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ABSTRACT 

We propose a simple, simulation‑based framework for stochastic debt‑sustainability analysis. 
Estimating a parsimonious vector autoregression (frequentist and Bayesian) on quarterly French data 
(1990:Q1–2023:Q4) for the debt's key drivers, we generate predictive fan charts and probability 

statements for debt‑to‑GDP outcomes. Median VAR projections are close to a hypothetical 
deterministic baseline derived from the deterministic debt sustainability analysis framework. 
Assuming this illustrative central scenario, historical relationships estimated by our VAR models 
imply a corresponding confidence band around the debt trajectory. The BVAR yields slightly wider 
cones and lower tail probabilities than the frequentist VAR, with cone widths between those reported 
by the European Commission and the ECB. Our analysis, which does not reflect the most recent 
developments in public finance, suggests that an ambitious fiscal consolidation effort would be 
required to materially enhance the prospects of stabilizing the debt-to-GDP ratio over the medium 
term. 
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NON-TECHNICAL SUMMARY 

This paper develops a simple, transparent method to quantify the uncertainty around forecasts of 

public debt. Rather than producing a single “best‑guess” debt path, the approach generates a range 
of plausible futures and associates probabilities with different outcomes. This probabilistic view is 
intended to give policymakers and analysts a clearer sense of fiscal risk and the likelihood that 
particular policies will succeed in stabilizing public debt. Based on 2023 vintage data, this analysis 
does not reflect recent fiscal developments and is therefore not intended to inform the current public 
debate on public debt. Its purpose is to improve SDSA methodologies. 

Our approach models the joint behavior of the key drivers of the debt‑to‑GDP ratio — namely, the 

primary balance (revenues minus expenditures, excluding interest), nominal GDP growth, and short‑ 

and long‑term nominal interest rates — using a standard Vector Auto-Regression (VAR) estimated 
on quarterly French data from 1990 through 2023. We implement two variants of this model: a 
conventional (frequentist) specification and a Bayesian version that incorporates mild prior 
information. They are used to simulate a large number (10,000) of future paths for these drivers, 
drawing shocks that reflect their historical volatility and interdependence. Combining these simulated 

paths with the familiar debt accounting identity produces a “fan chart” for the debt‑to‑GDP ratio: a 
visual and quantitative representation of the range of outcomes and their probabilities. 

The median debt trajectories produced by both model variants closely track the deterministic baseline 
projection for 2024–2028, which follows the deterministic debt sustainability analysis framework of 
Bouabdallah et al. (2017). Crucially, that baseline lies comfortably within the middle of the distribution 
produced by our simulations, suggesting the baseline is a plausible central scenario given known 
historical dynamics. The Bayesian model yields slightly wider uncertainty bands than the frequentist 
model for the horizon we study; for example, the Bayesian 10–90 percent fan cone for 2028 is 
modestly larger than its frequentist counterpart. The two model variants also assign high probabilities 
that the 2028 debt ratio will remain above its 2023 level, although the Bayesian model produces a 
somewhat lower probability than the frequentist model. Overall, the magnitude of our uncertainty 
bands falls between the measures reported by the European Commission and the European Central 
Bank, lending further credibility to the quantitative scale of the results. 

Figure 1. Primary balance ratio fan charts and debt-stabilizing primary balance ratio (red 
line)
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The probabilistic framework makes it straightforward to ask policy‑relevant questions such as: what 
is the probability that a given fiscal path will stabilize debt within a target horizon? Applied to France 
(see Figure 1) our simulations indicate that an earlier and larger consolidation than in the baseline 
would meaningfully improve the odds of bringing debt dynamics onto a stable path.  

The proposed method deliberately favors parsimony and transparency over structural complexity: it 
quantifies risk conditional on historical relationships among the main drivers. An important extension 
is to embed the analysis within the European Union’s new fiscal framework (the Economic 
Governance Review adopted in February 2024), which will alter both baseline trajectories and the 
policy metrics used to judge sustainability.  

By converting deterministic projections into probabilistic assessments, the approach offers a 
practical, replicable complement to standard institutional debt projections and helps clarify the degree 
of policy effort needed to change the odds of stabilizing public debt. 

 

 

Quantifier l'incertitude sur la trajectoire de 
la dette française : une analyse VAR 

RÉSUMÉ 

Nous proposons un cadre simple, fondé sur la simulation, pour l’analyse stochastique de la 
soutenabilité de la dette. En estimant un VAR parcimonieux (fréquentiste et bayésien) sur des 
données françaises trimestrielles (1990:T1–2023:T4) pour les principaux déterminants de la dette, 

nous produisons des fan‑charts prédictifs et des mesures de probabilité pour les trajectoires du 
ratio dette/PIB. Les trajectoires médianes issues des VAR sont proches d’un scénario déterministe 
hypothétique, dérivé du cadre d’analyse déterministe de la soutenabilité de la dette. Le BVAR 
génère des cônes légèrement plus larges et des probabilités de dépasser la dernière valeur observée 
plus faibles que le VAR fréquentiste, les largeurs de cône se situant entre celles publiées par la 
Commission Européenne et la BCE. Notre analyse, qui ne prend pas en compte les 
développements budgétaires les plus récents, suggère qu’un effort ambitieux de consolidation 
budgétaire serait nécessaire pour améliorer de manière significative les perspectives de stabilisation 
du ratio dette/PIB à moyen terme. 

 

Mots-clés : soutenabilité de la dette, analyse stochastique, modèles VAR, prévisions bayesiennes, 
distribution des prévisions 
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1 Introduction

The trajectory of public debt is central to macroeconomic policy and political debate. In the

euro area—where debt-to-GDP ratios are tightly monitored and constrained—the sovereign-debt

crisis of the early 2010s underscored the consequences of adverse debt dynamics. More recently,

the COVID-19 pandemic and the war in Ukraine have pushed public indebtedness well above

historical norms (see Figure 1), renewing questions about how and when debt paths can be

realigned. In a September 12, 2024 address, the President of the European Central Bank urged

Figure 1: Public debt ratio to GDP in France and Euro Area from 1990 to 2023

national authorities to adopt prompt budgetary and fiscal measures, highlighting the practical

urgency of reliable debt forecasts and transparent measures of their uncertainty.

Forecasting future debt trajectories inevitably requires an assessment of uncertainty. As

Blanchard et al. [2021] note, “That debt forecasts and thus debt sustainability assessments

are made under substantial uncertainty is obvious.” (p.10 therein). This uncertainty reflects

both the future evolution of key drivers—interest rates, growth, and primary balances—and the

occurrence of shocks and policy responses that alter those drivers. Capturing this uncertainty

is essential for informed policy design and credible communication.

This paper addresses stochastic debt sustainability analysis (SDSA), distinguishing it from

the conventional deterministic debt sustainability analysis (DDSA) that produces a single base-

line path from fixed assumptions. SDSA complements DDSA by generating probabilistic pro-
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jections that reflect the joint uncertainty in macro-fiscal determinants. Building on recent

simulation-based work (e.g., Cuerpo and Ramos [2015]; Cherif and Hasanov [2018]; Benjamin Car-

ton and Fouejieu [2020]; Steel [2021]; Papaoikonomou [2025]), our contribution is twofold. First,

we survey existing SDSA approaches and clarify their relative strengths and limitations. Second,

we introduce a parsimonious, statistically disciplined procedure—implemented using both fre-

quentist and Bayesian VAR models—to quantify uncertainty around debt-to-GDP projections

and to compute policy-relevant probabilities, such as the likelihood that a given primary bal-

ance would stabilize the debt ratio. Note that, based on 2023-vintage data, this analysis does

not reflect recent fiscal developments and is therefore not intended to inform the current public

debate on public debt. Its purpose is to improve SDSA methodology.

The paper is organized as follows. Section 2 presents a compact accounting framework

for debt dynamics. Section 3 reviews the state of the art in SDSA. Section 4 describes our

empirical strategy and data. Sections 5 and 6 report results from the frequentist and Bayesian

VAR implementations, respectively. Section 7 compares our projections with those of major

European institutions and illustrates how the proposed approach can assess the probability of

attaining a primary balance consistent with debt stabilization. Section 8 concludes.

2 A simple accounting framework

Before turning to the existing and proposed approaches of Stochastic Debt Sustainability Anal-

ysis (SDSA), let us first introduce notation through a brief reminder of basic concepts of public

debt dynamics from a simple accounting framework. The typical debt accumulation equation,

expressed in nominal terms, is given by

Bt = (1 + it)Bt−1 − PBt +DDAt, (1)

where Bt denotes the amount of public debt at time t, it the “effective” or average nominal

interest rate charged on government debt, PBt is the primary balance including the charge of

interest and DDAt is the deficit-debt, or stock-flow adjustment which gathers all other factors

which affect the debt but are not included in the primary balance (e.g. acquisitions or sales

of financial assets, valuation effects, etc.). For simplicity sake, it is assumed that all the debt

is issued in domestic currency. When expressed in terms of nominal GDP percentage, Eq. (1)
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becomes:

Bt

Yt
= (1 + it)

Bt−1

Yt
− PBt

Yt
+

DDAt

Yt
,

with Yt the nominal GDP at time t. Substituting Yt by (1+gt)Yt−1 on the right-hand side, where

gt is the growth rate of the nominal GDP, and using lower cases to denote the variables expressed

as a percentage of GDP, the accumulation equation of the debt-to-GDP ratio is obtained as:

bt =
(1 + it)

(1 + gt)
bt−1 − pbt + ddat, (2)

which in turn can be rewritten as:

∆bt =
(it − gt)

(1 + gt)
bt−1 − pbt + ddat. (3)

As ddat basically stems from discretionary decisions or exogenous shocks, the change in the

debt-to-GDP ratio (∆bt) is mainly driven by changes in the primary balance and the interest

rate-growth differential. Assuming that ddat ≃ 0, it can be seen from Eq. (3) that the debt

can remain stable (i.e. ∆bt = 0) despite a primary fiscal deficit (pbt < 0), as long as gt is large

enough compared to it, so that the first term on the right-hand side of Eq. (3) compensates for

the second. In contrast, when it > gt, a primary fiscal surplus is required to achieve the stability

of the debt ratio.

Traditional assessments of public-debt sustainability have predominantly relied on determin-

istic projections of the debt–dynamics identity given by Eq. (3) over a finite horizon. Under

this approach, assumed paths for it, gt and pbt determine a unique forecast for the debt-to-GDP

ratio: the baseline projection. That baseline is constructed from what are judged to be “rea-

sonable” or “standard” assumptions about the right-hand-side variables; its credibility is then

evaluated by considering alternative assumptions, less optimistic forecasts, and plausible shock

scenarios.

This Deterministic Debt Sustainability Analysis (DDSA) thus produces a central debt tra-

jectory that serves as the reference case for policy discussion. Institutions typically augment

the simple accounting identity with institution-specific inputs — estimates of potential output,

country-specific interest-payment dynamics, and calibrated fiscal multipliers—to operational-

ize the baseline and its variants.1. The realism of the DDSA baseline is therefore tested ex

1The Banque de France’s DDSA model, based on Bouabdallah et al. [2017], implements the macro-accounting
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post through sensitivity analysis and scenario exercises rather than by an explicit probabilistic

assessment of future outcomes.

3 The SDSA

Stochastic debt-sustainability analysis (SDSA) was developed to quantify the uncertainty that

surrounds deterministic debt projections. In practice, SDSA proceeds by simulating a large

ensemble of future paths for the key drivers of debt dynamics, drawing shocks for those drivers

from distributions informed by their historical volatility, persistence, and cross-correlations. This

large set of simulated outcomes yields a full predictive distribution for the debt-to-GDP ratio

rather than a single-point trajectory. Two broad classes of approaches are common. The first

— which we label “model-free” — directly exploits the historical variance–covariance properties

of the drivers to generate shocks. The second employs explicit econometric models, typically

vector autoregressions, to capture the joint dynamics of the drivers and to recover the historical

innovations that drive simulation.

3.1 The model-free approach of SDSA

3.1.1 The European Commission

The approach of SDSA by the European Commission (EC hereafter) described in its 2022 Debt

Sustainability Monitor2 consists of simulating a large number (2,000) of annual nominal debt to

GDP trajectories based on Gaussian random draws of the drivers of the debt dynamic equation.

As the EC considers a set of 27 countries, some of them do not belong to the Euro Area. Hence,

for the latter, Equation (2) is augmented to account for the debt denominated in foreign currency

which involves the introduction of the nominal exchange rate, et, as follows:

bt = αn (1 + it)

(1 + gt)
bt−1 + αf (1 + it)

(1 + gt)

et
et−1

bt−1 − pbt + ddat, (4)

where αn and αf denote the share of total debt denominated in national and foreign currencies,

respectively.

To measure the uncertainty surrounding the future debt trajectory, the EC uses past quar-

identity described above using its own assumptions—an internal estimate of potential output, a France-specific
treatment of interest payments on public debt, interest-rate projections consistent with the ECB outlook, and cal-
ibrated fiscal multipliers. Starting from an unchanged macro-fiscal framework, the model produces a hypothetical
scenario that serves as the reference debt-to-GDP trajectory for subsequent sensitivity analysis.

2European Commission Institutional Paper 199, April 2023. See also Berti [2013].
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terly data of the primary balance (pbt), the nominal short- and long-term interest rates from

which the effective interest rate (it) is calculated, and the nominal GDP growth rate (gt).
3

Stochastic shocks are then defined as the first difference of these series. The covariance matrix

of these quarterly shocks, Σ, is then calculated using available observations and used to draw

2,000 random shocks from a multivariate normal distribution N (0, Σ). For each draw, the an-

nual shocks are then obtained by cumulating the four quarterly shocks of the same year. These

annual shocks are added to the baseline value of the corresponding variable, where the baseline

is determined from the standard deterministic projections, namely, the central scenario. The

empirical distribution of the future debt-to-GDP ratio path is finally obtained from these 2,000

simulated annual trajectories.4

Although this method has the advantage of not involving any other estimation process than

the empirical variance-covariance matrix of these series, it suffers from two important limitations.

The first is the assumption that the vector ∆Xt = (∆pbt, ∆iLTt , ∆iSTt , ∆gt)
′ has a Gaussian

distribution, which probably does not hold in general. This choice has two countervailing effects

on the distribution: first, assuming Gaussian shocks reduces the frequency of extreme draws;

second, it spreads the variance associated with large shocks across the entire distribution, thereby

diluting their impact. The second limit is the implicit assumption that these quarterly series

display no persistence, which again does not hold in general.5

3.1.2 The International Monetary Fund

The current approach of the IMF, as described in its 2022 Staff Guidance Note on the Sovereign

Risk and Debt Sustainability Framework for Market Access Countries, departs from the EC one

mainly in two ways. First, it relies completely on annual data, and second, bootstrap is used

instead of Gaussian simulations. Due to the large number of heterogeneous countries monitored

by the IMF, the debt dynamic equation considered is also given by Equation (4). It is then

3Data for the nominal exchange rate is also used for non-EA countries.
4In its 2023 Debt Sustainability Monitor — European Commission Institutional Paper 271, March 2024 —

the EC has introduced a few changes regarding the dataset. First, the period covered by the data sample was
harmonized across all Member States and now begins in 2000Q1. Second, the treatment of outliers has been
changed as follows: observations of a series outside its 5th and 95th percentile thresholds are considered outliers
and are replaced by the nearest percentile value. Finally, the number of replications for the simulations has been
increased to 10,000.

5In a forthcoming Discussion Paper, Bec et al. [2025] propose solutions to these two limitations of the EC
approach to the SDSA. First, to account for the persistence of shocks, they introduce a pre-filtering method
for the shocks so as to work with series of non-autocorrelated shocks. Second, the assumption of a Gaussian
distribution is abandoned and replaced by a bootstrap method.
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expressed in real terms, which gives, for ∆bt:

∆bt =
(rt − ρt)

(1 + ρt)
bt−1 +

ztα
f
t bt−1

(1 + ρt)(1 + πf
t )

+
(πd

t − πf
t )α

f
t bt−1

(1 + πf
t )ρt

− pbt + ddat, (5)

where rt is the real effective interest rate, ρt is the real GDP growth rate, zt is the real effective

exchange rate, πf
t and πd

t are the foreign and domestic inflation rates.6 The first term accounts

for the real growth-interest differential, the second for the real exchange rate, and the third for

the relative inflation component. The SDSA then consists of the block bootstrapping of all the

variables entering Equation (5), namely rt, ρt, pbt, zt, π
d
t , and πf

t , the latter being measured by

the US inflation rate. Let us denote by Xt the column vector that includes these six variables at

time t. The block bootstrap approach retained by the IMF consists, for one simulated path, in

randomly choosing three blocks of two consecutive observations of X, say (Xt−1,Xt), to build a

debt ratio trajectory of six years (the current year and the five subsequent years). This process

is repeated 10,000 times to obtain the empirical distribution of the future paths of the debt

ratio. The latter is presented as a so-called “historical fan chart”, which is used to evaluate

the realism of the baseline scenario. When there is no realism concern, which means that

the deterministically projected debt ratio lies between the 20th and the 80th percentiles of the

fan chart, the historical fan chart is used to construct a final baseline-centered fan chart: the

demeaned distribution of the historical fan chart is simply added to the baseline.7

The main advantage claimed by this approach compared to the one implemented by the EC,

is that it captures the persistence of the series on top of their cross-correlation. Nevertheless, in

our opinion, it also suffers from two limits. The first one is that for the bootstrap to provide a

good approximation of the empirical distribution, the object to bootstrap has to be i.i.d. and

stationary (see e.g. Bühlmann [1997] or Politis [2003]). However, these conditions are likely

violated for the Xt vector defined above. This issue is even more salient when using the block-

bootstrap approach. Note that with such short blocks of two years, the bootstrapped series

are likely to display jumps between the blocks and more generally nonlinearities which are not

present in the original series, hence resulting in less persistence than the observed one. The

second limit of the IMF approach is the small size of the sample used. Annual data from 2000 to

2022, i.e. twenty-three observations, leave only twenty-two overlapping blocks of two years for

6See details of the calculations in Box 3, page 30, of the SRDSF 2022 guidance note.
7If the baseline scenario is close to the top of the fan chart, hence revealing some pessimism, it has to be

justified by e.g. an expected loosening in future policies. If this pessimism cannot be justified, a correction of the
baseline is requested. Similarly, if the baseline scenario is close to the bottom of the fan chart, revealing optimism,
the baseline has to be revised.
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the random drawing. Without replacement, this gives 22×21×20 = 9240 different bootstrapped

trajectories. Consequently, some of the 10,000 bootstrapped Xt must be identical. Of course,

this small sample issue would be even more pronounced if a local block bootstrap method8 was

used: it would leave even less different bootstrapped trajectories to draw.

3.2 The VAR-based approach of SDSA

3.2.1 Gaussian approach

To our knowledge, the econometric, VAR-based approach of the SDSA dates back to Garcia and

Rigobon [2004] paper, focusing on the Brazilian case. Starting from the equation of accumulation

of debt to GDP, expressed in real terms:

bt = (1 + rt − ρt)bt−1 − pbt + εt,

where εt denotes debt shocks, defined as bt − (1 + rt − ρt)bt−1 − pbt, their goal is to project the

future paths of the drivers from the following VAR model:

Xt = c+B(L)Xt−1 + νt

Xt ≡ (rt, ρt, pbt, εt, zt,π
d
t )

′

νt ∼ N (0, Σ).

Even though they are not direct drivers of the debt, the real exchange rate and the domes-

tic inflation rate are added to the VAR model since they “could generate comovement in the

variables entering the debt accumulation equation” (Garcia and Rigobon [2004], p.9). Monthly

data from January 1994 to October 2003 were used to estimate the parameters of this VAR

model and the variance-covariance matrix of the shocks Σ. These estimates are then used to

generate 500 Monte Carlo replications of 120 months of the VAR residuals, which are in turn

used to generate 500 simulated paths of 120 future months of the elements of Xt. From the

debt-to-GDP accumulation equation, 500 simulated paths of bt are obtained. The latter are

used to compute the probabilities of reaching a debt larger than 66, 75, 85, 95 and 100 percent

of GDP in the following 10 years. Although this study does not show the standard indicators

retained in current SDSA, such as fan charts or the probability that the debt will be larger at

8As stressed in e.g. Paparoditis and Politis [2002], a local block-resampling procedure should be preferred if the
nonstationarity can be captured by a slowly changing stochastic structure. This local block bootstrap resamples
only blocks that are adjacent (or nearby) to one another, thereby avoiding large jumps between blocks.
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some point in the future than at the last observation, it has paved the way for the subsequent

papers on this topic.

The first paper promoting the use of fan charts in the VAR-based approach is the one

by Celasun et al. [2006].9 The approach retained by these authors departs slightly from the

previous one in that the VAR model only includes non-fiscal determinants of the public debt

dynamics, typically real interest rates, real GDP growth rate, and effective real exchange rate.

The latter is introduced because this study focuses on 34 emerging market economies. This

VAR model is estimated using quarterly data from 1990 until 2004. It is used to get an estimate

of the residuals variance-covariance matrix and to simulate 1,000 future paths of the variables

it contains. Following Garcia and Rigobon [2004], the shocks used to generate the simulated

paths are drawn from a Gaussian distribution with the same variance-covariance matrix as the

residuals. Celasun et al. [2006] introduce a second block in their analysis, namely a yearly fiscal

reaction function (FRF), to simulate future paths of the primary balance ratio. The FRF relates

the annualized primary balance ratio to the last observed debt to GDP ratio, the current output

gap, and other control variables. The simulated annual output gap is calculated from the growth

differential between the predicted GDP growth and the steady-state (annualized) growth rate

produced by the VAR. Finally, the simulated VAR paths are annualized and used together with

the simulated outcome of the FRF to obtain the future simulated path of the debt ratio, using an

accumulation equation similar to Equation (5) above. From a large number of simulated paths,

the empirical distribution of the debt ratio future path can be calculated and summarized using

fan charts.

3.2.2 Bootstrap approach

The same lines as above have been retained by Jooste et al. [2011] and Medeiros [2012], with

the main difference that a bootstrap approach of the VAR simulation was substituted for the

Gaussian approach described above. Jooste et al. [2011] analysis focuses on the South African

economy, and only three variables enter the VAR model, namely the real GDP, the real interest

rate, and the GDP deflator. This model is estimated from quarterly data from 1995Q1 to

2010Q1, and with two lags only. Then it is bootstrapped 1,000 times to capture the empirical

joint distribution of the future path of these three variables. The fiscal reaction function and the

debt accumulation equation are then used to obtain the empirical distribution of future debt-

9See also Celasun and Keim [2010].
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to-GDP ratio paths.10 As emphasized in Berti [2013], the issue with the estimation of the FRF

is that the primary balance depends, among other drivers, on the level of debt in the previous

year and therefore must be estimated using annual data. This poses a problem as a result of the

small sample size. Medeiros [2012] circumvents that issue by estimating the FRF from a panel

of 15 member states of the European Union11. Then, he used the longest quarterly data sample

available for each country to estimate a VAR model that included the real effective exchange

rate, the German GDP growth rate, and the real interest rate in addition to the three variables

retained by Jooste et al. [2011]. Finally, 2,000 bootstrapped drawings of the VAR residuals are

used to approach the empirical distribution of the debt ratio. A similar approach is employed,

for example, by Cuerpo and Ramos [2015] for Spanish data and by Cherif and Hasanov [2018]

for U.S. data; however, rather than supplementing the VAR with a fiscal reaction function, these

authors include the primary balance — or its components — directly in the estimated VAR.

More recently, Bouabdallah et al. [2017] described the methodological framework retained by

the European Central Bank for debt sustainability analysis, which includes both the determinis-

tic and stochastic blocks. Unfortunately, the stochastic part of the DSA is very briefly described

(see p.25-26 therein). It relies on a VAR that includes four drivers, namely the real short-term

and long-term interest rates, the real growth of the GDP, and the growth of the GDP deflator.

It is estimated using quarterly data from 2001q1 until 2015q4. The estimated residuals are then

bootstrapped 5,000 times to generate as many future paths of the drivers for the next five years

using the VAR estimates. These bootstrapped paths are annualized, and “future debt paths are

consequently calculated using the same debt aggregation model as in the deterministic bench-

mark scenario” (p.25). Hence, the ECB approach avoids the challenge of estimating a fiscal

reaction function. Instead, “the change in the cyclical developments implied by each simulated

GDP path influences the path of the structural balance according to the fiscal effort matrix

[...]” (p.25). Although the lag order retained for the estimated VAR is not mentioned, since

the estimation sample size is 60, this does not leave too many degrees of freedom. Moreover,

the serial correlation of residuals jeopardizes the validity of this bootstrap approach. Indeed,

as stressed earlier, the object to be bootstrapped has to be i.i.d. and stationary. Furthermore,

the validity of the stationarity condition can be questioned due to the presence of the two real

interest rates series.12

10More recently, Benjamin Carton and Fouejieu [2020] explore the Dutch SDSA using an identical VAR spec-
ification. However, the 5,000 bootstrapped shock series are simply added to the baseline forecasts of the VAR’s
three variables.

11BE, DK, DE, ES, FR, IT, NL, AT, PL,PT, SI, SK, FI, SE, and the UK.
12Since that publication, the European Central Bank has revised its procedure, replacing the frequentist VAR
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4 The proposed VAR-based framework

In what follows, we will delve into the VAR approach under both frequentist and Bayesian

perspectives. We begin by providing a general overview of our approach and dataset before

presenting detailed findings in the subsequent sections.

4.1 Departures from existing approaches

Our methodology differs from those previously described in at least three ways.

First, it relies fully on the VAR model estimates: i) no fiscal reaction function is used

ad hoc and ii) the simulated debt ratio trajectories are not filtered through the same debt

aggregation model as in the deterministic benchmark scenario. Indeed, the estimation of a fiscal

reaction function is delicate as one of the main explanatory variables is the lagged debt which

is measured at the annual frequency only. Moreover, it is most likely non-stationary. Another

important explanatory variable is the output gap, which can only be measured approximately as

it is not observable. Then, feeding the debt aggregation model of the deterministic benchmark

scenario with a large number of simulated debt drivers trajectories would significantly increase

the computational burden of the SDSA.

Second, the variables included in the VAR model are those involved in Eq. (3), namely the

nominal short- and long-term interest rates, the nominal GDP growth rate, and the nominal

primary balance expressed as a percentage of nominal GDP13. The use of nominal variables in

the VAR specification is motivated by considerations of data reliability and parsimony. Nominal

fiscal aggregates — such as the primary deficit or public debt — are directly observed and tend

to be more accurately measured than their real counterparts, which require the use of deflators

or price indices that are often subject to revision and may introduce additional measurement

error (Orphanides [2001], Croushore and Stark [2001]). Moreover, working in nominal terms

avoids adding a price deflator to the VAR, thereby preserving degrees of freedom and improving

estimation efficiency. Because the model uses nominal series, price dynamics are implicitly

accounted for and explicit deflation of each variable is unnecessary. This choice then allows us

to build the debt ratio trajectory very straightforwardly, using Eq. (2) and its last observed value

with a Bayesian VAR; however, the details of the new methodology have not yet been released, but are described
in Bouabdallah and Cozmanca [2025]’s forthcoming working paper.

13We have tested the inclusion of various additional exogenous variables in the VAR model, such as the price
of oil, the U.S. 3-month interest rate (to capture delayed effects of U.S. monetary policy on European rates), the
Banque de France’s energy price index and the real effective exchange rate. None of these variables significantly
improved the predictive performance of the VAR. Since the model uses nominal variables, inflation effects are
already embedded in the system’s dynamics.
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as the initial condition. As the primary balance is included in the VAR model, the corresponding

equation can be interpreted as a mild version of the fiscal reaction function: the primary balance

is indeed explained by its own past values, by the lagged nominal GDP growth rate and the

lagged interest rates.

Third, the use of data for a longer period of time allows us to include enough autoregressive

lags in the frequentist VAR to eliminate serial correlation of residuals, so that the bootstrap of

residuals is a suitable method.

4.2 The basic steps of our methodology

Regardless of whether a frequentist or Bayesian approach is adopted, simulated future paths of

the debt ratio are calculated as follows14:

1. First, the estimated VAR residuals are either bootstrapped or drawn from Bayesian sam-

pling say S times.

2. This allows us to calculate S simulated future paths of the VAR variables from T + 1 to

T +H, where T is the end date of the sample used for the estimation and H is the number

of quarters to forecast. These simulated paths are obtained using the VAR estimated

parameters, the last observations of the variables used for the estimation step, and the

simulated series of residuals.

3. The S simulated quarterly trajectories of the debt-ratio drivers are annualized and fed

into Eq. (2) to produce S annual trajectories of the debt ratio, from which the predictive

distribution of the future debt path is constructed.

4.3 The Data

The quarterly data used in the subsequent study cover the period 1990Q1-2023Q4. All data

used in this study — historical and forecast — are based on information available in spring 2024.

Regarding the short-term interest rate, the data correspond to the 3-month PIBOR until 1995

and to the 3-month Euribor after 1995. It is denoted tx 3m. The long term rate is the 10-year

French government bonds rate, and is denoted tx 10y. The nominal primary balance and GDP

series, expressed in billions of euros, come from the French national quarterly accounts released

by the INSEE (National Institute of Statistics and Economic Studies). The variable denoted

14All our exercises use Eviews as software.
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soldep p is the nominal primary balance to the nominal GDP ratio. The quarter-on-quarter

growth rate of the nominal GDP is denoted g v qoq. These series are plotted in Fig. 2.
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Figure 2: Data (1990Q1-2023Q4)

Although quarterly fiscal series can exhibit greater measurement noise and short-term revi-

sions than annual aggregates, using quarterly data increases the sample size and improves the

precision of VAR estimation while better capturing dynamic propagation and persistence. This

choice aligns with the fiscal series used by the ECB or European Commission. Moreover, re-

sults are ultimately presented at an annual frequency, which helps smooth potential short-term

volatility.

5 The frequentist VAR model

5.1 Estimation results

First, a VAR model including the 3-month and 10-year rates, soldep p and g v qoq is esti-

mated including a constant term. Four lags are necessary to remove any serial correlation up

to order 4. However, this VAR model turned out to be nonstationary with one cointegration

relation, according to Johansen’s trace test (Johansen [1991]). Henceforth, the VAR used for

the SDSA analysis includes the 3-month rate in first difference (dtx 3m) and the interest rate

spread (denoted spread) defined as the difference between the ten-year and the three-month

12
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Figure 3: Data (1990Q1-2023Q4)

rates, together with g v qoq and soldep p. Notice that this VAR representation is equivalent

to a VECM that would include both interest rates in first differences, the growth rate of nominal

GDP, the primary balance-to-GDP ratio, and the spread of interest rates as the cointegration

vector. It has the advantage of requiring fewer parameters to estimate, which is important

in our study.15 The series dtx 3m and spread are plotted in Fig. 3. The column vector

(dtx 3m,spread,g v qoq,soldep p)’ is found to be stationary at the 5%-level. This VAR es-

timation results are reported in Table A1, see the appendix. Table 1 reports the p-values of the

Granger causality tests. The corresponding LR statistics are distributed as χ2(4). Expectedly,

the three-month interest rate changes and the spread cause each other at the 1%-level. They

are also caused by the nominal GDP growth rate, at the 6%-level for dtx 3m and the 3%-level

for spread. The joint test that all lags of the primary balance ratio are zero in the spread

equation is strongly rejected, with a p-value less than 1%. Finally, the primary balance ratio

and the nominal GDP growth rate influence each other as soldep p Granger causes g v qoq

at the 2%-level while soldep p Granger causes g v qoq at the 3%-level.

Table 1: Granger causality tests

Dependent variable

DTX 3M SPREAD G V QOQ SOLDEP P

DTX 3M 0.00 0.00 0.43 0.49
SPREAD 0.00 0.00 0.25 0.16
G V QOQ 0.06 0.03 0.13 0.03
SOLDEP P 0.18 0.00 0.02 0.00

Note: p-values of the LR statistics of the test of the null that the
variables in line do not Granger cause the variables in column.

15As stressed in Campbell and Shiller [1987], p. 1066, a VAR model including the two interest rates in first
differences would also be stationary, but using these variables instead of one of the interest rate in first difference
together with the interest rate spread, one would lose information on the relative levels of the 3-month and 10-year
rates.
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5.2 Bootstrap results

If the VAR residuals were jointly Gaussian, one could construct fan charts by drawing shocks

from a multivariate normal distribution. However, the Jarque and Bera [1980] test reported in

Table A1 strongly rejects joint normality (p ≤ 0.0001). Accordingly, we rely on a nonparametric

residual bootstrap to simulate shocks — an approach that preserves the empirical distribution

of the residuals (including skewness, excess kurtosis, and cross-correlations) without imposing

Gaussianity.

Figure 4 shows for each year from 2024 until 2028 the fan chart obtained for 10,000 boot-

strapped trajectories generated from the VAR model described above, together with the baseline

(i.e. no policy change) scenario of the deterministic DSA (red line). The latter is a hypothetical

scenario computed according to the deterministic debt-sustainability framework of Bouabdallah

et al. [2017], using 2023-vintage data available in spring 2024. To avoid unrealistic trajectories,

the bootstrapped values of the interest rates have been restricted to be greater than -0.01 for

the 3-month rate and strictly positive for the 10-year rate16. The resulting fan chart is the VAR-

based analogue of the so-called historical fan chart presented by the IMF. It can be seen that

our deterministic baseline scenario lies between the 20th and the 80th percentiles of the 10,000

simulated debt ratio paths: the baseline seems slightly optimistic until 2026, but becomes very

close to the simulations’ median afterward. When looking at the fan charts of the debt drivers,

Fig. 5, it can be seen that the nominal GDP growth rate (top left panel), short- and long-term

interest rates (top right and bottom left panels) and the primary balance ratio (bottom right

panel) of the hypothetical scenario from DDSA all lie between the 20th and the 80th percentiles

for all forecasting horizons. Their DDSA paths are slightly lower than their respective boot-

strapped medians. Fig. A1 in the Appendix shows the implicit interest rate calculated from the

DDSA together with the bootstrapped distribution of its analogue, calculated as the weighted

average of the 3-month and 10-year rates. The weights used correspond to the historical aver-

age shares of short- and long-term debt emitted by the French government during the period

considered, namely 42% and 58%, respectively. The calculation of the implicit interest rate

being much more sophisticated in the DDSA, which involves more variables and parameters, no

wonder its path strays so far from the median of our simulations, particularly in the first two

years. Indeed, the first observation in 2023 illustrates the discrepancy between the two kinds

of measurement of the implicit interest rate. This might be the reason why the bootstrapped

median of the primary balance ratio is slightly above the DDSA trajectory, as its evaluation of

16These restrictions have also been imposed by the ECB.
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Figure 4: Historical fan chart of the debt ratio
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Figure 5: Historical fan chart of the drivers

the charge of interest is greater. All in all, the above-mentioned imperfections in the simulated

drivers trajectories balance each other out in the end, as the DDSA debt ratio never departs too

much from the bootstrapped median; see Fig. 4.

Finally, the baseline-centered fan chart can be calculated. To this end, the median corrected

15



distributions of the historical bootstrapped drivers are simply added to their DDSA baseline.

The resulting distributions are then used to calculate the 10,000 baseline-centered debt ratio

paths. The corresponding fan chart is presented in Figure 6. The uncertainty of the debt forecast
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Figure 6: Baseline-centered fan chart of the debt ratio

increases as the horizon lengthens, but not too much according to the size of the confidence

intervals in the fan chart depicted in Figure 6. To measure the uncertainty surrounding the

projected trajectory of the French public debt, it is possible to examine the width of the 10%-

90% cone, that is, the difference between the 90th and 10th percentiles of the debt ratio. In

2028, this cone width is equal to 25.2 percentage points of GDP.

6 A Bayesian VAR model

Although pioneered in the 1980s by the works of Doan et al. [1984] and Litterman [1986], the

use of Bayesian VAR models (BVAR hereafter) for macroeconomic forecasting has really taken

off in the past two decades17. In this framework, the VAR parameters are considered random

variables with respect to which the econometrician has priors. The Bayesian approach involves

estimating the posterior probability distribution of the model’s parameters based on a sample of

17See Carriero et al. [2009], Banbura et al. [2010], Karlsson [2013], Koop [2013], Giannone et al. [2014], Carriero
et al. [2015], Giannone et al. [2019], Del Negro et al. [2020], Lenza and Primiceri [2020], Crump et al. [2021] or
Cimadomo et al. [2022], among others.
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observations and the chosen priors. This approach has proven particularly fruitful for forecasting

from a VAR model, as the latter is very demanding in terms of the number of parameters to

estimate. In fact, if we denote n as the number of variables introduced into the model and p

as the number of autoregressive lags, the VAR implies the estimation of n× n× p parameters.

This so-called “curse of dimensionality” can cause a severe overfitting issue. In this case, while

the in-sample fit might be excellent — or even perfect — the out-of-sample forecasts will in

general be very poor. In the Bayesian approach, the information given by the prior beliefs on

the parameters might address this problem.

6.1 Definition of the priors

A very common prior retained in the BVAR literature applied to macroeconomics is the one

proposed by Kadiyala and Karlsson [1997] and Sims and Zha [1998], often referred to as the

normal-inverted Wishart (N-IW hereafter) prior. This is an extension of the Minnesota prior

promoted by Litterman [1986] in that it relaxes the assumption that the covariance matrix of the

VAR residuals is diagonal, fixed, and known. This assumption excludes any correlation among

the n residual series of the VAR model. Instead, Kadiyala and Karlsson [1997] and Sims and

Zha [1998] assume that this covariance matrix is distributed as an inverted Wishart.

To fix ideas, let us consider the following VAR model18:

xt = b0 + b1xt−1 + b2xt−2 + · · ·+ bpxt−p + νt (6)

where xt = (x1t x2t · · ·xnt)′ is a vector that includes the n variables at time t and νt ∼

i.i.d. N (0, Σ). To write Eq.(6) in a more compact form, we define X = [x1 x2 · · ·xT ]′, B =

[b0 b1 · · · bp], Z = [z1 z2 · · · zT ]′ with zt = (1 y′t−1 · · · y′t−p)
′, and finally V = [ν1 ν2 · · · νT ]′ to

obtain the following:

X = ZB + V (7)

The N-IW conjugate prior corresponds to:

B|Σ ∼ N (B0, Σ⊗ Ω0) and Σ ∼ IW (S0, v0) (8)

As the variables included in our VAR model are mean reverting, the prior for the expectation

18For more details about the setting of the priors, see Banbura et al. [2010] or Carriero et al. [2015] among
others.
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of the coefficient matrices is E[B
(ij)
k ] = 0, where B

(ij)
k is the element (i, j)th of matrix Bk,

k = 1, · · · , p. This amounts to the prior belief that all equations are centered around a white

noise. The prior for the standard deviation is:

SD[B
(ij)
k ] =


λ1λ2
k

σi
σj
, k = 1, · · · p

λ0σi, k = 0

(9)

The overall tightness of the prior is governed by λ1. This parameter is crucial because it

determines the informativeness of the prior. The closer it is to zero, the less the data will influence

the estimates. On the other hand, as its value goes to infinity, the estimation is not influenced by

the prior and the posterior expectations coincide with the frequentist OLS approach. λ2 is the

parameter that governs the shrinkage between variables, that is, the shrinkage of the parameters

of the lags of other variables but the ones of the dependent variable. Regarding λ0 and σi, the

scale parameter, they are commonly set respectively to one and to either the standard deviation

of the residuals from a univariate autoregression or the diagonal of the frequentist VAR residual

covariance. Finally, S0 and v0 are chosen so that the prior expectation of Σ corresponds to the

fixed residual covariance matrix of the Minnesota prior: E[Σ] = diag(σ2
1, · · · ,σ2

n).

6.2 Calibration of the hyperparameters and selection of the lag length

As shown in Carriero et al. [2015], the payoffs of optimizing the lag length are larger than those

of optimizing the shrinkage parameters. According to them, the reason why “is probably that

the tried-and-true values [of the shrinkage parameters] have been established largely on the basis

of forecasting performance”(p.58 therein). Consequently, the BVAR hyperparameters are first

set to their common values19: λ0 = 1, λ1 = 0.2 and λ2 = 1. Later in this work, the robustness

of the results to this choice of the overall tightness parameter — the most influential one — will

be checked.

In order to choose the lag length of the BVAR model, we focus on the pseudo-out-of-sample

forecasting performance, hence following Banbura et al. [2010] or Carriero et al. [2015]. Since

the main goal of this paper is to evaluate the uncertainty surrounding the future trajectory of

the debt ratio, both the point forecast and the density forecast are considered. To this end,

a recursive estimation window is used. The first sample stops in 2013Q4 while the last one

stops in 2023Q4. For each sample, we compute one (respectively four) quarter ahead forecasts,

19See for example Sims and Zha [1998].
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which results in a total of 40 one-step (resp. 36 four-step) ahead forecasts per variable. The

point forecast is calculated as the median of the distribution. More precisely, to evaluate the

performance of the point forecasts, we calculate the root mean squared forecast error (RMSFE)

over the 40 (or 36 for h = 4) forecasts for each variable, for BVARs with lag duration p = 1, · · · , 4,

and the average of the RMSFE obtained for the four variables.20 Regarding the evaluation of

the density forecast, we use the average score after Carriero et al. [2015]. To this end, the log

score in predicting variable i at horizon h is first calculated as follows:

st(x
i
t+h) = −0.5[ln(2π) + ln(V i

t+h|t) + (xit+h − x̄it+h|t)
2/V i

t+h|t],

with x̄it+h|t and V i
t+h|t respectively the posterior mean and variance of the simulated forecast

distribution for xit+h. Then, the average score is obtained by averaging the log scores over the

40 one-step ahead forecasts and 36 four-step ahead forecasts. The results obtained for h = 1 and

Table 2: RMSFE and score as a function of p (h = 1)

dtx 3m spread g v qoq soldep p average

RMFSE

VAR(4) 0.995 0.477 0.514 0.438 0.606
BVAR(1) 1.191 0.539 0.687 0.560 0.744
BVAR(2) 0.995 0.483 0.663 0.548 0.672
BVAR(3) 0.991 0.480 0.656 0.539 0.667
BVAR(4) 0.989 0.463 0.655 0.532 0.660

Score

VAR(4) 5.234 4.969 2.436 2.198 3.709
BVAR(1) 6.042 5.662 2.973 2.392 4.267
BVAR(2) 5.969 5.576 2.937 2.404 4.221
BVAR(3) 5.997 5.566 2.920 2.404 4.222
BVAR(4) 6.001 5.540 2.926 2.408 4.219

h = 4 are reported in tables 2 and 3. For comparison’s sake, the statistics obtained from the

frequentist VAR(4) are also presented. Interestingly, BVARs outperform frequentist VARs in

terms of density forecast performance. Indeed, unlike the BVARs, the standard VAR(4) might

suffer from the curse of dimensionality as in the first estimation sample, 1991Q1-2013Q4, only

20In order to prevent disproportionately greater emphasis on variables of larger magnitude, the RMSFE’s are
normalized by the variables standard deviations.
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91 observations are left for estimation. Then, from the top panel of Table 2, it can be seen

that the RMSFE criterion points to p = 4 as this lag length provides the smallest values. In

contrast, from the bottom panel of Table 2, it can be seen that the score results point to one

lag: this lag length maximizes the score obtained for all variables but the primary balance ratio

— whose score is not very sensitive to the lag length — and for the average of the four scores.

Because the analysis focuses on fan charts, we place greater weight on density forecasts than on

point forecasts when evaluating predictive performance. For the 4 steps ahead forecasts, Table

3, the BVAR with one lag minimizes all RMSFEs and maximizes all scores statistics. Hence, we

proceed with the study by setting p = 1.

Table 3: RMSFE and score as a function of p (h = 4)

dtx 3m spread g v qoq soldep p average

RMFSE

VAR(4) 3.201 2.585 2.040 3.699 2.881
BVAR(1) 1.365 1.420 1.078 1.256 1.280
BVAR(2) 1.413 1.494 1.080 1.298 1.321
BVAR(3) 1.432 1.537 1.081 1.309 1.340
BVAR(4) 1.445 1.540 1.080 1.311 1.344

Score

VAR(4) 4.358 3.939 1.219 0.491 2.502
BVAR(1) 6.162 5.169 3.220 1.939 4.123
BVAR(2) 5.937 4.865 3.149 1.853 3.951
BVAR(3) 5.854 4.814 3.116 1.822 3.902
BVAR(4) 5.819 4.883 3.147 1.830 3.920

6.3 Bayesian sampling forecasts

We present here the out-of-sample forecasting results from the BVAR(1) selected above. The

forecasts are obtained by Bayesian sampling using 10,000 draws, after excluding 10 percent burn-

in draws. Similarly to the frequentist VAR bootstrapped fan charts, we begin with the historical

fan chart of the debt to GDP ratio presented in Fig. 7. As can be seen, the median of the debt

ratio forecast slightly overestimates the baseline in 2024 and 2025, then becomes very close to the

baseline over the next two years — well in the 40-60% confidence interval — before it falls under

it in 2028. However, the forecast median still lies in the 20-80% confidence interval in 2028. All in
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Figure 7: Historical fan chart of the debt ratio (BVAR)

all, although slightly less precise than its frequentist analogue (Fig. 4), this debt ratio trajectory

is satisfying in that it never departs too much from the deterministic no-policy-change scenario.

The debt drivers historical fan charts are reported in Fig. A2, see Appendix. Overall, they look

rather similar to the ones obtained from the standard VAR bootstrap approach. Finally, the

baseline-centered debt ratio fan chart is plotted in Fig. 8. Here, the 10%-90% cone width is

equal to 28.5 p.p. of GDP in 2028, which is moderately larger than the 25.2 p.p. obtained from

the frequentist VAR. This result probably stems from the fact that with 131 observations in our

estimation sample, the standard VAR does not suffer from the overfitting problem. To check

the robustness of this finding, Table 4 reports the 10 and 90 percentiles, the corresponding cone

size, and the RMSFE between the deterministic baseline and the median forecast of BVAR (1)

for the five projection years for various values of the overall tightness parameter λ1. For this

exercise, Bayesian sampling is limited to 5000 draws, after excluding 10 percent burn-in draws.

Table 4: q90% − q10% cone size as a function of λ1

λ1 0.01 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1 5

q90% 138.7 137.9 137.4 137.4 137.9 138 139 139 139 139
q10% 109.2 109.6 109.6 109.5 109.5 109 109 109 109 109
q90% − q10% 29.5 28.3 27.8 27.9 28.4 29 30 30 30 30
RMSFE 0.025 0.017 0.011 0.012 0.013 0.015 0.015 0.016 0.015 0.016
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Figure 8: Baseline-centered fan chart of the debt ratio (BVAR)

As can be seen from this table, the cone size is not too much affected by the overall tightness:

It ranges from 27.8 p.p. (λ1 = 0.1) to 30 p.p. (λ1 ≥ 0.5). Similarly, except for the very

tight prior λ1 = 0.01, the RMSFE is between 0.11 (λ1 = 0.1) and 0.17 (λ1 = 0.05). In fact,

considering these two criteria, the λ1 values between 0.1 and 0.2 give comparable results. It is

worth mentioning that even for λ1 = 0.1, the value that minimizes both the cone width and the

RMSFE, the standard VAR approach cone width remains slightly smaller. Henceforth, it seems

that our estimation sample size does not prevent the latter from achieving good precision of the

estimated coefficients.

7 Comparison of results and debt stabilization condition

7.1 Comparison of results

In this section, we compare our results to those obtained by the European Commission and the

European Central Bank in terms of the width of the cone q90% − q10% and, when available, the

probability that the last projected year of the debt ratio is less than the last observed value.

We will focus on the last two publicly available 5-year ahead projections, namely years 2027

and 2028. For the European Commission, the corresponding figures can be found in the “Debt

Sustainability Monitor”, EC Institutional Paper 199, April 2023 and EC Institutional Paper
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271, March 2024. For the European Central Bank, they come from the ECB SDSA exercises.

As explained in Bouabdallah and Cozmanca [2025]’s paper, the ECB’s SDSA method now relies

on the estimation of a Bayesian vector autoregression (BVAR). In order to compare the results

obtained for the year 2027, we repeated the VAR(4) and BVAR(1) analysis restricting the

estimation sample to end in 2022Q4. These results are summarized in Table 5.

Table 5: Results comparison

ECa ECBb VAR(4) BVAR(1)

2028 cone width 19.5 37.8 25.2 28.5
prob. 81% na 88.6% 82.1%

2027 cone width 21.7 34 24.8 27.1
prob. 51% na 80.9% 74.4%

The q90% − q10% cone width is measured in percentage points of
GDP. ‘Prob.’ refers to the probability that the last projected year
debt ratio is greater than its last observed value. a : source EC
b : source ECB

As can be seen from this table, the cone widths obtained from our VAR(4) and BVAR(1)

approaches lie in between the values obtained by the EC and ECB respectively. Since the

EC approach does not rely on model estimation but solely on the calculation of the empirical

covariance of the first differences of the drivers, this may explain why the resulting cone widths

are the smallest ones in this table: unlike the other approaches, there is no uncertainty stemming

from modeling step. With the exception of the EC, all approaches exhibit a widening of the

cone between 2027 and 2028, thereby suggesting a heightened uncertainty about the future

path of the debt-to-GDP ratio. With respect to the EC, it is important to note that the data

processing methodology has evolved between these two projection exercises, which might explain

the slight decrease obtained between 2027 and 2028.21 When comparing our VAR and BVAR

approaches, relying exactly on the same data set, it is noteworthy that the cone width is slightly

smaller according to the VAR (25.2 pp versus 28.5 pp for the BVAR in 2028). This finding

is somewhat unexpected, but, as mentioned earlier, our sample size might be large enough for

the VAR to achieve good precision of the estimated coefficients. Another possible explanation

is that our sample contains essentially two outliers (2020Q2 and 2020Q3) among 131 quarterly

21Specifically, outliers, which were formerly discarded if they crossed a predetermined threshold, are now win-
sorized (they are capped at the 95th or 5th percentile, whichever they are closest to). Moreover, while the longest
available sample was used for each driver previously, the sample period is now shorter as it begins in 2000 for
all countries. Finally, the primary balance is now seasonally adjusted, which removes a significant part of the
volatility.
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observations. Consequently, when using the bootstrap method with replacement, the probability

of not drawing any of these outliers in a sequence of 20 quarters is high — 73.5% — whereas the

probability of drawing both is only 3.4%.22 In contrast, in the Bayesian approach, the volatility

induced by these outliers propagates throughout the entire distribution, thereby affecting the

Bayesian sampling.

If we now examine the evolution of the probability that the projected debt-to-GDP ratio in

five years will be higher than its initial value, we can observe that the results obtained from the

VAR(4) and BVAR(1) models, while increasing, do so to a much lesser extent than those of the

EC approach. In fact, both VAR (4) and BVAR (1) indicate an increase in the probability that

the debt ratio for the last projected year exceeds its last observed value of approximately 7.5%

between the two exercises. The sharp increase in the probability of higher debt levels around

2027–2028 is not driven by a structural change in policy expectations, but reflects the delayed

impact of increasing interest payments. As debt matures and is refinanced at higher rates, fiscal

pressure builds up, increasing the likelihood of unfavorable debt outcomes. In addition, the

economic consequences of recent shocks - such as the war in Ukraine - remain embedded in the

data and continue to affect fiscal dynamics. These factors, combined with the stochastic nature

of the model, contribute to wider uncertainty and a growing upper tail in the debt distribution

over the medium term. In the EC approach, an increase of 30% is found. Again, this might be

due to the change in their data-processing methodology.

It is important to emphasize that comparing our results with those of these two European

institutions has limitations. Indeed, in addition to the fact that these rely on different methodolo-

gies (model-free and VAR-based), the variables used in their SDSA approaches are not identical

(nominal for the EC versus real for the ECB) and do not cover the same period as our data. In

other words, the metrics used are different, which limits the relevance of these comparisons.

22The GDP growth rate series and the primary surplus to GDP ratio series were particularly affected by the
emergence of the COVID-19 crisis and the subsequent confinement period. For this reason, we also considered
introducing dummy variables for the second and third quarters of 2020. These dummies are highly significantly
different from zero in the equations for these two variables, leading to an increase in the cone width by 6 pp
and a decrease in the probability that the debt ratio in 2028 exceeds its 2023 level to 82%. The decision not to
include these dummies in our VAR model is based on two arguments. The first is that these shocks were indeed
observed and it seems important to account for them in evaluating future uncertainty. The second stems from
the surprising result of an increase in the cone width despite the removal of these outliers from the bootstrap
residuals, which could suggest that the loss of eight degrees of freedom due to added parameters to estimate might
affect the overfitting issue.
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7.2 Debt-stabilizing primary balance

As a by-product, the analytical framework developed in Sections 5 and 6 above allows us to

compute the probability of reaching the debt-stabilizing primary balance. This balance is defined

as the budget surplus or deficit that stabilizes the debt at its last observed level. Using the

benchmark deterministic projections calculated from the Debt Dynamic Sustainability Analysis

(DDSA) for the implicit interest rate, nominal GDP growth rate, and the debt ratio in Equation

(3), taken at the steady state, it follows that the debt-stabilizing primary balance ratio is given

by:

pbt =
(it − gt)

(1 + gt)
bt−1

The benchmark trajectory from the DDSA, as well as the debt-stabilizing level of the primary

balance ratio, are depicted in Figure 9 below. We observe that for the data set available in spring
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Figure 9: Baseline and debt-stabilizing primary balance ratios

2024, the primary deficit that would have stabilized the debt from one year to the next is smaller

than the projection made by the DDSA from 2024 on. Based on the probability distributions

of the primary balance obtained by simulation of VAR (4) and BVAR (1), we can calculate the

probability of reaching the necessary deficit to stabilize the debt. More precisely, we calculate

the percentage of the 10,000 simulated primary balance trajectories that lie on or above the

stabilizing level. These results are presented in Table 6. It can be seen that the percentage of
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Table 6: Probabilities to stabilize or decrease
the debt-ratio

2024 2025 2026 2027 2028

VAR(4) 5.23% 8.95% 8.94% 14.49% 18.43%

BVAR(1) 15.90% 22.21% 18.81% 22.44% 23.27%

These probabilities are calculated from 10,000 simulated primary bal-
ance trajectories.

simulated primary balance trajectories that lie on or above the stabilizing level is higher under

the Bayesian VAR than under the frequentist VAR, especially in the first four projection years.

For example, the probability of reaching the primary balance ratio that would have stabilized the

debt between 2023 and 2024 is just over 5% according to the VAR(4) and nearly 16% according

to the BVAR(1). To interpret this result, Figure 10 shows fan charts of the primary balance

generated from simulations of the frequentist VAR (left) and the BVAR (right). The red line

denotes the debt-stabilizing primary balance. Although the VAR’s cone is narrower than that

of the BVAR, the probability of achieving a debt-stabilizing primary balance is lower under the

VAR because the simulated distribution is asymmetric. As the figure illustrates, the 10th and

5th percentiles lie much farther below the median than the 90th and 95th percentiles lie above it.

In contrast, the BVAR fan chart is nearly symmetric by construction, which mechanically places

the red line closer to the median. However, the results of these two models tend to converge later
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Figure 10: Primary balance ratio fan charts and debt-stabilizing primary
balance ratio

in the period, where this probability is approximately 18.5% for the VAR(4) and 23.3% for the

BVAR(1) for the year 2028. In any case, these results from the stochastic analysis suggest that
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a more substantial adjustment effort would be necessary to increase the likelihood of stabilizing

the French public debt.

8 Concluding remarks

We propose a simple, transparent procedure to quantify uncertainty around projected debt-to-GDP

trajectories. The method builds on the estimation — either frequentist or Bayesian — of a parsi-

monious vector autoregression that includes the principal drivers of the debt ratio, estimated on

quarterly data from 1990:Q1 to 2023:Q4, and uses future trajectories simulation (10,000 draws)

to construct predictive fan charts.

Two empirical findings stand out. First, the median trajectories produced by both VAR

implementations closely match our deterministic baseline for 2024–2028; moreover, that baseline

lies inside the 20–80 percent predictive interval generated by our simulations. Second, the BVAR

yields a marginally wider 10–90 percent cone for the debt ratio in 2028 (28.5 percentage points)

than the frequentist VAR (25.2 percentage points), while assigning a slightly lower probability

that the 2028 debt ratio exceeds its 2023 level (82.1 percent versus 88.6 percent). The cone

widths we obtain are between those reported by the European Commission and the European

Central Bank, suggesting that our estimates are quantitatively plausible.

Future work will extend the framework to incorporate the European Union’s new fiscal

architecture — the Economic Governance Review adopted in February 2024 — which is likely

to affect both baseline projections and the metrics used to evaluate their uncertainty.

27



References

Banbura, M., D. Giannone, and L. Reichlin (2010). Large Bayesian vector auto regressions.

Journal of Applied Econometrics 25, 71–92.

Bec, F., F. Courtoy, P. Mohl, and F. Opitz (2025). The stochastic simulations of the commission’s

debt sustainability analysis: An improved approach. Economic papers, European Commission.

Forthcoming.

Benjamin Carton, B. and A. Fouejieu (2020). Assessing dutch fiscal and debt sustainability.

IMF Working Papers 2020/269, International Monetary Fund.

Berti, K. (2013). Stochastic public debt projections using the historical variance-covariance

matrix approach for eu countries. European Economy - Economic Papers 2008 - 2015 480,

Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.

Blanchard, O., A. Leandro, and J. Zettelmeyer (2021). Redesigning EU Fiscal Rules: From

Rules to Standards. Working Paper 21-1, Peterson Institute for International Economics.

Bouabdallah, O., C. Checherita-Westphal, F. Drudi, R. Setzer, R. De Stefani, T. Warmedinger,

and A. Westphal (2017). Debt sustainability analysis for euro area sovereigns: a methodolog-

ical framework. Occasional Paper Series 185, European Central Bank.

Bouabdallah, O. and B. Cozmanca (2025). Fiscal sustainability challenges: a stochastic approach

for the euro area sovereigns. Occasional paper series, European Central Bank. Forthcoming.
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Appendix
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Figure A1: Historical fan chart of the implicit interest rate
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Figure A2: Historical fan chart of the drivers (BVAR)
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Table A1: VAR estimation results (1991Q2 - 2023Q4)

DTX 3M SPREAD G V QOQ SOLDEP P

DTX 3M(-1) 0.402∗∗ 0.000 3.332 0.306
DTX 3M(-2) 0.508∗∗ −0.632∗∗ −1.274 −2.974+

DTX 3M(-3) −0.087 0.073 2.338 0.589
DTX 3M(-4) 0.031 −0.125 −0.112 0.074

SPREAD(-1) 0.485∗∗ 0.904∗∗ 3.351+ 1.046
SPREAD(-2) −0.042 −0.502∗ −4.103 −2.596
SPREAD(-3) −0.324 0.466∗ 3.899 3.064
SPREAD(-4) 0.011 −0.046 −2.388 −0.522

G V QOQ(-1) 0.005 0.010 0.231 0.180
G V QOQ(-2) 0.034∗ −0.040∗∗ −0.342+ −0.020
G V QOQ(-3) 0.010 −0.012 0.282 0.263∗

G V QOQ(-4) 0.007 −0.006 0.028 0.172+

SOLDEP P(-1) 0.001 −0.013 −0.692∗∗ 0.321+

SOLDEP P(-2) −0.039 0.068∗ 0.759∗ 0.644∗

SOLDEP P(-3) 0.023 −0.024 −0.453 −0.177
SOLDEP P(-4) 0.015 −0.035+ 0.270 0.017

C 0.001∗ 0.001∗ 0.003 −0.010∗∗

R-squared 0.389 0.837 0.188 0.751
Adj. R-squared 0.303 0.814 0.074 0.716
Sum sq. resids 0.000 0.000 0.028 0.015
S.E. equation 0.001 0.001 0.016 0.012
Log likelihood 714.121 705.824 368.090 407.185
Akaike AIC −10.643 −10.516 −5.360 −5.957
Schwarz BIC −10.270 −10.143 −4.987 −5.584
Jarque-Bera p-val. 0.000 0.463 0.000 0.107

Log likelihood 2361.711
Akaike AIC −35.018
Schwarz BIC −33.526
LM(1) (p-val.) 8.63 (0.93)
LM(4) (p-val.) 18.64 (0.29)
Jarque-Bera (p-val.) 5761.14 (0.00)
Number of coefficients 68

Note: Included observations: 131. Superscripts ∗∗, ∗ and + denote significance
at the 1%, 5% and 10% levels respectively. LM(k) is the LM test statistic of the
null hypothesis of no serial correlation at order k.

33


	DT_BdF_november2025.pdf
	Introduction
	A simple accounting framework
	The SDSA
	The model-free approach of SDSA
	The European Commission
	The International Monetary Fund

	The VAR-based approach of SDSA
	Gaussian approach
	Bootstrap approach


	The proposed VAR-based framework
	Departures from existing approaches
	The basic steps of our methodology
	The Data

	The frequentist VAR model
	Estimation results
	Bootstrap results

	A Bayesian VAR model
	Definition of the priors
	Calibration of the hyperparameters and selection of the lag length
	Bayesian sampling forecasts

	Comparison of results and debt stabilization condition
	Comparison of results
	Debt-stabilizing primary balance

	Concluding remarks


