oty + > Brg(uy)
k=0 k=0

We compute the prediction errors according to the above formulas; then, we
compute the ratio of their sample variances. Table 2 presents the total contribution
of the oil shock to the volatility of our variables in the right panel. In the left panel
we also report the variance decomposition obtained by ignoring the nonlinear term
(i.e., by assuming 5(L) = 0). The oil supply news shock accounts for a large part of
the variation of oil prices in the short run. Comparing our results with the literature,
our estimates from the linear shock are in line with those in Kénzig (2021). Once
we add the contribution of the nonlinear function, the oil price shock explains a
very large portion of the variance of US industrial production and prices, especially
at longer horizons. Our conclusion is that oil shocks are major drivers of business

cycle fluctuations.
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Linear Total

h=0 h=12 h=24 h=236 h=0 h=12 h=24 h=236

Oil price 72.4 53.9 44.2 40.8 72.4 55.6 46.4 43.5
Oil production 3.0 3.7 18.9 31.1 3.2 5.3 20.7 32.7
Oil inventories 6.1 174 34.3 41.3 6.1 18.8 35.4 42.5
World TP 0.3 2.1 9.3 18.3 0.9 4.8 12.1 22.0
US IP 3.2 7.2 17.8 25.6 3.3 12.9 25.7 36.2
US CPI 18.8 36.0 24.0 174 19.5 44.9 36.4 34.6

Table 2: Variance Decomposition

3.6 Robustness checks

In this section, we assess the robustness of our results by: (i) implementing a different
shock identification; (ii) adopting an alternative approach to test for invertibility;
(iii) estimating impulse responses using local projections; (iv) running a horse-race
against size nonlinearities; (v) changing various lag lengths in the model and (vi)

ending the sample at the onset of the Global Financial Crisis.

Shock identification. In the first robustness check, we use the oil supply shock
identified by Baumeister and Hamilton (2019) as a proxy in our nonlinear Proxy-
SVAR.* Figure 4 plots the impulse responses, with the solid black lines and the
shaded areas representing the point estimates and confidence bands for our baseline
model, respectively. The dashed black lines are the point estimates using the alter-
native oil supply shock. In terms of instrument strength, the first-stage F-statistic in
our model is 49.58, which is well above the recommended safe level of 10. The results
indicate that there are no significant differences among the two proxies in a linear
Proxy-SVAR framework. Figure 5, instead, plots the baseline impulse responses
estimated using the nonlinear Proxy-SVAR and the alternative shock (dashed black
lines) together with our baseline shock (solid lines). The results suggest that the
asymmetries we document with our preferred instrument are robust to the use of

the alternative identification strategy.

18We took the oil supply shock from Baumeister’s webpage.
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Figure 4: Linear impulse responses to our baseline oil supply news shock (black solid
lines) and to the alternative identification strategy of Baumeister and Hamilton (2019)
(black dashed lines) estimated using a linear Proxy-SVAR. The shaded areas are 68% and
90% confidence bands for our baseline impulse responses.
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Figure 5: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock and the alternative identification strategy of Baumeister and
Hamilton (2019) (black dashed lines) estimated using a nonlinear Proxy-SVAR. Impulse
responses to a negative shock are multiplied by minus one. The functional form for the
nonlinear function of the shock is g(uf) = |uf|. The shaded areas represent the 68% and
90% confidence bands for our baseline impulse responses.

Invertibility. In the second robustness check, we address potential concerns re-
garding the invertibility assumption, in view of the conflicting results with Plaghorg-
Mpgller and Wolf (2022, Online Appendix B.7).

We follow Forni and Gambetti (2014) and assess whether our baseline shock,
estimated using the Kanzig (2021) specification, can be predicted by one, three, six
and twelve lags of the first five and the first eight principal components, obtained
from the McCracken and Ng (2016) dataset. The results are reported in Table 3. In
all cases we cannot reject the null hypothesis of orthogonality (lack of predictability).
This result points to partial invertibility of the shock.
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First 5 PCs, k lags First 8 PCs, k lags
=1 k=3 k=6 k=12|k=1 k=3 k=6 k=12
F-stat 0.706 0.968 0.897 0.907 | 0.555 0.954 0.897 0.821
p-value 0.588 0.486 0.624 0.672 | 0.793 0.524 0.669 0.879

Table 3: Structuralness test. The table shows the F-statistics and the p-values for
each regression including up to k lags of the first 5 and 8 principal components (PCs).
The null hypothesis is orthogonality.

To further address the conflicting results with Plagborg-Mgller and Wolf (2022),
we perform our test described in Section 3.1 using the same set of variables included
in Plagborg-Mgller and Wolf (2022) and we confirm the rejection of invertibility.
When we perform their Granger causality test using our set of variables, we cannot
reject invertibility consistently with the results in Section 3.1. The finding suggests
that the difference is attributable to the different sets of variables included in the
test.

Local projections. We estimate the nonlinear impulse responses using local pro-
jections and the shock estimated from the first-step VAR. Figure 6 plots the results
of the baseline VAR responses together with the local projection responses.'” Reas-
suringly, the two models produce comparable results.

One might wonder why we use the shock estimated in the first stage, instead of
the proxy itself. This is because in this nonlinear framework the use of a noisy mea-
sure of the shock, i.e., the proxy of Kanzig (2021), in place of the true shock, would
deliver biased estimates. A theoretical explanation and a simulation in support of

this argument is available in Appendix A.

19Tn the local projection we control for p lags of all the variables in our baseline VAR model and
compute heteroscedasticity-robust standard errors (see Montiel Olea and Plaghorg-Mgller, 2021).
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Figure 6: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock estimated using a nonlinear Proxy-SVAR and the nonlinear
estimates from local projections (black dashed lines). Impulse responses to a negative
shock are multiplied by minus one. The functional form for the nonlinear function of the
shock is g(uf) = |uf|. The shaded areas represent the 68% and 90% confidence bands for
our baseline impulse responses, while dotted and dashed black lines represent the 68% and
90% confidence bands for local projections.

Size nonlinearities. In this paper we use the absolute value as the functional form
for g(uf). However, it is important to explore whether our results are influenced by
the presence of size nonlinearities. We therefore extend our model to capture both
sign and size nonlinearities.

First, we check whether controlling for size nonlinearities would alter our results.

We proceed as follows. We extend our structural model in equation (1) as follows:

v = v+T(L)& + a(L)u; + B(L)|ug] + (L)(uf)’ (11)
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To control for size nonlinearities we introduce a cubic term of the shock, as in
Tenreyro and Thwaites (2016). Figure 7, Panel (b) presents a test of linearity for
real oil price and US variables in the extended model (11), together with the lin-
earity test in the baseline model (Panel (a)). In Panel (b), the first row reports the
responses associated to the absolute value of the shock, 5(L), and the second row
those associated to the cubic term, ¢(L). The test indicates that (i) sign nonlinear-
ities are still significant and (i7) size nonlinearities on US industrial production and
CPI are hardly significant at the 90% confidence level.
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Figure 7: Panel (a): Nonlinear impulse responses for the coefficients associated with
the absolute value (orange dashed line) in the baseline model (1). Panel (b): Nonlinear
impulse responses for the coefficients associated with the absolute value (orange dashed
line) and the cubic term (black dotted line) in model (11). The shaded areas represent
the 68% and 90% confidence bands for both models.

Next, Figure 8 reports the sign-dependent impulse responses in the extended
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model (11) in black dashed lines together with our baseline point estimates and
confidence bands. These responses indicate that our baseline results are unchanged
when controlling for size nonlinearities. Overall, we have shown that (i) the asym-
metric transmission of oil supply news shocks holds even when controlling for poten-
tial size nonlinearities and (i7) size nonlinearities are qualitatively present but not
quantitatively important for output and prices in comparison with sign nonlineari-

ties.
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Figure 8: Nonlinear impulse responses to a positive (blue line) and a negative (red line)
oil supply news shock and the alternative specification which controls for size nonlinear-
ities (black dashed lines) estimated using a nonlinear Proxy-SVAR. Impulse responses to
a negative shock are multiplied by minus one. The functional forms for the nonlinear
functions of the shock are g1 (u$) = |uf| and go(uj) = (uf)3. The shaded areas represent
the 68% and 90% confidence bands for our baseline impulse responses.

Lag length. We now assess the sensitivity of our results to changes in the number

of lags. Specifically, we estimate our nonlinear Proxy-SVAR with lags ranging from 3
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to 9, which also includes our baseline lag selection (p = 6). Figure 9 plots the impulse
responses from all these specifications and the 68% and 90% confidence bands for
our baseline specification. As the figure shows, the nonlinearity we document is not

affected by changes in the lag length of the model.
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Figure 9: Nonlinear impulse responses to a positive (blue line) and a negative (red line)
oil supply news shock. Impulse responses to a negative shock are multiplied by minus
one. The functional form for the nonlinear function of the shock is g(uj) = |uj| estimated
using a nonlinear Proxy-SVAR. Solid lines are the point estimates for models with 3 to 9
lags and the shaded areas represent the 68% and 90% confidence bands for our baseline
specification (6 lags).

Sample specification and the Global Financial Crisis. Lastly, we assess the
robustness of our results by ending the sample at the onset of the Global Finan-
cial Crisis (GFC) in August 2008. This exercise is also motivated by the results in

Baumeister and Peersman (2013), who find greater effects of oil supply shocks on
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prices and real activity around the GFC.?° Figure 10 plots the baseline impulse re-
sponses and confidence bands together with the alternative sample estimates (black
dashed lines). The results indicate that our main findings are not sensitive to the
exclusion of the GFC.*!
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Figure 10: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock for our baseline model, and for the alternative model when
the sample ends before the GFC, in August 2008 (black dashed lines), estimated using
a nonlinear Proxy-SVAR. Impulse responses to a negative shock are multiplied by minus
one. The functional form for the nonlinear function of the shock is g(uf) = |uf|. The
shaded areas represent the 68% and 90% confidence bands.

208ee Figure 1 (Panel A) in Baumeister and Peersman (2013).
21 This sensitivity check also assures that our results are not driven by the large OPEC surprises
such as the one in November 2014.

25



4 Potential indirect channels

The standard theoretical approach in modern dynamic stochastic general equilib-
rium models is to study surprise changes in the price of imported crude oil. Specifi-
cally, the literature has highlighted two channels, demand and supply, as the main
direct effects of exogenous oil price shocks on real activity (see Kilian, 2014, for
a review). The impact of a positive oil price shock through the demand channel
focuses on the reduction in the disposable income of domestic consumers, as higher
energy prices imply a transfer of income abroad.?? The supply channel instead em-
phasizes that a positive oil price shock increases the cost of a factor of production
(e.g., Rotemberg and Woodford, 1996; Finn, 2000). In this regard, Lee and Ni
(2002) noted that while many industries are affected by oil price shocks through the
demand channel, only oil-intensive industries are affected by the supply channel.

In addition to these direct effects, Kilian and Vigfusson (2011b) have highlighted
the importance of other indirect channels, which might explain the asymmetric
response of real activity to oil price shocks. These channels are related to the role
of uncertainty and monetary policy.

In the next two sections, we estimate the response of key variables to explore the
relevance of these indirect channels. To do so, we estimate a nine-variables model
by adding the following three variables to our baseline specification: the financial
uncertainty index used by Bloom (2009), the excess bond premium (EBP) from
Gilchrist and Zakrajsek (2012) and the federal funds rate.?® Figure 11 reports the

results.

4.1 Uncertainty channel

A first explanation hints at the role that uncertainty about the future price of oil
may play in current investment decisions. Oil supply shocks, both positive and nega-
tive, can in principle increase oil price volatility and therefore financial uncertainty.
The larger is the size of the shock (in absolute value), the larger is the effect on

uncertainty.  Uncertainty in turn may reduce private investment both because of

2ZA recent empirical study by Hamilton (2009) explores the causes and consequences of this
channel by analyzing the 2007-08 oil shock on consumer spending.

2 The financial uncertainty index is retrieved from FRED (id: VXOCLS), extended as in Bloom
(2009), and the federal funds rate from FRED (id: DFF).
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a ‘“real option” effect and a “risk premium” effect. According to the “real option”
effect, when individual projects are irreversible, increased uncertainty leads to a re-
duction in investment expenditures, since higher uncertainty increases the returns
to waiting for information, causing firms to delay investment (e.g., Bernanke, 1983;
Bloom et al., 2007). According to the “risk premium” effect, higher uncertainty
increases the probability of bad outcomes for the firm, raising the risk of investment
and therefore the cost of finance (Christiano et al., 2014; Gilchrist et al., 2014).

Given that unexpected changes in the real price of oil are potentially associated
with higher expected volatility, this channel may be responsible for amplifying the
negative real effects of unexpected oil price increases and dampening the positive
real effects of price decreases (see Kilian and Vigfusson, 2011b). The reduction of
private investment can in principle affect prices, amplifying the depressing effect
of an oil price reduction and reducing the inflationary effect of oil price increases.
Along these lines, Baumeister and Kilian (2016) suggest that oil price shocks can
reduce future investment projects through their effect on expectations about the
future path of oil price.

To shed light on the role of uncertainty, we estimate the impulse response func-
tions of an uncertainty index (the VXO) and of the EBP, an indicator of credit
market conditions. Figure 11 shows that both negative and positive shocks raise
financial uncertainty and the EBP. These responses are consistent with the uncer-
tainty channel described above (see also Elder and Serletis, 2010). In Appendix C
we show that the uncertainty argument works through oil price uncertainty. On the
other hand, the responses of the macroeconomic uncertainty indicator of Jurado et

al. (2015) are symmetric.

4.2 Monetary policy channel

Bernanke et al. (1997) suggest that the recessionary effects of an oil price shock
are largely a result of the response of the Federal Reserve to contain inflationary
pressures. The channel they have in mind works as follows: the higher interest
rate set by the central bank in an attempt to contain inflationary pressures may
exacerbate the negative impact of a positive oil price shock on real economic activity.

Later on, this mechanism has been challenged in a number of ways. On one hand,
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Figure 11: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock. The baseline specification is augmented with three additional
variables, giving rise to a nine-variable model. Impulse responses to a negative shock are
multiplied by minus one. World variables are excluded from the plot. The functional form
for the nonlinear function of the shock is g(uf) = |uf|. The shaded areas represent the
68% and 90% confidence bands.

Hamilton and Herrera (2004) show that these results on the response of the interest
rate are sensitive to model specification and cast doubts on the feasibility of policies
to offset the recessionary effects of an oil price shock. On the other hand, Herrera
and Pesavento (2009) show that the systematic response of monetary policy caused
fluctuations in economic activity only in the pre-Volcker period, while Kilian and
Lewis (2011) find that this was not the case even in the pre-Volcker period.

The estimated impulse responses in Figure 11 show that the Fed Funds Rate
increases after both shocks. However, these responses are barely statistically signif-

icant after a positive shock and not statistically different from zero after a negative
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shock. This evidence suggests that the systematic response of the central bank can

only explain a residual component of the asymmetries documented in this paper.

4.3 A counterfactual exercise

In this subsection, we report a counterfactual scenario enforced by switching off the
uncertainty channel following the method proposed by McKay and Wolf (2023).
The counterfactual impulse responses are estimated by using three types of fi-
nancial shocks. The first is identified as in Forni et al. (2024), the second with the
high-frequency instrument of Piffer and Podstawski (2018), and the third following

Real oil price US industrial production Real oil price US industrial production
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Figure 12: Nonlinear impulse responses to a positive (blue line), a negative (red line)
oil supply news shock, and counterfactual responses for a negative shock (grey line with
asterisk markers) when shutting down the uncertainty channel. Impulse responses to a
negative shock are multiplied by minus one. World variables are excluded from the plot.
The shaded areas represent the 68% and 90% confidence bands.
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the optimization-based approach of Caldara et al. (2016). Such shocks are used
within a VARX as exogenous variables and are linearly combined in such a way to
minimize the asymmetric responses of uncertainty. We enforce this counterfactual
by focusing on the baseline responses to a negative shock (red lines). Thus, the coun-
terfactual responses to a negative shock are obtained by combining the responses
under the baseline scenario and the weighted effects of the three uncertainty shocks.
Figure 12 plots the results. The counterfactual responses are the grey lines with
asterisk markers.

The figure shows that the counterfactual responses are very close to those follow-
ing a positive shock (blue lines) and very different from those following a negative
shock (red lines), so that the asymmetric responses of industrial production and
prices are almost eliminated. Overall, we conclude that the uncertainty channel is
sufficient to explain the asymmetric transmission of oil supply news shocks to output

and prices.

5 Conclusion

We document important asymmetries in the transmission of oil supply news shocks
using the novel nonlinear Proxy-SVAR developed in Debortoli et al. (2023). We
find that a positive shock has large real effects and a small impact on prices. In
contrast, a negative shock has small real effects and a large impact on prices. While
we do find evidence in favor of sign-dependent effects, we do not find any statistically
significant size-dependent effects in the transmission of oil supply news shocks.

We rationalize the asymmetric transmission of oil supply news shocks in view
of two channels. The first is related to uncertainty, which includes a “real option”
and a “risk premium” effect. According to this channel, an oil supply shock, regard-
less of its sign, increases uncertainty, which contributes to depress economic activity.
This channel therefore operates by amplifying the negative real effects of unexpected
oil price increases and dampening the positive real effects of unexpected oil price
decreases. The opposite holds for prices. The second channel is related to the sys-
tematic response of monetary policy, and we find little role for this mechanism. The
quantitative relevance of the first channel is confirmed in a counterfactual exercise,

where second-round effects from uncertainty explain much of the difference in the
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estimates between a positive and a negative shock.
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Appendix A

In this Appendix we discuss the potential problems which arise using LP in a non-
linear setting when the shock is not perfectly observed but rather is contaminated
by noise.

Consider the following simple model:

T = ogup + Beg(ug) + 17
y = oyup + Byg(u) +nf

where u; ~ 4id(0,1). The impulse response functions to a shock u; = u* are a,u* +
Brg(u*) and oy u*+ B, g(u*). The relative responses are zzz:i—m. The shock is not
observed but a noisy measure of the shock is available to the econometrican: z, =
ug + vy, where vy ~ 4id(0, 1) is independent from w; at all lead and lags. Also assume
for simplicity that the distribution of w; and g(u;) are such that Cov(z, g(z:)) =
Cov(ut, g(ur)) = Cov(ug, g(z)) = Cov(zt,g(u)) = 0. Consider estimating the two

regressions using the instrument instead of the shock:

Ty = Qg2+ Bxg(zt> + e}
Yo = Oz + Byg(zt) +ef.

The OLS population parameters are

dx = 04:057 Bx - 53:7

Qy = 0, By =By (A1)
where § = %&‘;) and v = % represent the effects of the distortions

arising from the presence of measurement error. Of course these parameters will
fail to deliver the correct impulse response functions. This is true also in linear
LP settings and justifies the use of the LP-IV approach which delivers the impulse
response functions to a shock with a unit effect on a given variable, i.e. the rescaled
impulse response functions. Is there a way to correct the distorted parameters in
(A1) in order to get a reliable estimate of the relative responses? The answer is no,

unless the distortions are equal: § = «. To see this, let us define the bias as the
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difference between the distorted and true responses:

b dogu* +yBeg(u)  agu® + Beg(u’)
Sayus +vByg(u)  ayur + Byg(ur)

Rearranging terms we obtain

b— (Ofxﬂy - @yﬁw)u*g<U*) ((5 _ ’Y)

(dayu* +vByg(u))(ayu* + B,g(u*))

Except in the special case where o3, = o, 3;, the bias in the relative responses will
be zero if and only if § = «, a condition which of course does not hold in general.
This example shows that in a nonlinear context, not even the relative responses in
general can be correctly estimated using a noisy measure of the shock. In the case
of sign asymmetries, sometimes researchers use positive and negative values of the
shock as regressors. Again, if the shock is not available, using positive and negative
values of the instrument yields correct results only if the sign of the instrument is
equal to the sign of the shock, so that the conditioning set is correct. Otherwise,
splitting the instrument in positive and negative values would deliver biased results.

It should be noted that, in this simple example, the parameters of the linear and
nonlinear term can be corrected separately as in the LP-IV approach. The intuition
is that z; is a valid instrument for u; and ¢(z:) a valid instrument for g(u;). Since
the bias is constant across equations, the rescaled parameters (those obtained in the

LP-IV approach) are the correct ones:

Cov(wz) & _an Covlmg(z)) _fr _fu

Cov(yiz) a, «, Cov(yg(z)) B, By

But of course the combination §=c + g—zg(c) (where c is the value of the shock) will
not deliver, in general, the correct responses. To see this notice that Z—;c corresponds
to the response of z; to a shock of size u* = «a,; le. This means that the consistent
effect of the nonlinear term is 3,g(a; 'c). So the term g—zg(c) would correspond to
the correct nonlinear effect if and only if 3, 'g(c) = g(a;'c), which of course will
not be true in general. For instance, in the case g(u;) = u? the correct estimation
of the total effects requires 3, = oz§ (from cQﬂ; b= a, 2¢%). This shows that the

rescaled parameters, despite being non-distorted, are not useful to obtain the IRF
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simply because the correct weights associated to the two parameters is unknown.
We run a simulation to have a better assessment of the above implications. We

generate data from the model

vy = Ay + By

Ao 09 04 B 1 02 04
—-0.2 0.7 —-0.2 0.5 0.8

and v = [u1y ug |uyl]” where [uy ugy]) ~ N(0,1) and uy, is the shock of interest.

where

We also generate an instrument z; = wuy, + v; where v; ~ N(0,1). We generate 500
datasets of 500 observations each (large samples) and apply both our procedure (see
Section 2) and the nonlinear LP using the noisy instrument.

Results are displayed in Figure A.1. Panel A shows results with our approach,
Panel B shows results obtained using local projections with a noisy measure of the
shock (z;). The solid lines are the true IRF, the gray areas are the 5th and 95th
percentile of the distribution of the point estimates. When using LP, distortions
are evident: solid lines are outside the bands for several horizons, especially for
negative shocks. Of course, by setting the variance of the noise to zero, LP works
perfectly, suggesting that the problem is not with the model used to obtain the

impulse responses, but rather with the shock measure used.
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Appendix B

To investigate discrepancies with the results of Caravello and Martinez-Bruera (2024)
we have used their replication codes with our dataset. We use the proxy of Kanzig
(2021) and its absolute value as the exogenous variables. We include as controls 18
lags for real oil price, oil production, oil stocks, world industrial production, US in-
dustrial production and US CPI. Results are reported in Figure B.1. The first row
reports the linear coefficients, the second row those associated with the absolute
value of the shock, and the third row the combined nonlinear impulse responses.
The black lines represents the impulse responses to a positive shock and the red
lines those to a negative shock (multiplied by minus 1). Since red and black lines

are very close to each other, we do not have evidence of asymmetry, in line with

Panel A

Panel B
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Caravello and Martinez-Bruera (2024). Hence the different results are due to the
different method used; more specifically, to the use of the proxy and its absolute

value in place of the estimated shock and its absolute value.
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Figure B.1: Linear IRF (first row), Nonlinear IRF (second row), and Combined IRF
(third row) estimated using local projections and the proxy measure of Kanzig (2021).
The black lines represents those to a positive shock and the red lines those to a negative
shock (multiplied by minus 1). Shaded areas in the first two plots are 68% and 90%
confidence bands. Shaded areas in the third plot are 90% confidence bands.

Appendix C

In this Appendix, we estimate the effects of the oil supply news shock on two addi-
tional uncertainty measures.

The former is the measure of oil price uncertainty constructed using textual
analysis techniques by Abiad and Qureshi (2023). The result is reported in Figure
C.1. The figure shows that both positive and negative oil supply shocks lead to a
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significant increase in oil price uncertainty (the effect of negative shocks are taken
as usual with the minus sign). This result provides an intuition for the uncertainty

channel documented in the paper.?*
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Figure C.1: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock estimated using a nonlinear Proxy-SVAR. The core six-variable
model is extended including the oil price uncertainty measure of Abiad and Qureshi (2023).
Impulse responses to a negative shock are multiplied by minus one. The shaded areas
represent the 68% and 90% confidence bands.

The latter measure is the macroeconomic uncertainty measure of Jurado et al.

24The results hold for a different measure of oil price uncertainty calculated using a GARCH
model as in Elder and Serletis (2010).
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Figure C.2: Nonlinear impulse responses to a positive (blue line) and a negative (red
line) oil supply news shock estimated using a nonlinear Proxy-SVAR. The core six-variable
model is extended including the macroeconomic uncertainty indicator of Jurado et al.
(2015). Impulse responses to a negative shock are multiplied by minus one. The shaded
areas represent the 68% and 90% confidence bands.
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(2015). The result, reported in Figure C.2; is that the effects on macroeconomic
uncertainty are symmetric, suggesting that the second-round effects do not come

from macroeconomic uncertainty.
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