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ABSTRACT 

This paper expands upon conventional shadow rate models, which typically concentrate on 
the term structure of nominal yields, by integrating real interest rates. Close to zero-lower 
bound periods, real rates inherit part of the non-linearity stemming from the constraints that 
apply to nominal rates. We introduce a specific macro-finance adaptation of our 
real/nominal shadow rate model and apply it to U.S. data spanning the last five decades. We 
exploit the model to calculate real and nominal term premiums and to examine how the 
dynamic responses of real and nominal rates to economic shocks are constrained during 
zero-lower bound periods.  

Keywords: Shadow Rate, Real and Nominal Risk Premiums, Yield Curve. 

JEL classification: E31, E43, E52, E58, G12 

1 Banque de France and University of York, adam.golinski@banque-france.fr. 
2 Banque de France, sophie.guilloux-nefussi@banque-france.fr. 
3 University of Lausanne, Faculty of Business and Economics (HEC Lausanne), jean-paul.renne@unil.ch. 
We are grateful to Christoph Grosse Steffen, Demetris Koursaros (discussant), Jean-Stéphane Mésonnier, Dora 
Xia (discussant) for useful comments and discussions. We also thank participants at the Banque de France 
seminar series, the 2025 annual conference of the Society for Financial Econometrics, the 2025 Financial 
Management and Accounting Research meeting, the annual conference of the International Association for 
Applied Econometrics (2025), the 2025 RCEA International Conference in Economics, Econometrics, and 
Finance. 

Working Papers reflect the opinions of the authors and do not necessarily express the views of the Banque de 
France. This document is available on publications.banque-france.fr/en 

mailto:adam.golinski@banque-france.fr
mailto:sophie.guilloux-nefussi@banque-france.fr
mailto:jean-paul.renne@unil.ch
https://www.banque-france.fr/en/publications-and-statistics/publications


 

 

Banque de France WP 1014   ii 

BDF-PUBLIC 

NON-TECHNICAL SUMMARY 

Since the late 2000s, after many central banks hit the lower bound on policy rates in the wake of the 
Global Financial Crisis, shadow-rate models of the yield curve—building on the original idea of Black 
(1995)—have gained prominence. These models address situations where policy rates cannot fall 
further, even though economic forces would push them lower. Although recent inflation has led to 
higher rates, the risk of returning to very low yields remains, especially given the long-term decline in 
the natural rate of interest driven by slower productivity growth, demographic changes, and rising 
inequality. This makes it essential to use yield curve models that account for lower-bound constraints. 

This paper extends the traditional shadow-rate framework, which typically focuses only on nominal 
yields, by incorporating real (inflation-adjusted) interest rates. Real rates are central to household and 
corporate decisions about saving, borrowing, and investment, and they play a key role in asset 
valuation. Modeling nominal and real yields jointly also makes it possible to study the dynamics of 
inflation compensation (the difference between the two), which reflects investors’ expectations of 
future inflation. We propose approximation techniques to price inflation-linked securities alongside 
nominal ones within a unified shadow-rate model. 

We apply this framework to U.S. data spanning the past fifty years, allowing us to examine how 
nominal and real term premiums evolve and how the dynamics of yields change when monetary 
policy is constrained by the zero lower bound (ZLB). A central insight is that the probability of being 
stuck at the ZLB is highly sensitive to the level of the equilibrium nominal short-term interest rate. 
When this equilibrium rate is relatively high—for example, 4 percent—the chance of hitting the lower 
bound is modest (around 5 percent). But when it falls to 2.5 percent, the probability roughly doubles 
to 10 percent (see the figure below). This finding underscores how a low natural rate environment 
amplifies the risk of ZLB episodes. 

Figure 1. Conditional probabilities of being in the lower-bound regime 

 
Note: This figure illustrates the influence of the natural rate of interest (r*) and of the 

inflation target (*) on the frequency of lower-bound regimes. Specifically, the blue 

curves show combinations of r* and * that yield a given conditional probability 

(labeled on each curve) of being in the lower-bound regime. 
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Overall, the paper demonstrates that extending shadow-rate models to include both nominal and real 
yields provides a richer understanding of bond market dynamics under policy constraints. It 
highlights how secular trends in the natural rate of interest make economies more exposed to the 
lower bound, and why tools that account for these risks are essential for policymakers and market 
participants alike. 

 

Le modèle « shadow rate » :  

Rendons le réel ! 

RÉSUMÉ 

Cet article élargit le cadre des modèles de taux d’intérêt implicite (dit « shadow rate ») 
conventionnels, qui se concentrent généralement sur la structure par terme des rendements 
nominaux, en y intégrant les taux d’intérêt réels. Lorsque les taux nominaux sont à 
proximité de leur borne inférieure (zéro), les taux réels héritent d’une partie de la non-
linéarité découlant des contraintes qui s’appliquent aux taux nominaux. Nous estimons 
une version macro-financière de notre modèle de shadow rate nominal/réel sur des 
données américaines couvrant les cinq dernières décennies. Nous exploitons ce modèle 
pour calculer les primes de terme réelles et nominales et pour analyser la manière dont les 
réactions dynamiques des taux réels et nominaux aux chocs économiques sont affectées 
lors des périodes de plancher zéro. 

Mots-clés :  modèle « shadow rate », primes de risque nominale et réelle, courbe de taux d’intérêt. 
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1. Introduction

Since the late 2000s, after many central banks hit the lower bound on policy rates in the

wake of the Global Financial Crisis, shadow-rate models of the yield curve—building on the

original idea of Black (1995)—have gained considerable prominence. Although recent infla-

tionary pressures have compelled central banks to gradually raise interest rates, the potential

for returning to extremely low yields in the future remains a plausible scenario, especially

in a context of declining natural rate of interest.1 As a result, it is important to have term

structure models that adequately accommodate and address the constraints posed by their

lower bounds.

This paper extends traditional shadow-rate models, which typically focus solely on nom-

inal yields, by incorporating real interest rates. Real interest rates, representing the inflation-

adjusted cost of borrowing or lending, are crucial for economic decisions and asset valua-

tions. The joint modeling of nominal and real yield curves allows, in particular, for an in-

vestigation into the dynamics of the break-even inflation rate (or inflation compensation),

defined as the difference between the two curves.

Any model of the term structure of nominal yields that features a nominal stochastic

discount factor and inflation—including the shadow rate models of Wu and Xia (2016) or

Wu and Zhang (2019)—also imply the term structure of real rates (see, e.g., Gürkaynak and

Wright, 2012). The latter are, however, not considered in the context of shadow rate models

because the computation of real rates then involves conditional expectations that are more

general than the ones needed to price nominal yields. Approximations to this type of con-

ditional expectations have been recently proposed in the credit-risk context by Pallara and

Renne (2024) and Renne and Pallara (2023), who extend the formulas originally proposed by

Wu and Xia (2016). In the present paper, we show how to adapt these approximations to

price inflation-linked bonds and thus to derive real yield curves.

We propose an application that exploits these formulae to build a macro-finance model

that captures the joint dynamics of macroeconomic variables, real and nominal yields. We

1Over the past decade, economists and policymakers have increasingly recognized a significant decline in
the average natural rate of interest. This decline is attributed to factors such as lower productivity growth,
demographic shifts, increased inequality, and heightened uncertainty, indicating that the downward trend in
the natural rate of interest is likely to persist(see, e.g., Rachel and Summers, 2019; Bielecki et al., 2023).
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bring this model to U.S. data covering the last fifty years. The model is exploited to compute

real and nominal term premiums, and to analyse how the dynamic reactions of real and

nominal rates to economic shocks are constrained during zero-lower bound (ZLB) periods.

The model incorporates the natural interest rate (r→
t
) and inflation target rate (π→

t
), enabling

analysis of how changes in the equilibrium nominal short-term interest rate (i→
t
= r

→
t
+ π→

t
)

affect yield dynamics and frequency of ZLB events. Our findings show a significant increase

in the probability of a ZLB regime as the equilibrium nominal rate falls; for example, the ZLB

probability increases from 5% at i
→
t
= 4% to 10% at i

→
t
= 2.5%.

The present article relates to the literature that develops and investigates ZLB-consistent

models. Four main approaches stand out: (i) quadratic term structure models, or QTSM

(QTSM hereinafter, e.g, Ahn et al., 2002; Andreasen and Meldrum, 2019; Leippold and Wu,

2002), (ii) models based on square-root processes (or CIR processes, e.g., Cox et al., 1985; Pear-

son and Sun, 1994; Dai and Singleton, 2000), (iii) models based on auto-regressive gamma

processes (ARG processes, e.g., Gouriéroux and Jasiak, 2006; Dai et al., 2010; Monfort et al.,

2017; Roussellet, 2023), and (iv) shadow-rate models. The first three types provide closed-

form bond pricing formulas and positive heteroskedastic yields. Nevertheless, explicitly in-

corporating macroeconomic variables into these models is challenging as strong constraints

apply to the factors’ dynamics for nominal rates to remain non-negative. For instance, in the

context of QTSM, the short-term nominal rate (it) is a quadratic function of xt, that follows a

Gaussian vector autoregressive model (VAR). Assume inflation (πt) is one of xt’s components

and consider a value of xt that is such that it is at the lower bound, i.e., i = 0. Everything else

equal, it is a quadratic function of πt around that point. As a result, for very low values of it,

both a unit increase or a unit decrease in πt, everything else equal, have approximately the

same positive impact on it in a QTSM model. With regard to CIR or ARG processes, limitations

arise from the fact that in these models factors are all non-negative and positively correlated

with each other. While these constraints are not necessarily a problem if the factors are la-
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tent, they become very strong and limiting if some of the factors are explicitly recognized as

macroeconomic factors—typically inflation.2,3

The shadow-rate model has been adopted by numerous studies (e.g., Ichiue and Ueno,

2007, 2013; Kim and Singleton, 2012; Krippner, 2013; Priebsch, 2013; Kim and Priebsch, 2013;

Lemke and Vladu, 2017; Bauer and Rudebusch, 2016; Christensen and Rudebusch, 2015, 2016;

Wu and Xia, 2016, 2020; Goliński and Spencer, 2024).4 In this framework, the short-term

interest rate is defined as the maximum of zero and of the so-called shadow rate. ZLB periods

occur when the shadow rate turns negative. The model can generate prolonged periods

of ZLB, contrary to quadratic and square-root approaches, that treat the lower bound as a

reflecting barrier. While this feature is also achieved by the auto-regressive gamma zero

process introduced by Monfort et al. (2017), a key advantage of the shadow-rate model—over

all other lower-bound-consistent models—is its flexibility regarding the correlation structure

of the pricing factors. This makes it particularly well-suited when one wants to combine the

dynamics of macro-economic factors with those of interest rates.

To our knowledge, two other papers tackle the pricing of both nominal and inflation-

linked bonds in the context of shadow-rate model, namely Imakubo and Nakajima (2015) and

Carriero et al. (2018). To obtain tractable pricing formulas, the authors of these two papers

proceed by positing both the nominal and the real stochastic discount factors, using standard

specifications for each of them. Since the ratio of the two SDFs is the gross growth rate of the

price index, doing so fully constrain the inflation dynamics, that then turn out to be highly

nonlinear in the pricing factors. This complicates the use of inflation and of inflation forecasts

when it comes to estimating these models—inflation is absent from the empirical analyses of

2Roussellet (2023) proposes a model that combines components of the ARG and QTSM frameworks that
kills the necessity to have positively correlated factors. The specifications however also imply constraints on
the relationships between nominal rates and macroeconomic factor. In particular, this framework also faces the
type of limitation mentioned above for the QTSM: periods of low it correspond to periods where a quadratic
function of the factors xt is close to its minimum (zero), which implies that, everything else equal, the derivative
of it to πt—or any other variable—is then zero.

3CIR and standard ARG models treat the ZLB as a reflecting barrier and, in these frameworks, the proba-
bility of having an unchanged short-term rate for two subsequent periods is zero. Monfort et al. (2017) extend
the standard ARG models to allow factors for stay at zero for stochastic periods of time. In this framework,
however, the factors are all non-negative and positively correlated with each other.

4When contrasting shadow-rate arbitrage-free Nelson-Siegel (AFNS) models with their standard Gaussian
counterparts using Japanese term structure data, Christensen and Rudebusch (2015) observe that shadow-rate
models offer better in-sample fits and can capture yield dynamics at the Zero Lower Bound (ZLB). Similar
evidence was found for U.S. yield data by Christensen and Rudebusch (2016).
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Imakubo and Nakajima (2015) and Carriero et al. (2018)—which limits the possibilities of

model validation and prevents from using inflation surveys at the estimation stage.5

Through our application, our study relates to the literature on the interactions between

the yield curve and macroeconomy. Seminal contribution in this respect include Ang and Pi-

azzesi (2003), Dewachter and Lyrio (2006), Hördahl et al. (2006), Diebold et al. (2006), Rude-

busch and Wu (2008), and Joslin et al. (2014). A strand of this literature focuses on the joint

modeling of nominal and real yield curves (Campbell and Viceira, 2001; Evans, 2003; Ang

et al., 2008; Christensen et al., 2010; Chernov and Mueller, 2012; Hördahl and Tristani, 2012;

Breach et al., 2020; Bletzinger et al., 2025). These papers are however not consistent with the

existence of a lower bound for nominal interest rates.

Our paper also touches upon the literature on the probability of reaching the zero lower

bound (ZLB) and its relation to equilibrium interest rates. Chung et al. (2012) find that pre-

Great Recession research underestimated the probability of reaching the ZLB because it failed

to account for parameter and latent variable uncertainty in the model. Sims and Wu (2020)

examine the increasing likelihood of the ZLB recurring, given the secular decline in the nat-

ural interest rate. Bianchi et al. (2021) demonstrate how deflationary bias emerges when the

probability of reaching the ZLB is non-zero. Fernández-Villaverde et al. (2023) find that the

probability of reaching the ZLB increases when the inflation target is low and wealth inequal-

ity is high. They find that lowering the inflation target make ZLB events more likely.

The remainder of the paper is structured as follows. Section 2 discusses the challenges

associated with pricing inflation-linked bonds in the context of shadow-rate models, along

with the introduction of approximate pricing formulas. Section 3 introduces a specific version

of a real/nominal shadow-rate model and estimates it using U.S. data. Section 5 concludes.

The Appendix contains technical results. Proofs are gathered in the Online Appendix.

2. The general nominal-real shadow rate model

This section present the specification of our nominal-real shadow rate model. The ingre-

dients are the following: the link between the short-term nominal rate it and the shadow rate

st (eq. 1), the link between the shadow rate and the state vector xt (eq. 2), the dynamics of xt

5The importance of using inflation surveys when estimating the joint dynamics of real and nominal term
premiums is illustrated, e.g., by Chernov and Mueller (2012) and Breach et al. (2020).
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(eq. 3), the specification of the stochastic discount factor (eqs. 4 and 5), and the link between

inflation and the state vector (eq. 10). While we consider standard specifications for each of

these ingredients, we highlight that they jointly imply that the prices of inflation-linked bond

take the form of conditional expectations that are more general than those associated with

nominal bonds, which has not been discussed and solved earlier in the literature. Let us be

more specific.

The short-term nominal risk-free rate is given by:6

it = max(i, st), (1)

where i is the effective lower bound and st is the shadow rate affine in the state vector xt:

st = δ0 + δ↑
1xt. (2)

The state vector follows a Gaussian VAR:

xt = µ + Φxt↓1 + Σεt, εt ↔ i.i.d.N (0, I), (3)

where 0 denotes a vector of zeros and I is a conformable identity matrix.

The nominal stochastic discount factor (SDF) is given by:

Mt,t+1 = exp
(
↓it + ε↑

tεt+1 ↓
1
2

ε↑
tεt

)
, (4)

where the vector of prices of risk, εt, is affine in xt:

εt = ε0 + Λ↑
1xt. (5)

Under eqs. (3) to (5), it is well-known that the risk-neutral dynamics of xt are given by (e.g.,

Ang and Piazzesi, 2003):

xt = µQ + ΦQ
xt↓1 + ΣεQ

t+1, εQ
t+1 ↔ NQ(0, I), (6)

6While the effective lower bound i is generally considered to be zero in the US, the European Central Bank
(ECB) has ventured into negative territory with its deposit facility rate, effectively pulling short-term interest
rates into negative territory as well. This implies that i has at times been negative in the Euro Area. The ECB
deposit facility rate reached a low of ↓0.5% in September 2019 and remained there for several years. Wu and Xia
(2020) introduce a model incorporating an ELB that is stochastic, and recognized as such by market participants.
The model is estimated on eurozone data, and their results suggest that the ELB process explains a modest share
of the observed term premium (see their Figure 10).
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with

µQ = µ + Σε0, ΦQ = Φ + ΣΛ↑
1. (7)

Further, the prices of nominal bonds are given by:

Bt,h = EQ
t
[exp(↓it ↓ · · ·↓ it+h↓1)]

= EQ
t
[exp(↓max(i, st)↓ · · ·↓ max(i, st+h↓1))] . (8)

Because the short-term nominal rate it is not affine in xt, the standard machinery of affine

term structure model cannot be used to compute the previous conditional expectations. Sev-

eral approaches have then been proposed to approximate for the latter conditional expecta-

tion (e.g., Krippner, 2012; Priebsch, 2013; Wu and Xia, 2016). The present study utilizes the

approach developed by Wu and Xia (2016), but extends it to accommodate the pricing of

inflation-linked bonds, which requires a different form of conditional expectation than that

used for nominal bonds in eq. (8), as demonstrated in what follows.

To price real (or inflation-linked bonds), we need to consider the real SDF. The latter relates

to the nominal SDF through:7

Mr

t,t+1 = Mt,t+1 exp(πt+1), (9)

where πt is the continuously-compounded inflation rate between dates t ↓ 1 and t. It is usual

to consider an inflation rate that is affine in the state vector xt:

πt = ε0 + ϱ↑
1xt. (10)

Eq. (9) shows that the nominal SDF, the real SDF, and the dynamics of inflation cannot be

chosen independently. In the present case, the real SDF is determined once (i) the nominal

SDF is as in eq. (4) and (ii) inflation is as in eq. (10).

7Indeed, consider an asset whose real payoff on date t + 1 is pt+1. Its nominal payoff will then be
pt+1 exp(πt+1) on date t + 1. That implies that its date-t price has to be Et[Mt,t+1 exp(πt+1)pt+1] and, in turn,
that the real SDF is Mt,t+1 exp(πt+1). See also Campbell et al. (1997), Chapter 11.
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According to eq. (9), the prices of real, or inflation-linked, bonds are given by:8

B
r

t,h = EQ
t
[exp(↓it ↓ · · ·↓ it+h↓1 + πt+1 + . . . πt+h)]

= EQ
t
[exp(↓max(i, st)↓ · · ·↓ max(i, st+h↓1) + πt+1 + . . . πt+h)] . (11)

This conditional expectation is not of the standard (shadow-rate) type, since its combines,

in the exponential, terms of the form max(i, δ0 + δ↑
1xt+k) and others that are simply affine

in xt, namely ε0 + ϱ↑
1xt+k. The standard formula provided by Priebsch (2013) and Wu and

Xia (2016) do not allow to compute these conditional expectations. (They accommodate only

terms involving the max operator, not max/affine combinations.) An approximation formula

that extends that of Wu and Xia (2016) is, however, proposed by Pallara and Renne (2024) and

Renne and Pallara (2023) in the context of credit-risk modelling; this approximation formula

is presented in Lemma 1 (see Appendix A). This formula allows to approximate the condi-

tional expectations appearing in eq. (11) with the closed-form expression:9

B
r

t,h ↗ exp(↓F0,1,t ↓ F1,2,t ↓ · · ·↓ Fh↓1,h,t),

8Inflation-linked bonds typically include a deflation option: while the principal is indexed to the price index,
in the event of deflation (a decrease in the price index) between issuance and maturity, investors are guaranteed
to receive at least the original par value at maturity. This offers protection against deflation, ensuring that the
principal is not lost even if prices fall (e.g., Grishchenko et al., 2016). Such an embedded option is not considered
in equation (11). As demonstrated by Christensen et al. (2016), the value of this deflation option is generally low
and thus has a negligible impact on bond prices, particularly for older bonds that have accumulated positive
inflation since issuance and for which the option is effectively out-of-the-money. However, the effect is less
negligible for “young” bonds during periods of high deflation risk, such as the Great Financial Crisis. To account
for this, along with other potential crisis effects, we increase the measurement errors on real yields during the
GFC and COVID-19 crisis periods (see Section 4.2).

9As mentioned in the introduction, two papers (Imakubo and Nakajima, 2015, and Carriero et al.,
2018) circumvent this computational issue by positing that the real SDF is of the form: Mr

t,t+1 =

exp
(
↓rt + εr

t

↑εt+1 ↓ εr

t

↑εr

t /2
)

. In that case, they obtain that the prices of real bonds are exponential affine
in xt, using the standard GTSM formulas. However, since their nominal SDF is given in eq. (4), they have no
choice in the inflation process, which, given eqs. (4) and (9), and the previous expression for the real SDF, is
(implicitly) equal to:

πt+1 = log(Mr

t,t+1/Mt,t+1) = it ↓ εt
↑εt+1 +

1
2

εt
↑εt ↓ rt + εr

t

↑εt+1 ↓
1
2

εr

t

↑εr

t .

Inflation is then non-linear in xt, notably because it involves the max operator through it. It also comprises
quadratic terms in xt (through εt

↑εt and εr

t

↑εr

t ).
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with

Fn↓1,n,t = i + ϱng

(
an + b

↑
nxt ↓ i

ϱn

)

︸ ︷︷ ︸
nominal forward rate

↓ (ċn + c
↑
nxt)︸ ︷︷ ︸

inflation discount

+ΦN
(

ān + b
↑
nxt ↓ i

ϱn

)
b
↑ΦnΣΣ↑Φ↑

ncn

︸ ︷︷ ︸
interest rate - inflation interaction

, (12)

where ϱn, an, ān, bn, ċn, cn, and Φn, are obtained by using simple recursive formulas (see

Appendix A), and where g(x) = xΦN (x) + φN (x), where ΦN and φN are the c.d.f. and

p.d.f. of a standard normal variable, respectively.

The nominal forward rate—the first component in eq. (12)—is the same as in the shadow

rate model of Wu and Xia (2016). The inflation discount term in eq. (12) represents expected

inflation along with convexity adjustments. The final term accounts for convexity adjust-

ments related to the interplay between future interest rates and inflation.

3. A macro-finance framework

While eq. (3) that determines the law of motion of the state vector xt is general, this section

proposes a more specific dynamics for xt in the present section. At the core of the model are

three standard macroeconomic equations: the Phillips curve connects inflation to the output

gap; the Investment-Savings (IS) curve depicts the relationships between short-term real rates

and the output gap; the Taylor rule dictates the central bank’s response function.

3.1. Macro dynamics

We assume that log GDP (yt) is made of two components, namely the potential GDP (y→
t
)

and the output gap (zt). Denoting the log growth rate of potential GDP by gt (i.e, gt = ∆y
→
t
),

we obtain the following expression for the log GDP growth rate:

∆yt = gt + zt ↓ zt↓1. (13)

Following Wu and Zhang (2019), we assume that the short-term shadow rate follows a

generalized Taylor rule (see, e.g., Orphanides, 2007):

st = (1 ↓ ρi)st↓1 + ρi[r
→
t + π→

t + απ(πt ↓ π→
t ) + αzzt] + ϱiεi,t, (14)
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with εi,t ↔ i.i.d.N (0, 1), and where π̄t, π→
t

and r
→
t

are, respectively, the persistent component

of inflation (excluding volatile shocks), the inflation target, and the natural rate of interest.

Wu and Zhang (2019) show that using the shadow rate instead of the effective short-term rate

in the context of small-scale macroeconomic models constitutes a tractable way to capture

the effects of non-conventional monetary policy that are implemented during ZLB spells.

To this end, Wu and Zhang (2019) propose to combine the previous Taylor rule with an IS

curve featuring the shadow rate, whose objective is to summarize the effect of unconventional

monetary policy on the economy. Specifically, our IS curve reads:

zt = ρzzt↓1 ↓ α(st↓1 ↓ E(πt|It↓1)↓ r
→
t↓1) + ϱzεz,t, (15)

where εz,t ↔ i.i.d.N (0, 1).

As in Laubach and Williams (2003) and Holston et al. (2017), we tie the natural rate of

interest to the potential growth rate:

r
→
t = θgt + κt, (16)

where θ corresponds to the risk aversion parameter and κt corresponds to the pure preference

for present in the context of a Ramsey rule. The latter component is assumed to be time-

varying and follows:

κt = µκ + ρκκt↓1 + ϱκεκ,t. (17)

The inflation target and potential growth rates follow autoregressive processes:

π→
t = (1 ↓ ρ→)µ→ + ρ→π→

t↓1 + ϱ→ε→t , (18)

gt = (1 ↓ ρg)µg + ρggt↓1 + ϱgεg,t, (19)

with ε→
t
, εg,t ↔ i.i.d.N (0, 1).

Inflation πt has two components. The first component, π̄t, is a persistent factor, whose dy-

namics take the form of a Phillips curve, with a long-term value that depends on the inflation

target π→
t
. The second component, ut, is more volatile and captures short-living deviations

from the persistent trend; we assume that it follows a moving average process (with a small

10



order p):

πt = π̄t + ut, (20)

π̄t = (1 ↓ ρ̄)π→
t + ρ̄π̄t↓1 + βzt↓1 + ϱπεπ,t, (21)

ut = a0εu,t + a1εu,t↓1 + · · ·+ apεu,t↓p, (22)

with επ,t, εu,t ↔ i.i.d.N (0, 1).

3.2. Prices of risk and stochastic discount factor

We introduce an additional state variable, denoted by wt, which aims to capture the fluc-

tuations in prices of risk. We adopt the following parsimonious formulation for the vector of

prices of risk (eq. 5):

εt = ε0 + ε1,wwt, (23)

where ε0 and ε1,w are vectors of dimensions nε ↘ 1, where nε is the dimension of the vector

of shocks affecting the economy: εt = [εi,t, εg,t, εz,t, ε→
t
, επ,t, εu,t, εw,t, εκ,t]↑. Although wt is the

sole driver of the price of risk, it can be correlated with other variables. Indeed, its dynamics

are expressed as follows:

wt = (1 ↓ ρw)µw + ρwwt↓1 + ϱwεw,t + ϱw,zεz,t + ϱw,πεπ,t + ϱw,gεg,t, (24)

where εw ↔ i.i.d.N (0, 1). Notice that while the shock εw,t is specific to wt, this variable is also

impacted by εz,t, επ,t, and εg,t.

4. Empirical implementation

4.1. Data

The model can be cast into a state-space form whose transition equations correspond to

the Gaussian VAR followed by the state vector xt (i.e., eq 3), and whose measurement equa-

tions involve macroeconomic variables, nominal and real yields, as well as survey-based fore-

casts. Since interest rates are nonlinear functions of xt, some measurement equations are not

affine. Accordingly, we employ the Extended Kalman Filter (EKF) to estimate the model.10

10Most studies choose the EKF to estimate shadow-rate models. Christensen and Rudebusch (2015) compare
the extended Kalman filter with the unscented Kalman filter using Japanese yield data and found minimal
differences; they favor the EKF due to its lower computational intensity.
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The measurement equations and the data they involve are as follows:

• Macroeconomic variables (4 variables): Inflation (eq. 20) is the monthly log growth

rate of the price index (CPIAUCSL series in the FRED database). Real activity (eq. 13)

is measured by the monthly GDP growth index constructed by Brave et al. (2019). The

output gap (eq. 15) is calculated as the relative deviation between quarterly GDP and an

estimate of the potential GDP (series GDPC1 and GDPPOT in FRED). Furthermore, we

use the measure of perceived inflation target (PTR) used in the FRB/US model (Brayton

et al., 2014) to anchor our π→
t

estimate (eq. 18).11 The output gap and PTR are available

on a quarterly basis; we convert them into monthly time series, filling missing values

with the last available observation.

• Nominal and real yields (11 variables): The financial block consists of nominal yields

with maturities of 3 months, 1, 2, 3, 5, 7, and 10 years, and of real yields based on TIPS,

with maturities of 2, 5, 7, and 10 years. Except for the 3-month nominal yield (series

DTB3 in FRED), nominal yields are taken from the updated Gürkaynak et al. (2007)

database. Real yields come from the updated Gürkaynak et al. (2010) database. Given

the relatively recent introduction of TIPS, we supplement our dataset with backcasted

10-year real rates from Groen and Middeldorp (2013), who estimate these rates by re-

gressing TIPS yields on an extensive array of over 100 macroeconomic and financial

variables, employing partial least squares to guide the variable selection process.12

• Survey-based forecasts (6 variables): Among the observed variables we also incor-

porate survey-based forecasts. This approach, popularized by Kim and Wright (2005)

and Kim and Orphanides (2012), aims at capturing better the typically high persistence

in the estimation of term structure models (e.g., Jardet et al., 2013; Bauer et al., 2012).

We consider 1-year-ahead and 10-years-ahead survey-based forecasts of average infla-

tion and the average short-term interest rate. These surveys are taken from the quar-

terly Survey of Professional Forecasters of the Federal Reserve Bank of Philadelphia.

11This variable has been used in various academic research, including Bauer and Rudebusch (2020)
and Shapiro and Wilson (2022). It is available at https://www.federalreserve.gov/econres/
us-models-package.htm.

12The estimates of Groen and Middeldorp (2013) are available here.
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To place greater emphasis on the long-run surveys during estimation, and considering

their slow-moving nature, we convert them into monthly time series, filling missing

values with the last available observation.

4.2. Parameters identification and estimation strategy

We estimate the model by maximizing the likelihood function using the extended Kalman

filter. Macroeconomic variables, bond yields, and survey-based forecasts are assumed to be

observed with measurement errors. Specifically, the measurement equations of the state-

space model take the following form:




Macrot

Yieldst

Surveyst




=





aM + BMxt

Q(xt)

S(xt)




+





εM,t

εY,t

εS,t




, (25)

where εM,t, εY,t, and εS,t are independent Gaussian measurement errors, and where functions

Q and S are nonlinear functions of xt. Although these functions are non-linear, they admit

analytic derivatives, which facilitates their use in the EKF (see Appendix A for the bond

pricing equations, and III for the forecast equations).

We impose a number of constraints on the parameter space to facilitate the estimation and

to achieve a satisfying relative fit of the different variables. These constraints are detailed in

Appendix B.

4.3. Estimation results

Table 1 presents the model parameterization. To facilitate interpretation, some param-

eters have been annualized (when applicable, we show the annualization multiplier). The

standard errors, displayed in smaller font, are calculated from the inverse of the (numerical)

covariance matrix of parameter estimates based on the gradient of the likelihood function of

the estimated parameters, excluding the calibrated parameters and those that converged to

the boundaries during estimation.13

Figure 1 illustrates the model fit of macroeconomic variables. Additional figures, gath-

ered in Supplement V, show the fit of nominal and real interest rates, and of survey-based

13These boundaries, and other parameter constraints, are detailed in Appendix B.
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Table 1: Model parameterization. To facilitate interpretation, some parameters have been annu-
alized (when applicable, we show the annualization multiplier). The standard errors, displayed
in smaller font, are calculated from the inverse of the (numerical) covariance matrix of parameter
estimates based on the gradient of the likelihood function. Calibrated parameters and those that
converged to the boundaries during estimation have been excluded from the calculation of standard
errors. We refer to Appendix B for details regarding constraints imposed on the parameter space.

Parameter Estimate (S.E.) Multiplier Parameter Estimate (S.E.) Multiplier
Estimated model parameters:

ρi 0.0105
0.0010

↘1 ρg 0.7901
0.1058

↘1

ϱg 0.6088
0.0318

↘1200 α 74.6946
22.1453

↘100

ρz 0.9464
0.0223

↘1 ϱz 0.4193
0.0086

↘100

ρ→ 0.9950
0.0000

↘1 ϱ→ 0.0370
0.0011

↘1200

µκ 0.0000
0.0000

↘1200 ρκ 0.9950
0.0000

↘1

ρ̄ ↓0.3898
0.3447

↘1 β 0.0939
0.0223

↘12

ϱπ 0.0109
0.0301

↘1200 au,1 0.0025
0.0001

↘1

au,2 0.0008
0.0001

↘1 ρw 0.9286
0.0231

↘1

ϱw,g 0.0933
0.0255

↘1 ϱw,z 0.0000
0.0977

↘1

ϱw,π 0.0033
0.1051

↘1

Calibrated model parameters:
απ 1.5000 ↘1 αz 0.5000 ↘12
ϱi 0.4176 ↘1200 µg 2.6532 ↘1200
µ→ 4.0259 ↘1200 ϱκ 0.1961 ↘1200
θ 1.0000 ↘1 i 0.0000 ↘1

µw 0.0000 ↘1200 ϱw 0.2975 ↘1
Measurement errors:

ϱo 0.5000
0.0000

↘100 ϱn 0.3229
0.0059

↘1200

ϱr 0.2429
0.0167

↘1200 ϱr,liq 0.9419
0.0946

↘1200

ϱs 0.2400
0.0000

↘1200 ϱptr = 5 ↘ ϱs

ϱgdp = ϱo/100 ϱin f = ϱo/100
ϱy = ϱs ϱ3tb = ϱs/4

Price of risk parameters:
λ0,εi

0.0775
0.2319

λw,εi
0.1536
0.0958

λ0,εg
0.2128
0.1084

λw,εg
0.2273
0.8148

λ0,εz
↓1.0851

3.7203
λw,εz

↓0.1914
0.9255

λ0,ε→ 0.1924
1.2060

λw,ε→ 0.5179
0.3697

λ0,επ 2.0448
63.8248

λw,επ 0.5400
7.5356
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forecasts. These figures overall suggest that the model is flexible enough to capture satisfac-

torily the dynamics of all considered variables. Table 2 reports annualized root mean-square

error (RMSE) for nominal and real yields, and for surveys. The average RMSE for nominal

yields amounts to 26 basis points, which is reasonable for a macro-based model that does not

include yield factors (such as principal components of yield). The fit of real yields is slightly

better in normal (i.e., higher liquidity) times, amounting to 23 basis points on average across

maturities, but the fit deteriorates substantially during periods of low liquidity to 77 basis

points.14 The RMSEs for inflation and interest rate surveys are about 28 and 15 basis points,

respectively. Again, given that the model does not include any yield-based factors, this fit

can be considered relatively good and in line with other studies.

Table 2: Root mean-square fitting errors. This table shows root mean-square errors
for annualized nominal and real yields, and for surveys. RMSEs are expressed in
basis points.

Maturities 3m 1y 2y 3y 5y 7y 10y Average
Yields:
Nominal yields 55 33 20 16 13 13 29 26
Real yields - high liq. 39 16 13 23 23
Real yields - low liq. 118 97 87 136 110
Surveys:
Inflation rate 31 26 28
3m T-bill rate 17 13 15

A byproduct of the estimation is the natural rate of interest (hence NRI), which we plot

in Figure 2, together with the estimates from Laubach and Williams (2003) and Holston et al.

(2017). While our NRI exhibits broad fluctuations consistent with the estimates in Laubach

and Williams and Holston et al., it is more volatile. In particular, it exhibits negative val-

ues over a substantial part of the last two decades. The second plot of Figure 2 shows the

inflation target, which declines steadily from the early 1980s until the end of the 1990s and

has been fluctuating around 2% since then. The third plot shows the risk premium variable

wt (eqs. 4 and 23). This variable is identified up to its sign, so that changing the signs of all

14While we assume a uniform measurement error standard deviation across maturities and time for nominal
yields (ϱr), we allow two values for real real: ϱr outside low-liquidity periods, and ϱr + ϱr,liq during 2008-2009
and before 2004, when TIPS were less liquid or unavailable, and during the COVID period, from March 2020 to
February 2021. This flexibility allows the model to account for the illiquidity premium of up to 100 basis points
during the great financial crisis and before 2004 as reported in D’Amico et al. (2018).
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the components of ε1,w and the signs of correlations of εw,t with other shocks (i.e., ϱw,g, ϱw,z

and ϱw,π) results in a model with the exact same fit but with wt of opposite sign. We choose

identification scheme that results in a positive correlation between wt and the nominal term

premiums.

4.4. Term premiums

Since our model captures the joint dynamics of nominal and real yield curves, we can

derive estimates of nominal, real, and inflation risk premiums using the following equations:

TPNt,h = ↓1
h
(log EQ

t
[exp(↓it ↓ · · ·↓ it+h↓1)]↓

log EP
t [exp(↓it ↓ · · ·↓ it+h↓1)]), (26)

TPRt,h = ↓1
h
(log EQ

t
[exp(↓it ↓ · · ·↓ it+h↓1 + πt+1 + . . . πt+h)]↓

log EP
t [exp(↓it ↓ · · ·↓ it+h↓1 + πt+1 + . . . πt+h)]), (27)

IRPt,h = ↓1
h

(
log EQ

t
[exp(πt+1 + . . . πt+h)]↓ log EP

t [exp(πt+1 + . . . πt+h)]
)

, (28)

where EP denotes the expectation under the physical probability measure. These term pre-

miums correspond to the components of nominal yields, real yields, and the break-even in-

flation rate, respectively, that would not exist if prices of risk εt were equal to zero.

Figure 3 displays the 10-year nominal, real, and inflation term premiums, together with

estimates based on alternative strategies that have been proposed in the literature (namely

Kim and Wright, 2005; Adrian et al., 2013; D’Amico et al., 2018). While the different estimates

show similar low-frequency fluctuations, including a secular decrease in the nominal and real

term premiums over the last fourty years, some differences are also apparent. In particular,

since 2020, our estimates of the nominal (respectively real) term premiums are about 50 to 100

basis points higher than those obtained by Kim and Wright (2005) and Adrian et al. (2013)

(resp. by D’Amico et al., 2018).

4.5. Impulse responses

Because the state vector follows a Gaussian VAR (Equation 3), the responses of macroeco-

nomic variables to shocks are derived using standard VAR formulas. Figure 4, for example,

displays the responses of inflation, the output gap, and the shadow rate to the various shocks
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Figure 1: Model fit of macroeconomic variables. This figure shows the model fit of macroeconomic
variables. Panel (a) shows the inflation rate (monthly growth rate of the price index, annualized), and the
π̄t and π→

t
components of inflation (see eq. 20). Panel (b) compares the model-implied target rate π→

t
with

the Perceived Target Rate of Brayton et al. (2014), that is used in the estimation. Panel (c) shows the trend
growth rate gt, together with the monthly GDP growth rate based on the approach proposed by Brave
et al. (2019). Panel (d) displays the model-implied output gap, together with that extracted from the FRED
database (calculated as log(GDPC1/GDPPOT)). All rates are annualized and expressed in percent.
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Figure 2: Natural rate of interest (r
→
) and inflation target (π→

). This figure shows the estimated natural
rate of interest (r→

t
in eq. 16), and compares it with the estimates of Laubach and Williams (2003) and

Holston et al. (2017). The second plot shows the inflation target (π→
t

in eq. 18). The third plot shows the
time series of the risk premium factor wt (eq. 24), that drives the prices of risk (eq. 23). The grey area
corresponds to the 95% confidence interval (reflecting filtering uncertainty).
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Figure 3: Term premium estimates. This figure shows model-implied term premiums, together with
alternative estimates based on Kim and Wright (2005), Adrian et al. (2013), D’Amico et al. (2018). Term
premiums are expressed in percent (annualized). Formal definitions of the nominal, real, and inflation
term premiums are respectively given in (26), (27), and (28). The inflation risk premium is defined as
the difference between the nominal and the real term premium. Model-free risk premiums are based
on observed yields and survey only; for instance, the model-free inflation risk premium is calculated by
subtracting the survey-based inflation forecast to the break-even inflation rate (calculated as the difference
between the nominal yield and the real yield). Shaded areas indicate NBER recessions.
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included in the model. These responses exhibit the expected signs, given the model’s struc-

ture. The first row shows the response to a tightening monetary policy shock (εi,t in eq. 14);

the desinflationary and recessionary effects peak at approximately 2.5 years.

Let us now turn to the responses of long-term real and nominal yields. These responses

cannot be obtained with standard techniques since yields—nominal and real—are nonlinear

functions of the state vector xt. The impulse response of different yields will depend, in

particular, on the level of the shadow rate. Intuitively, when the shadow rate is negative, the

impact of (any type of) shocks on yields are expected to be muted, consistently with the lower

yield volatility observed during ZLB periods. To fix ideas, consider the effect of an increase in

εi,t by 25 bps (annualized). The effect of this shock on the shadow rate does not depend on the

level of st since the latter is part of xt, that itself follows a homoskedastic VAR model. (This

response is shown in the last column of plots of Figure 4.) However, the impact of this shock

on it = max(0, st) depends on st. For instance, if st is equal to ↓1% (annualized), then it is not

affected by this shock upon impact. If the shadow rate is persistent, this amortization effect

persists for the next few periods (in expectation). Indeed, if the shadow rate is persistent and

if st = ↓1%, then it is likely that st will stay negative for the next few periods, even if it is

augmented by 0.25% today. Accordingly, the 0.25% shock on st will have a smaller effect on

expected future short-term rates (it) when st = ↓1% than when st > 0%. Since long-term

rates can be approximated by averages of expected future short-term rates (it), this effect is

transmitted to interest rates of longer maturity.

To quantitatively investigate these effects in our framework, we compute non-linear im-

pulse response functions in the spirit of Potter (2000). Consider a function q of xt. In our

context, q(xt) can be, for instance, a nominal or a real long-term yield. we define the general

conditional impulse response function as:

IRFh(q, Γ, b, d) = E(q(xt+h)|Γxt↓1 = b, εt = d)↓

E(q(xt+h)|Γxt↓1 = b, εt = 0), (29)

where matrix Γ determines the linear combinations of xt that serve as conditioning informa-

tion, and d determines the shock that one wants to apply to the system on date t. To fix ideas,

assume we consider the yield curve response to a monetary-policy shock (εi,t) in the context
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Figure 4: Impulse response functions of inflation, output gap, and the shadow rate. This figure shows
the impulse response functions of inflation (or more precisely of its persistent component, π̄t) and of the
output gap to different shocks (one standard deviation for each shock). εi,t is a monetary policy shock
(eq. 14); εg,t is a shock to the trend growth rate (eq. 19); εz,t is a demand shock (eq. 15); ε→

t
is an inflation

target shock (eq. 18); επ,t is an inflation shock (eq. 21). The first column shows inflation responses (ex-
pressed in percentage points, annualized). The second column shows output gap responses (expressed in
percentage points). The third column shows shadow rate responses (expressed in percentage points). The
x-axis indicates to the number of months after the shock.
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Figure 5: Responses of yields to monetary policy shocks (εi,t), conditional on s. This figure shows the im-
pulse response functions of nominal and real yields to an accommodative monetary policy shock (increase
in the shadow rate by 25 basis points, via εi,t, see eq. 14) conditional on the initial value of the shadow rate
(st). It shows that yields are less responsive in the lower bound regime.
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Figure 6: Responses of yields to monetary policy shocks (εi,t), conditional on r
→ + π→. This figure shows

the impulse response functions of nominal and real yields to a tightening monetary policy shock (increase
in the shadow rate by 25 basis points, via εi,t, see eq. 14) when we are initially close to the zero-lower
bound (it = st = 0%), conditional on the initial value of the equilibrium nominal rate (r→

t
+ π→

t
). It shows

that yields are slightly less responsive when r
→
t
+ π→

t
is low.
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of a specific value of the shadow rate, say st↓1 = s̄. In that case, we have:

Γ =
[

1 0 . . .


, b =
[

s̄


, and d =

[
0.25%∆t

ϱi
0 . . .

↑
, (30)

where ∆t is the length of a model period expressed as a fraction of a year.

Appendix C details an approximate second-order calculation of eq. (29) in the context of

our framework. This computation makes, in particular, use of the fact that the conditional

distribution xt+h|{Γxt↓1 = b, εt = d}, appearing in eq. (29), is available in closed form.15

Figure 5 displays impulse response functions (IRFs) of nominal and real yields to a 0.25%

(annualized) shock to εi,t under two scenarios: a non-binding ZLB (st = 4%, solid lines) and a

binding ZLB (st = ↓2%, dashed lines). As expected, the IRFs indicate a more muted response

of yields when the ZLB binds, especially at shorter maturities (e.g., the 2-year yield is more

affected than the 10-year yield). This is because short-term yields face greater constraints at

the ZLB due to a larger expected fraction of their time before maturity being constrained by

the ZLB. The right panel of Figure 5 shows the responses of real yields to the same shock. We

find that the reaction of real yields is also dampened when conditioning on a negative value

of st. Notice that while Figure 5 shows the impact of monetary policy shocks (εi,t) on yields,

this dampening effect is also observed for other shocks, illustrating the overall reduction in

yield volatility during ZLB periods.

While shocks to εi,t represent monetary policy shocks as they enter the model via the cen-

tral bank’s reaction function (eq. 14), it is important to note that these shocks do not translate

into changes in the policy rate—i.e., the one-period rate of the model—when the shadow rate

(st) is negative, which then makes their quantitative interpretation unclear. We therefore con-

duct an additional analysis focusing solely on scenarios with st ≃ 0, ensuring that shocks to

εi,t fully transmit to the nominal short-term rate it. Interestingly, while the amortization effect

is much smaller when st ≃ 0, a small effect can subsist when st is positive but close to zero,

especially in conditions favoring future ZLB periods. Figure 6 shows, for instance, that when

conditioning on st = 0%, the yield response to a 25-basis-point increase in εi,t is smaller when

15Specifically, this conditional distribution is multivariate Gaussian, owing to the closure of the multivariate
normal under linear transformations and conditioning.
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the initial equilibrium nominal short-term rate, i
→
t
= r

→
t
+ π→

t
, is low.16 This is because low

r
→
t

increases the probability of future ZLB events, and the occurrence of these events tends to

dampen the impact of the shock on yields. To better understand, consider an extreme case

where r
→
t
= ↓10%. Even with st = 0, st is then likely to become negative shortly thereafter,

and it will then hit zero, regardless of the 25-basis-point increase; this will therefore result in

a muted response of the yields to the shock. Conversely, if r
→
t
= 10%, the probability of a

binding ZLB in subsequent periods is low, leading to the full transmission of the monetary

policy shock.

4.6. Conditional frequency of ZLB periods

Our framework can be exploited to investigate how specific environments influence the

frequency of ZLB regimes. Several researchers have highlighted, for instance, that the fre-

quency of ZLB episodes may depend on the level of the natural rate of interest or the inflation

target (e.g., Chung et al., 2012; Bianchi et al., 2021; Fernández-Villaverde et al., 2023).

Assume that we want to compute the frequency of hitting the ZLB conditional on r
→
t
= x

and π→
t
= y, say. This frequency is equal to

P (st < i|r→t = x, π→
t = y) .

The distribution of st, conditionally on {r
→
t
= x, π→

t
= y}, is Gaussian. Hence, we have:17

P (st < i|r→t = x, π→
t = y) = ΦN

(
i ↓ e(x, y)⇐

v

)
,

where e(x, y) := E(st|r→t = x, π→
t
= y) and v := Var(st|r→t = x, π→

t
= y).

Figure 7 uses the previous formulas to illustrate how the probability of hitting the ZLB

depends on the natural interest rate (r→
t
) and the inflation target (π→

t
). The iso-probability

curves in the figure appear to be close to lines relating constant sums of r
→
t

and π→
t

(i.e., con-

16Supplemental Appendix V presents additional analyses. Figure E.12 displays IRFs conditioning only on r
→
t

(and not on i
→
t
= r

→
t
+ π→

t
), while Figure E.13 examines the impact of a negative 0.25% monetary policy shock on

st (from 0.25% to 0%).
17Since 

Γxt

δ0 + δ↑
1xt


↔ N

(
ΓeX

δ0 + δ↑
1eX


,


ΓVXΓ↑ ΓVXδ↑
1

δ↑
1VXΓ↑ δ↑

1VXδ1

)
,

it comes that: e(x, y) = δ0 + δ↑
1eX + δ↑

1(VXΓ↑)(ΓVXΓ↑)↓1(b ↓ ΓeX) and v(x, y) = δ↑
1VXδ1 ↓

δ↑
1(VXΓ↑)(ΓVXΓ↑)↓1(VXΓ↑)↑δ1, where Γ is such that Γxt = [r→

t
, π→

t
]↑ and b = [x, y]↑. Note that v does not de-

pend on x and y.
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stant equilibrium nominal short-term rate, see Bauer and Rudebusch, 2020). In other words,

combinations of r
→
t

and π→
t

that yield the same i
→
t

result in similar ZLB probabilities. The fig-

ure demonstrates a substantial increase in ZLB probability as the equilibrium nominal rate

decreases; for instance, it rises from 5% at i
→
t
= 4% to 10% at i

→
t
= 2.5%.18

4.7. The Mundell-Tobin effect

Shadow-rate models are well-known to effectively capture the volatility compression that

occurs at the ZLB (e.g., Christensen and Rudebusch, 2015). Because our shadow-rate model

features real and nominal yields, we can use it to explore the effects of ZLB on other condi-

tional moments relating yields and macroeconomic variables. In particular, we can analyse

how ZLB affects the change in the conditional correlation between real rates and inflation.

This correlation is at the heart of the so-called Mundell-Tobin effect (Mundell, 1963; Tobin,

1965; Fama and Gibbons, 1982), according to which increases in inflation are associated with

higher nominal interest rates, but lower real interest rates, driving a negative correlation be-

tween expected inflation and real rates.

One can compute this correlation in any model featuring real rates and inflation. In Gaus-

sian affine term structure models involving real and nominal yield curves (e.g., Hördahl et al.,

2006; Rudebusch and Wu, 2008; Chernov and Mueller, 2012), this correlation would be con-

stant as these models are homoskedastic. Using a regime-switching term structure model of

interest rates, Ang et al. (2008) compute this conditional correlation in different regimes and

find weak evidence for the Mundell-Tobin effect, in the sense that the correlation is negative

in only a fraction of the regimes they identify.

Figure 8 displays the model-implied 12-month-ahead conditional correlations between

real rates of different maturities and expected inflation over the same maturity. The cor-

relations are negative, consistently with the Mundell-Tobin effect. While these correlations

remain relatively constant and negative during the pre-ZLB era—reflecting the GATSM-like

behavior of the model when the short-term rate is far from the ZLB—they vary and become

significantly more negative during ZLB periods. This enhanced effect stems from the fact

18This figure illustrates in particular that the influence of r
→ and π→ on this probability is nearly symmetric.

This might seem unexpected considering that r
→ and π→ do not enter the Taylor rule (equation 14) in a symmetric

manner. However, this arises because πt fluctuates locally around its trend π→
t
, which makes the term πt ↓ π→

t

in the Taylor rule relatively insensitive to the value of π→
t
.
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that, during ZLB periods, nominal interest rates are constrained and therefore move less than

expected inflation, thus amplifying the negative correlation between real rates and expected

inflation.

5. Conclusion

This paper advances the literature on shadow-rate models by incorporating real interest

rates, providing a comprehensive framework for analyzing yield curve dynamics, particu-

larly during periods of zero lower bound (ZLB). The model, applied to US data spanning

five decades, delivers novel estimates of real and nominal term premiums and reveals how

shocks differentially impact real and nominal yields under ZLB constraints. The analysis

empirically confirms the Mundell-Tobin effect, demonstrating its intensification during ZLB

periods due to constraints on nominal interest rates. Furthermore, the model quantifies the

significant increase in ZLB probability as the equilibrium nominal interest rate falls, offering

a new perspective on the relationship between monetary policy and the likelihood of ZLB

events.
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Figure 7: Conditional probabilities or being in the lower-bound regime. This
figure illustrates the influence of the natural rate of interest (r→) and of the inflation
target (π→) on the frequency of lower-bound regimes. Specifically, the blue curves
show combinations of r

→ and π→ that yield a given conditional probability (labeled
on each curve) of being in the lower-bound regime.

0.001
0.005

0.005

0.05

0.05
0.1

0.1
0.15

0.2
0.25

0.3

-2 -1 0 1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure 8: Conditional correlation between real rates and expected inflation. This
figure shows 12-month-ahead conditional correlations between real rates and ex-
pected inflation with maturities 3 month, 12 months and 120 months. Specifically, it
shows Corrt(rt+12,h, Et+12(π̄t+12+h)).

1970 1980 1990 2000 2010 2020
-0.4

-0.38

-0.36

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

3-month maturity
12-month maturity
120-month maturity

27



Appendix A. Extension of Wu and Xia (2016)

Lemma 1. Consider a process xt following a Gaussian vector autoregressive process:

xt = µ + Φxt↓1 + Σεt, εt ↔ i.i.d.N (0, I).

If b
↑
xt is a persistent process, the following conditional expectation:

Kh(xt, a, b, c) = Et(exp[↓max(i, a + b
↑
xt+1)↓ · · ·↓ max(i, a + b

↑
xt+h)

+c
↑
xt+1 + · · ·+ c

↑
xt+h])

can be approximated with

exp(↓F0,1,t ↓ · · ·↓ Fh↓1,h,t),

where

Fn↓1,n,t = i + ϱng

(
an + b

↑
nxt ↓ i

ϱn

)
↓ (ċn + c

↑
nxt) + ΦN

(
ān + b

↑
nxt ↓ i

ϱn

)
b
↑ΦnΣΣ↑Φ↑

nc.

where

g(x) = xΦN (x) + φN (x),

ΦN
and φN

being the c.d.f. and the p.d.f. of the standard normal distribution, respectively. The Φn

matrices are defined as follows:

Φ0 = 0, and Φn =
n↓1

∑
i=0

Φi
for n > 0.

Moreover:

• bn, ān, an, and ϱn are obtained as follows:






bn = (Φn)↑b

ān = a + b
↑Φnµ

an = ān ↓ 1
2 b

↑ΦnΣΣ↑Φ↑
nb

ϱ2
n = ϱ2

n↓1 + b
↑Φn↓1ΣΣ↑Φn↓1↑

b with ϱ0 = 0.

(A.1)

(Note that ān + b
↑
nxt = Et(a + b

↑
xt+n) and Vart(a + b

↑
xt+n) = ϱ2

n.)

• ċn and cn are obtained as follows:


ċn = c

↑Φnµ + 1
2 c

↑ΦnΣΣ↑Φ↑
nc

cn = (Φn)↑c,
(A.2)

(Note that ċn + c
↑
nxt = Et(c↑xt+n) + 1

2 c
↑ΦnΣΣ↑Φnc.)

Proof. See Online Appendix I.
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Appendix B. Parameter constraints

For identification purposes, as well as to facilitate the estimation and to achieve a satisfy-
ing relative fit of the different variables, we impose a number of constraints on the parameter
space.

First, for macroeconomic variables, we require that the standard deviation of the measure-
ment errors of the output gap (ϱo) is less than 0.5%, which we find to be a binding constraint.
We relate the standard deviations of the (monthly) measurement errors for GDP growth and
inflation to ϱo by setting ϱgdp = ϱin f = ϱo/100. For nominal rates, we assume a uniform
standard deviation of measurement errors across all maturities, denoted as ϱn. For real rates,
we apply two different values for the standard deviations of measurement errors over time
to account for the relatively lower reliability of our data during three periods when TIPS
were either less liquid or nonexistent: (i) prior to 2004, (ii) during the global financial crisis
(2008-2009) (see D’Amico et al., 2018) and (iii) during the COVID crisis (March 2020 - Febru-
ary 2021). Specifically, outside of these periods, we estimate the standard deviation or real
rates for all maturities as ϱr, and during the low liquidity episodes, the standard deviation
of measurement errors is estimated as ϱr + ϱr,liq. We assume that the standard deviation of
measurement errors for the perceived target rate (ϱptr) is larger than that of inflation surveys
(ϱs); specifically ϱptr = 5ϱs. (For the surveys, this uniform standard deviation applies to both
horizons we consider.) Regarding the measurement errors associated with surveys on the
3-month T-bill rate, to ensure that the term premium generated by the model aligns with
market expectations, we set their standard deviation to a quarter of the value used for the
other surveys, i.e., ϱt = ϱs/4.

To assure numerical stability of the system, we impose the upper bound of 0.995 on the
autoregressive persistence parameters.19 We found that this constraint is binding for ρκ, the
autoregressive parameter of the pure preference for present (eq. 17), and ρ→, the autoregres-
sive parameter of the inflation target (eq. 18).

We restrict the conditional standard deviation of monthly r
→ to 0.0056, the value reported

in Laubach and Williams (2003).20 We also restrict the unconditional mean of κt (eq. 17) to be
non-negative, i.e., µκ ≃ 0.

To facilitate the estimation of α and β, we impose that the contribution of monetary policy
shocks to the variance of the one-year-ahead inflation (π̄t) forecast error is not smaller than

19In particular, this implies that we constrain the natural rate of interest r
→
t

and the inflation target π→
t

to be
stationary (contrary to, e.g. Laubach and Williams, 2003; Holston et al., 2017, for r

→
t
). Imposing these variables to

be stationary is consistent with the existence of a finite variance for these objects. Recent research by Rogoff et al.
(2024) provides strong and consistent evidence of trend stationarity in long-horizon series of the real short-term
rate, suggesting the stationary nature of the natural rate of interest. Studies imposing a stationary natural rate
of interest include, e.g., Mésonnier and Renne (2007) and Fries et al. (2018).

20In practice, this is implemented by setting ϱκ =


0.00562 ↓ ϱ2
g (subject to ϱg < 0.0056).
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5%, which is broadly in line with the empirical evidence: Uhlig and Amir-Ahmadi (2012)
find that this share is of 25%, Uhlig (2005) finds approximately 15%, Herwartz et al. (2022)
find 5%, Gorodnichenko and Lee (2017) find about 10%. In estimation we find that the 5%
restriction is binding. Besides, we use the standard values of 1.5 and 0.5 for απ and αz in the
Taylor rule (eq. 14).21

We assume that εi,t, εg,t, εz,t, ε→
t
, and εi,π are priced, in the sense that SDF innovations

correlate to these shocks. This implies that five entries of ε0 and ε1,w (appearing in eq. 23) are
nonzero. Since wt is unobserved, for identification purposes, we set its mean to zero (µw = 0)
and we impose ϱw =


1 ↓ ρ2

w, so that its unconditional variance would be equal to 1 if it
were uncorrelated with other variables (i.e., if ϱw,z = ϱw,g = ϱw,π = 0).

Finally, we set i = 0, θ = 1, and µg and µ→ are set equal to the sample means of GDP
growth and inflation, respectively.

Appendix C. Conditional non-linear impulse response functions

Consider a function q of xt. In the spirit of Potter (2000), we define the conditional impulse
response function as:

IRFh(q, Γ, b, d) = E(q(xt+h)|Γxt↓1 = b, εt = d)↓ E(q(xt+h)|Γxt↓1 = b, εt = 0)

In the present framework,
xt ↔ N (eX, VX),

where

eX = (In↘n ↓ Φ)↓1µ, and vec(VX) = (I
n2↘n2 ↓ Φ ⇒ Φ)↓1 vec(ΣΣ↑).

Moreover, we have:



εt

Γxt↓1

xt+h



 ↔ N








0

ΓeX

eX



 ,




I 0 Σ↑Φh↑

0 ΓVXΓ↑ ΓVXΦh+1↑

ΦhΣ Φh+1
VXΓ↑

VX







 . (C.1)

Using the properties of the multivariate normal distribution, we obtain:

xt+h|Γxt↓1 = b, εt = d (C.2)

↔ N (E(xt+h||Γxt↓1 = b, εt = d), Var(xt+h||Γxt↓1 = b, εt = d)).

21Specifically, we set απ = 1.5 and αz = 0.5/12. The latter reflects that our model is expressed in monthly
returns, whereas zt is independent of the model’s frequency.
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where E(xt+h||Γxt↓1 = b, εt = d) is given by

eX +
[

ΦhΣ Φh+1
VXΓ↑

  I 0

0 ΓVXΓ↑

↓1 
d

b


↓


0

ΓeX


,

and Var(xt+h||Γxt↓1 = b, εt = d) is equal to

VX ↓
[

ΦhΣ Φh+1
VXΓ↑

  I 0

0 ΓVXΓ↑

↓1 [
ΦhΣ Φh+1

VXΓ↑
↑

.

A second-order Taylor expansion of q(xt+h) around E(xt+h|It) is:

q(xt+h) ↗ q(E(xt+h|It)) + (xt+h ↓ E(xt+h|It))
↑ ∂

∂xt

q(E(xt+h|It)) +

1
2
(xt+h ↓ E(xt+h|It))

↑ ∂2

∂xt∂x↑
t

q(E(xt+h|It))(xt+h ↓ E(xt+h|It)).

This implies that, for any conditioning information set It:

E(q(xt+h)|It) ↗ q(E(xt+h|It)) +
1
2

vec


∂2

∂xt∂x↑
t

q(E(xt+h|It))

↑
vec [Var(xt+h|It)] .

In our specific case, q(xt) corresponds to a nominal or real zero-coupon yield, of the form:

q(xt) =
1
h
(F0,1,t + · · ·+ Fh↓1,h,t),

where Fn↓1,n,t is defined in Lemma 1. To compute the derivatives of q, we use that:

∂

∂xt

Fn↓1,n,t = ΦN
(

an + b
↑
nxt ↓ i

ϱn

)
bn ↓ cn +

b
↑ΦnΣΣ↑Φ↑

nc

ϱn

φN
(

ān + b
↑
nxt ↓ i

ϱn

)
bn.

∂2

∂xt∂x↑
t

Fn↓1,n,t

=
1
ϱn

(
φN

(
an + b

↑
nxt ↓ i

ϱn

)
↓ b

↑ΦnΣΣ↑Φ↑
nc

ϱn

(
ān + b

↑
nxt ↓ i

ϱn

)
φN

(
ān + b

↑
nxt ↓ i

ϱn

))
(bnb

↑
n).
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— Supplementary Material —

The Shadow-Rate Model: Let’s Make it Real

Adam GOLINSKI, Sophie GUILLOUX-NEFUSSI, and Jean-Paul RENNE

I. Proof of Lemma 1 (Extension of Wu and Xia (2016))

Proof. We have
Kh(xt, a, b, c) = exp(↓ f0,1,t ↓ · · ·↓ fh↓1,h,t),

where, for n ⇑ {1, . . . , h},

fn↓1,n,t = ↓ log Kn(xt, a, b, c) + log Kn↓1(xt, a, b, c).

We look for an approximation to the fn↓1,n,t’s. For that, we use the fact that, for any random
variable z, we have log E(exp(z)) ↗ E(z) + 1

2Var(z)—the approximation being exact when
z is Gaussian (which is not the case here due to the max operator). This gives the following
approximation to fn↓1,n,t:

E
[
max(ω, b + b

↑
wt+n)↓ c

↑
wt+n

∣∣wt

]

↓1
2

Vart

[
↓ max(ω, a + b

↑
wt+1)↓ · · ·↓ max(ω, a + b

↑
wt+n) + c

↑
wt+1 + · · ·+ c

↑
wt+n



+
1
2

Vart

[
↓ max(ω, a + b

↑
wt+1)↓ · · ·↓ max(ω, a + b

↑
wt+n↓1) + c

↑
wt+1 + · · ·+ c

↑
wt+n↓1


.

Without the max operator, the sum of the two variance terms would be equal to:

↓1
2


Var

(
[c ↓ b]↑wt+n

∣∣wt

)
+ 2

n↓1

∑
k=1

Cov
(
[c ↓ b]↑wt+k, [c ↓ b]↑wt+n

∣∣wt

)
}

= ↓1
2
(c ↓ b)↑


n↓1

∑
k=0

Φk


Σ


n↓1

∑
k=0

Φk

↑

(c ↓ b) = ↓1
2
(c ↓ b)↑ΦnΣΦ↑

n(c ↓ b).

Conversely, if the max terms were all equal to ω, the variance terms would be equal to
↓c

↑ΦnΣΦ↑
nc/2.

Following Wu and Xia (2016), and assuming that b
↑
wt is a persistent process, we obtain

the following approximation to the sum of the two variance terms:

↓1
2
{

pt,n(c ↓ b)↑ΦnΣΣ↑Φ↑
n(c ↓ b) + (1 ↓ pt,n)c

↑ΦnΣΣ↑Φ↑
nc
}

,



where pt,n = Pt(a + b
↑
wt+n > ω).

At that stage, we have:

fn↓1,n,t ↗ Et

[
max(ω, a + b

↑
wt+n)

]
↓ c

↑Et(wt+n)↓
1
2

c
↑ΦnΣΦ↑

nc

+pt,nb
↑ΦnΣΦ↑

nc ↓ pt,n

2
b
↑ΦnΣΦ↑

nb. (I.1)

It is easily checked that a + b
↑Et(wt+n) = ān + b

↑
nwt, where ān and bn given in (A.1).

Therefore:

a + b
↑
wt+n|It ↔ N

[
a + b

↑Et(wt+n), ϱ2
n


, with ϱ2

n = Vart(a + b
↑
wt+n).

Using standard results regarding the truncated normal distribution, we then obtain:

Et(max(ω, a + b
↑
wt+n))↓ ω = ϱng

(
ān + b

↑
nwt ↓ ω
ϱn

)
.

Since g
↑ = ΦN , where ΦN is the cumulative distribution function of N (0, 1), we have pt,n =

ΦN [(ān + b
↑
nwt ↓ ω)/ϱn] = g

↑[(ān + b
↑
nwt ↓ ω)/ϱn]. Therefore, the last term of (I.1) rewrites:

↓ pt,n

2
b
↑ΦnΣΦ↑

nb = g
↑
(

ān + b
↑
nwt ↓ ω
ϱn

)
(an ↓ ān),

where we have used that an ↓ ān = ↓b
↑ΦnΣΦ↑

nb/2.
Therefore,

Et

[
max(ω, a + b

↑
wt+n)

]
↓ ω↓ pt,n

2
b
↑ΦnΣΦ↑

nb

= ϱn

(
g

(
ān + b

↑
nwt ↓ ω
ϱn

)
+

an ↓ ān

ϱn

g
↑
(

ān + b
↑
nwt ↓ ω
ϱn

))
↗ ϱng

(
an + b

↑
nwt ↓ ω
ϱn

)
.

Equation (I.1) then rewrites:

fn↓1,n,t ↗ ω+ ϱng

(
an + b

↑
nwt ↓ ω
ϱn

)
↓ (ċn + c

↑
nwt) + pt,nb

↑ΦnΣΦ↑
nc,

with
ċn + c

↑
nwt = c

↑Et(wt+n) +
1
2

c
↑ΦnΣΦ↑

nc,

which leads to the result.
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II. Matrix representation of the model

First note that we have:

E(πt|It↓1)

= E(π̄t + ut|It↓1) = E((1 ↓ ρ̄)π→
t + ρ̄π̄t↓1 + βzt↓1 + a1εu,t↓1 + · · ·+ apεu,t↓p|It↓1)

= (1 ↓ ρ̄)[(1 ↓ ρ→)µ→ + ρ→π→
t↓1] + ρ̄π̄t↓1 + βzt↓1 + a

↑εu,t

= (1 ↓ ρ̄)(1 ↓ ρ→)µ→ + (1 ↓ ρ̄)ρ→π→
t↓1 + ρ̄π̄t↓1 + βzt↓1 + a

↑
J0εu,t↓1,

where

J0 =


01↘p 0

Ip 0p↘1


.

Therefore, (15) rewrites:

zt = ρzzt↓1 ↓ αst↓1 + αE(πt|It↓1) + αr
→
t↓1 + ϱzεz,t

= α(1 ↓ ρ̄)(1 ↓ ρ→)µ→ + (ρz + αβ)zt↓1 + α(1 ↓ ρ̄)ρ→π→
t↓1 + αρ̄π̄t↓1 + αa

↑
J0εu,t↓1

↓αst↓1 + αr
→
t↓1 + ϱzεz,t.

Eq. (1), combined with the e macroeconomic equations presented in Subsection 3, and
with the nominal SDF (4)—with the price of risk specification of (23)—completely define the
model.

The state vector is

xt = [st, st↓1, κt, gt, zt, zt↓1, π→
t , r

→
t , π̄t, εu,t, . . . , εu,t↓p, wt]

↑.

The model admits the following representation:

Axt = µ̃ + Φ̃xt↓1 + Σ̃εt.

where

A =





1 0 0 0 ↓ρiαz 0 ↓ρi(1 ↓ απ) ↓ρi ↓ρiαπ ↓ρiαπa
↑ 0

0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 ↓1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 ↓(1 ↓ ρ̄) 0 1 0 0
0 0 0 0 0 0 0 0 0 Ip+1 0

0 0 0 0 0 0 0 0 0 0 1





,
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µ̃ =





0
0

(1 ↓ ρκ)µκ

(1 ↓ ρg)µg

α(1 ↓ ρ̄)(1 ↓ ρ→)µ→

0
(1 ↓ ρ→)µ→

µκ + θ(1 ↓ ρg)µg

0
0(p+1)↘1

(1 ↓ ρw)µw





, Φ̃ =





(1 ↓ ρi) 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 ρκ 0 0 0 0 0 0 0 0
0 0 0 ρg 0 0 0 0 0 0 0
↓α 0 0 0 αβ + ρz 0 α(1 ↓ ρ̄)ρ→ α αρ̄ αa

↑
J0 0

0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 ρ→ 0 0 0 0
0 0 0 θρg 0 0 0 0 0 0 0
0 0 0 0 β 0 0 0 ρ̄ 0 0
0 0 0 0 0 0 0 0 0 J0 0

0 0 0 0 0 0 0 0 0 0 ρw





Σ̃ =





ϱi 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ϱκ

0 ϱg 0 0 0 0 0 0
0 0 ϱz 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ϱ→ 0 0 0 0
0 θϱg 0 0 0 0 0 0
0 0 0 0 ϱπ 0 0 0
0 0 0 0 0 J1 0 0

0 ϱw,g ϱw,z 0 ϱw,π 0 ϱw 0





, and εt =





ε i,t

εg,t

εz,t

ε→
t

επ,t

εu,t

εw,t

εκ,t





,

where

J0 =


01↘p 0

Ip 0p↘1


, and J1 =





1
0
...
0





︸ ︷︷ ︸
(p+1)↘1

.

This dynamics therefore satisfies (3) with:

µ = A
↓1µ̃, Φ = A

↓1Φ̃, and Σ = A
↓1Σ̃.

III. Model-implied forecasts

This appendix gives formulas that can be used to derive model-implied forecasts. These
formulas are used if the measurement equations of the state-space model include surveys.

Using (3), it comes that:

µ
t,h := Et(xt+h) = (I ↓ Φ)↓1(I ↓ Φh)µ + Φh

xt, (III.1)
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and that

Et(xt+1 + · · ·+ xt+h) = (I ↓ Φ)↓1
[

hI ↓ Φ(I ↓ Φ)↓1(I ↓ Φh)


µ +

Φ(I ↓ Φ)↓1(I ↓ Φh)xt. (III.2)

Moreover, the conditional covariance matrices of xt can be obtained by applying recursively:

Γh := Vart(xt+h) = ΣΣ↑ + ΦΓh↓1Φ↑, and Γ0 = 0. (III.3)

Let us now consider model-implied forecasts of the short-term nominal yield. According
to (1) and (2), we have:

it = max(i, δ0 + δ↑
1xt).

Conditionally on the information available at date t (denoted by It), xt+h is Gaussian, with a
mean µ

t,h that is given by (III.1), and a variance Γh given by (III.3). That is:

xt+h|It ↔ N (µ
t,h, Γh),

and:
δ0 + δ↑

1xt+h|It ↔ N (δ0 + δ↑
1µ

t,h, δ↑
1Γhδ1),

Using standard results on the truncated Laplace transform, it then comes that:

Et(it+h) = i + ΦN



δ0 + δ↑
1µ

t,h ↓ i


δ↑
1Γhδ1



 (δ0 + δ↑
1µ

t,h ↓ i) + φN



δ0 + δ↑
1µ

t,h ↓ i


δ↑
1Γhδ1






δ↑
1Γhδ1.

= i +


δ↑
1Γhδ1g



δ0 + δ↑
1µ

t,h ↓ i


δ↑
1Γhδ1



 . (III.4)

In the context of the extended Kalman filter, we need to differentiate the model-implied
forecasts w.r.t. the state vector xt. Exploiting the fact that g

↑ = ΦN (the c.d.f. of N (0, 1)), we
have:

∂

∂xt

Et(it+h) = ΦN



δ0 + δ↑
1µ

t,n ↓ i


δ↑
1Γn,0δ1



 δ1.

IV. Using the pricing formulas of Lemma 1 in the context of the model of Section 3

The shadow rate is st = δ0 + δ↑
1xt (this is eq. 2), with:

δ0 = 0, and δ1 = [1, 0, . . . ]↑.
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We also have st↓1 = δ0 + δ̃1
↑
xt, with:

δ0 = 0, and δ̃1 = [0, 1, 0, . . . ]↑.

Inflation (eq. 20) is given by πt = ε0 + ϱ↑
1xt, with

ε0 = 0, and ϱ1 = [0, 0, 0, 0, 0, 0, 0, 1, a
↑, 0]↑.

To price nominal bonds, one can use Lemma 1 with:

ȧ = 0, ḃ = 0, a = δ0 = 0, b = δ̃1 = [0, 1, 0, . . . ]↑, (IV.1)

and using the risk-neutral dynamics of xt, characterized by (6) and (7). (That is, in Lemma 1,
replace µ and Φ with µQ and ΦQ.

Indeed, with the notations a, b, ȧ, ḃ introduced in (IV.1), we have:

it + it+1 + · · ·+ it+h↓1 = max(a + b
↑
xt+1, 0)︸ ︷︷ ︸

=it

+max(a + b
↑
xt+2, 0)︸ ︷︷ ︸

=it+1

+ · · ·+ max(a + b
↑
xt+h, 0)

︸ ︷︷ ︸
=it+h↓1

.

(IV.2)
Then, in particular,

Et(exp(↓it ↓ it+1 ↓ · · ·↓ it+h↓1))

= Et(exp(↓max(a + b
↑
xt+1, 0)︸ ︷︷ ︸

=it

↓max(a + b
↑
xt+2, 0)︸ ︷︷ ︸

=it+1

↓ · · ·↓ max(a + b
↑
xt+h, 0)

︸ ︷︷ ︸
=it+h↓1

)).

To price real bonds, one can use Lemma 1 with:

ȧ = ε0 = 0, ḃ = ↓ϱ1, a = δ0 = 0, b = δ̃1 = [0, 1, 0, . . . ]↑. (IV.3)

Indeed, with the notations a, b, ȧ, ḃ introduced in (IV.3), we have:

(it ↓ πt+1) + (it+1 ↓ πt+2) + · · ·+ (it+h↓1 ↓ πt+h)

= max(a + b
↑
xt+1, 0)︸ ︷︷ ︸

=it

+ · · ·+ max(a + b
↑
xt+h, 0)

︸ ︷︷ ︸
=it+h↓1

+

ȧ + ḃ
↑
xt+1︸ ︷︷ ︸

=↓πt+1

+ · · ·+ ȧ + ḃ
↑
xt+h︸ ︷︷ ︸

=↓πt+h

. (IV.4)

6



V. Additional figures

Figure E.9: Observed and fitted survey expectations. This figure shows the model fit of surveys. Survey
data are from the Federal reserve Bank of Philadelphia website (https://www.philadelphiafed.
org/surveys-and-data/data-files). The forecasts are averages of expected future growth rates
(for inflation and GDP) or the 3-month T-Bill rate (for the interest rate forecasts) over the considered hori-
zon. The shaded areas represent the fitted estimates ± 2 standard deviations (using the standard errors of
the measurement errors).
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Figure E.10: Observed and fitted nominal yields. This figure shows the model fit of nominal yields.
Except for the 3-month nominal rate (DTB3 in FRED), nominal yields are from the Federal Reserve Board
website (https://www.federalreserve.gov/data/yield-curve-models.htm). These data are
based on updates of Gürkaynak et al. (2007). The shaded areas represent the fitted estimates ± 2 standard
deviations (using the standard errors of the measurement errors).
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Figure E.11: Observed and fitted real yields. This figure shows the model fit of real yields. These data are
based on updates of Gürkaynak et al. (2010). The shaded areas represent the fitted estimates ± 2 standard
deviations (using the standard errors of the measurement errors).
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Figure E.12: Responses of yields to monetary policy shocks (εi,t), conditional on r
→. This figure shows

the impulse response functions of nominal and real yields to a tightening monetary policy shock (increase
in the shadow rate by 25 basis points, via εi,t, see eq. 14) when we are initially close to the zero-lower
bound (it = st = 0%), conditional on the initial value of the nominal equilibrium rate (r→

t
). It shows that

yields are slightly less responsive when r
→
t

is low.
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Figure E.13: Responses of yields to monetary policy shocks (εi,t), conditional on r
→. This figure shows

the impulse response functions of nominal and real yields to an accommodative monetary policy shock
(decrease in the shadow rate by 25 basis points, via εi,t, see eq. 14) when we are initially close to the zero-
lower bound (it = st = 0.25%), conditional on the initial value of the equilibrium nominal rate (r→

t
+ π→

t
).

It shows that yields are slightly less responsive when r
→
t
+ π→

t
is low.

0 20 40 60 80 100 120
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 20 40 60 80 100 120
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

10



Figure E.14: Federal funds rate and the estimated shadow rate. This figure shows the effective federal
funds rate together with the estimated shadow rate (st). The shaded area corresponds to the 95% confi-
dence interval (reflecting filtering uncertainty).
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