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ABSTRACT 

We derive a linear structural gravity equation that allows for rich substitution patterns based on 
observable characteristics. To achieve this, we take advantage of recent econometric work to linearize 
an import demand system with mixed CES (Constant Elasticity of Substitution) preferences. 
Compared to traditional gravity models, the resulting equation features additional regressors that 
capture heterogeneity in the patterns of substitution across exporters. Importantly, this equation can 
be easily estimated through two stage least squares (2SLS) and without additional data requirements 
relative to traditional gravity. We implement this method using bilateral trade data and find that the 
data strongly rejects the Independence of Irrelevant Alternative (IIA) assumption implied by standard 
trade models: we find an important role for vertical and geographical differentiation so that exporters 
with similar prices, or originating from similar regions, are closer substitutes. We show that this 
pattern has important implications in the context of the recent (2018-2019) US-China trade war, in 
which our model can correctly predict which countries benefitted the most from the reallocation of 
trade flows due to US tariffs on Chinese imports. 
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NON-TECHNICAL SUMMARY 

 

In this paper, we address a critical limitation of the gravity equations of international trade—
the assumption of the Independence of Irrelevant Alternatives (IIA), which posits that all 
varieties of goods are equally substitutable. Gravity equations are widely used empirical 
models in trade economics that explain bilateral trade flows based on factors such as 
economic size, distance, and trade costs between countries. These equations, grounded in 
analogy to Newtonian gravity, predict that trade between two countries increases with their 
economic size and decreases with the distance between them. While they are celebrated for 
their predictive power and theoretical elegance, traditional gravity models rely on simplifying 
assumptions, including the IIA assumption, which posits that all varieties of goods are equally 
substitutable. This constraint neglects the nuanced ways competition unfolds across 
countries, particularly among exporters with similar characteristics such as price or 
geographical origin. As a result, conventional models fail to capture the heterogeneous 
effects of trade shocks across competing exporters. 

We propose an alternative approach by deriving a linearized gravity equation that 
incorporates observable characteristics to capture realistic substitution patterns. Building on 
recent econometric developments, our method rejects the restrictive IIA assumption and 
introduces artificial regressors that quantify the role of price and regional differentiation in 
trade competition. Our model allows for richer substitution dynamics, demonstrating that 
exporters with similar prices or shared regional traits are closer substitutes. Importantly, our 
framework retains the simplicity of estimation associated with traditional models, requiring 
no additional data and leveraging on two-stage least squares (2SLS) for implementation. 

We empirically validate our approach using trade data in two significant contexts: the "China 
shock" (the massive surge in Chinese exports following its entry into the WTO in 2001) and 
the U.S.-China trade war in 2018-2019. Our findings reveal that countries with similar prices 
to China were disproportionately impacted by the rise of Chinese exports during the China 
shock. Conversely, during the U.S.-China trade war, countries such as Vietnam, India, and 
Turkey (on the left- hand side of the chart below), which offer goods similar to those from 
China, benefitted the most from the reallocation of trade flows. These outcomes stand in 
sharp contrast to the predictions of standard CES-based models, which suggest uniform 
effects across competitors, regardless of their characteristics. 

Our method offers a practical and tractable framework for analyzing trade dynamics. By 
introducing heterogeneity in substitution patterns, we enhance the explanatory and predictive 
power of gravity models. This improvement is particularly relevant for policymakers, as it 
provides a more detailed understanding of how trade policies redistribute market shares and 
affect global competition. Furthermore, our results underscore the significance of vertical 
and geographical differentiation, highlighting their role in shaping trade outcomes in 
response to shocks. 
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Relationship between Cross-Price Elasticity and Price Distance from China 

 
Note: This scatterplot illustrates the relationship between cross-price elasticity with China and the distance to 

Chinese prices, highlighting a key finding of this study. Countries with goods priced similarly to Chinese exports 

exhibit higher cross-price elasticities, meaning they benefit more from trade shocks affecting China negatively, 

such as tariff increases. Conversely, countries with greater price differentiation experience weaker substitution 

effects. This pattern underscores the limitations of traditional CES-based gravity models, which assume 

uniform substitutability, and highlights the importance of accounting for heterogeneity in substitution patterns 

as proposed in our model. 

La gravité au-delà de la CES 

RÉSUMÉ 

Nous dérivons une équation de gravité structurelle linéaire permettant des schémas de substitution 
riches basés sur des caractéristiques observables. Pour ce faire, nous exploitons des travaux 
économétriques récents pour linéariser un système de demande d'importation avec des préférences 
CES mixtes. Comparée aux modèles de gravité traditionnels, l'équation obtenue intègre des 
variables explicatives supplémentaires qui capturent l'hétérogénéité des schémas de substitution 
entre exportateurs. Il est important de noter que cette équation peut être facilement estimée par la 
méthode des doubles moindres carrés (2SLS) et sans nécessiter de données supplémentaires par 
rapport aux modèles de gravité traditionnels. Nous appliquons cette méthode aux données de 
commerce bilatéral et constatons que les données rejettent fortement l'hypothèse d'indépendance 
des alternatives non pertinentes (IIA) implicite dans les modèles de commerce standard : nous 
mettons en évidence un rôle significatif pour la différenciation verticale et géographique, indiquant 
que les exportateurs aux prix similaires ou provenant de régions proches sont des substituts plus 
proches. Nous montrons que ce schéma a des implications importantes dans le contexte de la 
récente guerre commerciale entre les États-Unis et la Chine (2018-2019), où notre modèle peut 
prédire correctement les pays qui bénéficient le plus de la réallocation des flux commerciaux due 
aux droits de douane américains sur les importations chinoises. 
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1 Introduction

The gravity equation of international trade is one of the most successful empirical tools in economics. It
is easy to estimate, has strong predictive power and is theoretically grounded. Owing to these strengths,
the gravity equation has become a major tool to quantify the impact of trade frictions on the patterns of
trade and on welfare. However, the gravity model features important limitations regarding the patterns
of competition across countries. Specifically, it imposes the Independence of Irrelevant Alternative as-
sumption (IIA), which rules out any role for product differentiation and implies that all varieties served
to a market are equally substitutable. As a result, the gravity equation is silent about the redistributive
effects of bilateral trade policy across third countries. For instance, a standard gravity equation implies
that an increase in US tariffs on Chinese goods would have the same impact on Canadian and Viet-
namese exports to the US. However, we expect countries with similar characteristics to China to benefit
significantly more from the reallocation of US imports.

In this paper, we derive a linear structural gravity equation that allows for rich substitution patterns
based on observable characteristics. We take advantage of recent work by Salanié and Wolak (2022)
to linearize an import demand system with mixed CES preferences. The resulting gravity equation
features additional regressors that capture heterogeneity in the patterns of substitution across exporters.
Importantly, this model can be easily estimated through two stage least squares (2SLS) and without
additional data requirements relative to traditional gravity models. We implement this method using
bilateral trade data and find that the data strongly rejects the IIA assumption implied by standard trade
models: we find an important role for vertical and geographical differentiation so that exporters with
similar prices, or originating from similar regions, are closer substitutes. We show that this pattern has
important implications in the context of the recent US-China trade war, in which the model can predict
which countries benefit most from the reduction of Chinese exports to the US.

We start this paper by providing evidence of violation of the IIA assumption implied by traditional
gravity models. We show that trade data exhibit a role for vertical differentiation that allows some
exporters to be relatively more protected from competition shocks taking place in segments of the market
far from them. We provide evidence of this phenomenon in two contexts. During the China shock first,
we find that the growth of China was mostly at the expense of exporting countries located close to them
in the price distribution. By contrast, countries with much higher or lower prices were less affected by
this competition shock. Importantly, we estimate this heterogeneous response within 6-digit product
categories. Therefore the fact that some countries are more exposed to Chinese comeptition is not driven
by their industry composition but rather by their positioning along the price distribution within products.
Second, in the context of the recent US-China trade war, we show that countries with similar prices to
China benefit the most from the imposition of US tariffs on imports from China. These two pieces of
evidence demonstrate that patterns of substitution are far from symmetric across exporters, and that the
export performance of a country responds disproportionally to trade shocks that affect countries located
closely in the price distribution.

Based on this observation, we develop a tractable estimation method that can capture these patterns
of substitution across exporters. The starting point of our approach is to introduce heterogeneity in con-
sumer preferences in a standard CES demand system. This heterogeneity generates stronger substitution
patterns between similar varieties as they compete over a common subset of consumers. Moreover, while
this mixed-CES model is notoriously difficult to estimate, we employ recent techniques developed in
Salanié and Wolak (2022) to linearize the model and facilitate its estimation. The intuition is to perform
a "small-sigma" expansion to obtain a linear estimator in which the degree of consumer heterogeneity
can be identified through the addition of new regressors to the gravity equation. These so-called "ar-
tificial" regressors – that result from the approximation of the model – are measures of differentiation
of varieties along some attributes and identify the extent of consumers’ heterogeneity in preferences for
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these characteristics. For instance, the variance in price-elasticity across consumers can be estimated by
including as additional regressor the distance of a variety’s price to the average price in the market.

While generating the same realistic patterns of substitution, this approximation method has several
advantages over the estimation of the full model. First of all, it is significantly easier and transparent to
estimate: the model can be directly estimated through 2SLS using regressors and instruments that can
be easily computed from the data. Second, the method does not require to specify the full distribution of
preferences across consumers. Our simulations indicate that the method is more robust to non-gaussian
distributions in preferences than the standard estimation method. Finally, the linearity of the model also
facilitates the post-estimation computation of objects of interest, such as cross or own price-elasticities.
One of the contributions of this paper is to show how to derive these objects so that they can be directly
calculated from the data, without relying on the integration of the full distribution of preferences across
consumers.

We estimate our augmented gravity model on bilateral country-level trade data. We are able to
strongly reject the IIA assumption as the coefficient on the artificial regressor for prices is significant,
both statistically and economically. All things equal, this means that an exporting country sells more
to a market when it is located far away from the average price of its competitors. The gain from price
differentiation is important economically: a variety that is positioned 0.5 log-point away from the average
price (either above or below) enjoys an additional 7 percent export value relative to a variety with a
price equal to the mean. Moreover, we find that the region of origin is another dimension of product
differentiation that matters for substitution patterns. To obtain this result, we bin source countries into
14 regions and construct the artificial regressor measuring the role of regional differentiation. Including
this artificial regressor in the gravity equation captures the possibility that varieties from a same region
are closer substitutes. We find that a country belonging to a region with a market share of 20 percents
exports 3.5 percent less than a country from a region with a market share of 10 percents. Overall,
these results illustrate how our method can flexibly and easily accommodate for deviations from the IIA
assumption in trade patterns, and that these deviations are economically significant.

In order to assess the out-of-sample performance of our method, we circle back to the motivating
evidence and study the ability of our estimated model to predict the reallocation patterns across countries
that resulted from the trade war. Importantly, this prediction is made out of sample, in the sense that it
only relies on information available before the actual start of the trade war. It is therefore a legitimate
assessment of the improved predictive power of our model, compared to standard gravity models. We
find that the model does a good job at predicting which countries won the most from the reduction in
Chinese exports to the United States. In particular, the model identifies correctly identifies countries
like Vietnam, India or Turkey as the biggest winners due large cross-price elasticities with China. When
we run a country-level regression between the actual and the predicted effect of the trade war, we find
an estimated coefficient of 0.95 (p-value < 0.001) and a R2 equal to 0.27. As a comparison, we also
report the prediction in the case of a CES model. In this scenario, the model does not predict any
heterogeneity in the reallocation of Chinese market shares across countries: all countries feature the
same cross-price elasticity which is equal to the estimated elasticity of substitution of the CES model,
2.29. In conclusion, our model that allows for heterogeneous patterns of substitutions across countries is
a significant improvement to predict the winners and losers from the reallocation effects of a large trade
shock.

This paper adds to the literature on demand estimation for differentiated product markets, recently
surveyed by Berry and Haile (2021) and Gandhi and Nevo (2021). This paper relies on an established
tradition in Industrial Organization, started with Berry (1994) and Berry, Levinsohn, and Pakes (1995),
which introduces heterogeneity in preferences to generate realistic patterns of substitution across varieties.
More recently, Salanié and Wolak (2022) shows how to linearize the model to avoid the well-known
challenges associated with its estimation. We extend this estimation strategy to the specific needs of
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trade data. We notably allow for the presence of demographic drivers of consumer heterogeneity and we
consider mixed CES instead of mixed logit.

Our paper also follows an immense literature estimating gravity equations using international trade
flows.1 A series of recent papers have shown how to extend this gravity estimation to abandon the IIA
assumption and allow for more realistic substitution patterns. Adao, Costinot, and Donaldson (2017)
estimate a mixed-CES model of factor demands to reduce the number of parametric assumptions required
to perform counterfactual trade experiment. Lind and Ramondo (2018) extend the standard Ricardian
model to allow for more flexible substitution patterns. Relative to these papers, we develop an empirical
strategy that captures similar patterns of substitution, but with a much simpler estimation, by 2SLS.
Moreover, the existing papers mostly study substitution patterns at the country-level. Therefore, it is
not clear whether two countries are highly substitutable because they specialize in the same product
categories, or because they specialize in the same market segments, within products. By contrast, we
focus on violations of the IIA assumption within detailed product categories. In terms of industrial policy,
our results point to the importance of within-product positioning, both for the export performance and
for the resilience to competition shocks in foreign markets.

Finally, several recent papers have provided evidence for the importance of capturing these complex
patterns of substitution in an international trade context. Fajgelbaum, Goldberg, Kennedy, Khandel-
wal, and Taglioni (2021) estimates a translog demand system using US-China trade wars to identify the
patterns of substitution that follows the reallocation of trade flows between China and the US. Piveteau
and Smagghue (2022) shows that the competition shock emanating from the China shock predominantly
affected French firms with low-prices, consistent with heterogeneity in substitution patterns along the
quality ladder. By contrast, Head and Mayer (2021) shows that omitting mixed preferences when esti-
mating the gravity equation can lead to satisfactory predictions when focusing on the aggregate impact of
counterfactual experiments. However, they recognize that ignoring this heterogeneity in preferences can
lead to minimize the heterogeneous impact of trade shocks across countries. We follow their approach
by comparing our predictions between mixed and simple CES models, but our paper strongly reduces
the cost of incorporating mixed preferences by providing a simple estimation strategy.

We start this paper by providing evidence of deviations from the IIA assumption in the next section.
We then develop a model in section 3 that can capture more realistic patterns of substitution. Section 4
shows the estimation results of the model and section 5 performs out-of-sample predictions to assess its
performance.

2 Motivating Evidence

We start this paper by providing empirical evidence that the patterns of substitution across exporting
countries deviate from the Independence of Irrelevant Alternatives (IIA) assumption implied by the CES
demand system. We study two recent episodes – the China shock and the US-China trade war – to show
that countries with similar prices display stronger substitution patterns. This evidence is at odds with
a CES demand system that assumes that all varieties are equally substitutable.

In the next subsections, we present the data, specifications and results that lead to this conclusion,
first from the China shock, and then from the 2018 US-China trade war.

2.1 Evidence from the China shock

In this section, we show that the growth of China in export markets during the last 20 years was at the
expense of exporting countries that displayed similar prices to Chinese exporters.

1See Head and Mayer (2014) and Yotov, Piermartini, Larch et al. (2016) for recent surveys of this literature.
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Data We employ trade data from BACI produced by the CEPII,2 to obtain export data at the
country×product level from 1996 to 2018. We focus on exports to the US market and restrict our
sample to the top 100 exporting countries to limit the risk of small countries driving some results with
noisy data. We define a product as a HS6 product category, which leads to a dataset of more than 2.8
millions observations defined as an exporting country × HS6 product × year triplet. In figure 1, we
report the aggregate Chinese market share in total imports from 1996 to 2018. The figure documents
the striking growth of China during the last decades, growing from 5 percents of imports in 1996 to more
than 20 percents in 2018.
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Figure 1: Growth of Chinese market share among US imports

The specification presented in the next paragraph aims at identifying the role of prices to understand
which exporters suffered the most from this impressive growth. In the context of trade data, we use unit
values – the ratio of export values to quantities in weight – to proxy prices, and we will use these two
terms interchangeably in this paper.

Specification In this section, we investigate how the price positioning of exporting countries shapes
the patterns of substitution with their competitors. In the context of the China shock, our hypothesis
is that within a destination×product market, varieties whose prices are more similar to Chinese prices
should suffer more from the China shock because they are most substitutable to Chinese varieties.

To perform this exercise, we start by defining how we measure the proximity to Chinese prices. For
each origin country×product pair ok, we identify the log-price at initial time t0, which is the first time
this export flow appears in our dataset.3 Then, we compare this initial price – ln pokt0 – to the price of
Chinese varieties the same year. As a result, each country×product pair is characterized by its relative
log-price defined as l̃n pok ≡ ln pokt0 − ln pCkt0 .

Our specification then interacts the market share of China for a specific product and year – msCkt
– with the quadratic distance between the price of that variety and the Chinese price. Formally, our

2see Gaulier and Zignago (2010) for a full description of the data
3Most export flows appear in 1996, the first year of the dataset, but we also include export flows that start in

later years.
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estimating equation is

ln exportokt = αmsCkt + β l̃n p
2

ok ×msCkt + δok + (δkt) + εokt

with exportokt the total export value from o to the US for product k at time t, and δ a set of two fixed
effects: a first fixed effects controls for time-invariant exporter characteristics and a second controls for
market-specific unobservables. This specification ensures that parameter β measures the relative change
in export performance in response to a change in the Chinese market share. We also run this specification
without the market fixed effects δkt to measure the average effect of the change in Chinese market share
through the parameter α.

As a less parametric alternative to the quadratic distance, we also divide the distribution of relative
prices to measure the heterogeneous effect of Chinese competition along the price distribution. Figure 2
reports the distribution of the log-prices relative to China. We see a large variance in this distribution
and an average relative price above zero, as more countries have higher prices than China. This figure
also reports the thresholds that we use as alternative to the quadratic distance to categorize different
varieties according to their distance to Chinese prices. We set these thresholds at -3, -1, -0.2, 0.2, 1, 3
and 5, to create eight groups of products for which we will separately measure the impact of Chinese
competition. This specification also allows us to test whether moving away from Chinese prices on either
side of the price distribution reduces the degree of substitution with Chinese varieties.
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Figure 2: Distribution of initial export log-prices relative to China

Using the Chinese market share as independent variable in the regression could generate some con-
cerns regarding the identification of the estimated relationship. For instance, a reduction in the export
performance of a country could cause the growth of China in a specific market. Alternatively, a demand
shock for a specific level of quality could generate a positive correlation of the export performance of
varieties with similar prices. In order to limit these issues, we follow a similar strategy to ADH, by
instrumenting the market share of China with its market share in eight other countries, selected due to
their ressemblance with the US.4 We use the Chinese market share in these markets to ensure that our

4Similar to ADH, we use the following countries: Australia, Denmark, Finland, Germany, Japan, New Zealand,
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Table 1: Competitive Pressure by China decreases with the Distance to Chinese prices

OLS 2SLS
(1) (2) (3) (4) (5) (6)

msCkt −0.84*** −1.11***
(0.08) (0.12)

msCkt × l̃n p
2

ok 0.03*** 0.03*** 0.04***
(0.00) (0.00) (0.01)

msCkt × l̃n pok ∈ [−∞,−3] 0.40** 0.32** 0.34
(0.17) (0.13) (0.32)

msCkt × l̃n pok ∈ [−3,−1] 0.36*** 0.07 0.32
(0.12) (0.09) (0.20)

msCkt × l̃n pok ∈ [−1,−0.2] 0.30*** 0.10 0.17
(0.08) (0.07) (0.12)

msCkt × l̃n pok ∈ [0.2, 1] −0.02 0.02 −0.04
(0.11) (0.09) (0.13)

msCkt × l̃n pok ∈ [1, 3] 0.61*** 0.58*** 0.61***
(0.11) (0.10) (0.13)

msCkt × l̃n pok ∈ [3, 5] 1.08*** 0.89*** 1.13***
(0.14) (0.13) (0.17)

msCkt × l̃n pok ∈ [5,∞] 1.24*** 1.01*** 1.26***
(0.19) (0.14) (0.20)

Product × year FE X X X X

First stage F-stat 384.5 107.3
R2 0.795 0.795 0.814 0.814 0.814 0.814

Number of observations: 2 850 065. Standard errors are clustered at the country and
product levels. * p < 0.1, ** p < 0.05, *** p < 0.01

results are driven by the supply shock that generates the growth of China in global markets, rather than
local market conditions.

Results We present the results of our regressions in table 1. The table shows that varieties located
far away from Chinese prices experience a smaller reduction in export performance when the Chinese
market share increases. This relationship is true across all our specifications: in columns (1) and (2)
without product×year fixed effects, we find that a 10 point increase in the Chinese market share leads
to a reduction of 8 to 11 percent in exports for firms with prices similar to China. These columns also
show that this effect decreases as we look at varieties with much lower or higher prices. In columns (3)
and (4) that control for product-year unobservables and therefore do not identify the average effect, we
find similar results, although the relief for varieties with lower prices than China appears to be limited.
Finally, the specification that instruments the Chinese market shares with other destinations confirms
our results. The identification strategy leads to much larger standard errors, which makes some results
insignificant, but we still find that varieties are less affected from Chinese competition when their prices
are much higher than Chinese prices.

Overall, these results confirm that not all exporters are impacted similarly by the growth of China
in foreign markets. Exported varieties with similar prices, and probably similar quality, are much closer
substitutes to Chinese varieties. As a result, they experience a larger reduction in their export perfor-

Spain and Switzerland.
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mance when China gains market share in a foreign market. In the next subsection, we confirm similar
patterns of substitution in the context of the US-China 2018 trade war.

2.2 Reallocation patterns during the 2018 trade war

Unlike our previous example, the episode of the 2018 trade war between the US and China offers a
more experimental framework. During the summer of 2018, the United States increased their tariffs on
hundreds of products originating from China. In this section, we use this episode to quantify the negative
impact of these tariff increases on Chinese exports, and identify the patterns of reallocation that took
place across other exporters to the US.

Data For this section, we use data from the US Census to obtain values and quantities imported by
the US, disaggregated by origin countries and HS10 product categories. We use monthly data from 2017
to 2019, which allows us to closely track the impact of tariffs on US imports, but also the reallocation of
these imports toward other countries, as US consumers face higher prices from China. To this end, we
take advantage of the data provided by Fajgelbaum et al. (2021), which provides the complete description
of the tariff increases imposed by the US administration: this allows us to identify the affected HS10
products, the day of application of the policy, and the amount of the increase in tariff.

From this comprehensive dataset of US imports, we eliminate products or countries that could
constitute a challenge to the clean identification of the effects of the tariff hikes. First, we eliminate
product codes that were subject to tariff increase applied to many countries. For instance, steel and
aluminium products, washer and dryers were also subjects to tariff hikes during this time. Because these
policies applied to many countries, and not only China, we decide to remove them from our analysis. As
a result, only products that saw a tariff increase on Chinese exports or did not see a tariff increase at all
are included in the dataset. Moreover, we eliminate product codes for which there is no Chinese export
to the US in 2017. Finally, to quantify the reallocation effects of the rise of US tariffs, we restrict our
attention to the top 50 exporters to the United States, excluding oil-exporting countries.5 This allow us
to limit the role of small exporting countries driving our results.

Specification Our identification strategy compares the evolution of trade flows of products that were
affected by the tariff hikes relative to unaffected product categories. Given the level of disaggregation
of our data, our dependent variable ln exportokmy is the logarithm of the amount of export from origin
country o, HS10 product category k, month m and year y. We define Tkmy as a post-treatment dummy
for product categories that were affected by the policy.

Given this identification strategy, we include origin-product dummies to control for levels, month-
year dummies to control for aggregate trends in exports and product-month dummies to control for
product-specific seasonality. The resulting specification is the following:

ln exportokmy = βoTkmy + γok + γmy + γkm + εokmy (1)

where γ are the different sets of fixed effects. Importantly, we will allow the effect of the treatment βo
to vary by origin countries, in order to capture the heterogeneous effects of the policy across countries.

The resulting estimates of βo can be interpreted as an average treatment effect across all product
categories that saw an increase in tariffs. However, there are two reasons why we might find heterogeneous
effects across categories. First, the increase in tariffs is not the same for all products. Second, the change
in export values is directly related to the market share of China on this market: tariff increase in a

5We follow Fajgelbaum, Goldberg, Kennedy, Khandelwal, and Taglioni (2021) and eliminate Algeria, Angola,
Irak, Kuwait, Libya, Nigeria, Norway, Trinidad and Tobago, Saudi Arabia, United Arab Emirates and Venezuela
from the analysis.
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Table 2: Effects of tariffs on Chinese exports to the US

(1) (2) (3)
Dependent Variable log VCkt log QCkt log VCkt

Treatment × Post −0.22*** −0.26*** −0.31***
(0.01) (0.02) (0.02)

Years included 2017 – 2019 2017 – 2019 2017, 2019

N 292 862 258 459 167 067
R2 0.942 0.950 0.973

All specifications include hs10 × month and year × month
fixed effects. Standard errors are clustered at the hs10 level.
* p < 0.1, ** p < 0.05, *** p < 0.01

market where China has a very large market share will generate a larger change in the export values of
other countries. For instance in a CES world, the resulting change in trade flows from an increase in
Chinese price can be written

d ln sok =
∂ ln sok
∂ ln pCk

d ln pCk = σsCk d ln pCk

where sCk is the market share from China in product k and σ is the elasticity of substitution. Therefore,
in an attempt to estimate the origin-specific elasticity of substitution, we run a second specification in
which we scale the treatment by the actual change in tariffs, and the market share of China in this
product category. To avoid any endogeneity issue, we compute the Chinese market share based on the
year 2017 alone, aggregating all monthly export flows to obtain the market share for the year. The
specification becomes

ln exportokmy = σo dτkmy × sCk + γok + γmy + γkm + εokmy (2)

where dτkmy is the change in tariffs relative to the year 2017.

Result We start by running the regression using imports from China only, to show the negative impact
of the tariff increases on the import flows directly targeted by the policy. In table 2, we show the negative
impact of tariffs using three different specifications: specifications (1) and (2) estimates the impact of
the policy using equation (1), respectively on import values and import quantities.6 Specification (3)
looks at the impact on import values but restrict the data to the years 2017 and 2019, which allows us to
eliminate the possible anticipatory or lagged effects that are likely to occur in the months surrounding
the implementation of the policy in the summer of 2018.

All three specifications highlight the negative impact of the tariffs on Chinese imports. Using our
preferred specification, specification (3), we find a 31 percent reduction in the imports of products that
were targeted by tariffs, relative to products that did not experience a rise in tariffs. Specifications (1)
and (2) show similar results which indicate little adjustments in prices.

Having demonstrated the negative impact on Chinese imports, we now look at the impact on other
countries, to identify which countries picked up the imports that were not originating from China any-
more. To do so, we run equations (1) and (2) including import flows from all top 50 exporters to the US.
We use the import values as dependent variable and restrict our analysis to the years 2017 and 2019 to
avoid the dynamic effects that take place in 2018 during the months surrounding the implementation of

6The regression with quantities has fewer observations due to the presence of missing quantities in the data.
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the policy. Table 3 report the results for all 50 exporters:7 specification (1) estimates the reduced form
impact when the treatment is a dummy for products that were impacted by the tariffs, while specification
(2) estimates the cross-elasticity by normalizing the treatment as in equation (2) using the change in the
tariff rate and the market share of Chinese imports for this product category.

Table 3 identifies the winners and losers from the tariffs hikes. Naturally, we find that China sees
a sharp reduction in their exports to the US, similar to the previous table. We also find a strong
reduction in imports from Hong Kong, probably due to the nature of the global value chains for products
manufactured in China. In terms of winners, we find that the countries with the larger cross-elasticities
are Vietnam (5.32), India (3.55) and Turkey (2.84). Countries like Thailand, the Dominican Republic,
Malaysia or Indonesia also appear to benefit from this increasing US trade protection toward Chinese
goods.

In order to show that these cross-elasticities are related to the proximity to China in the product
space, we construct a country-level measure of price distance to China that we correlate to the cross-
elasticity. For each origin country o, we construct the average distance in price from Chinese goods by
averaging across products the absolute log price difference to China:

DistoC =
1

Nk

∑
k

| ln pok − ln pCk|. (3)

In this distance, the products k are the hs10 product categories that are subject to tariffs.
Using this distance to quantify the proximity in the price space, we display in figure 3 the correlation

with the cross elasticity estimated above. This scatter plot shows that countries that are located closer
to Chinese prices also have a larger cross-price elasticity with China. For instance, Vietnam and India,
which we estimated to have the larger cross-price elasticity with China, are also the countries that are
the most similar to China in terms of prices. Combining all countries, this negative relationship between
cross-price elasticity and distance is statistically significant, as displayed by the red line.8

This result reflects the importance of accounting for realistic patterns of substitution across countries.
Assuming a CES demand function implies that the trade war would have generated uniform gains in
market shares across third countries. Instead, we find that countries that are similar to China in the
product space benefit much more from the reallocation of Chinese exports induced by the trade war. In
the next section, we provide a simple estimation framework that can capture these important aspects of
the substitution across countries.

3 Theory and Estimation

In this section, we derive a gravity equation of international trade which is (i) micro-founded, (ii) captures
rich substitution patterns between source countries and (iii) can be easily estimated by 2SLS.

3.1 Mixed Preferences and Aggregate Demand

We first present the demand system which underlies the gravity equation. The global economy is a
collection of markets m, each populated with a unit mass of heterogeneous consumers. A market is
a unique combination of a destination d, an HS6 product k and a year t. Each consumer i has CES

7We omit the standard errors for conciseness, but include them in the version of the table in the appendix B.
8The degree of opacity of the blue circles describes the precision of the cross-price elasticity estimates. The

regression, with a coefficient and p-value of respectively -1.44 and 0.001, is also weighted by the inverse of the
standard errors of these estimates. We remove China, Taiwan and Hong Kong from the figure because these
observations are directly and negatively affected by the increase in tariffs.
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Table 3: Effects of tariffs on exports to the US

(1) (2)

Treatment × ARGENTINA 0.01 0.03

× AUSTRALIA 0.04 0.72

× AUSTRIA 0.12*** 2.02***
× BELGIUM 0.05** 0.52

× BRAZIL 0.04 1.30**
× CANADA −0.01 −0.20

× CHILE −0.01 −0.41

× CHINA −0.30*** −6.39***
× COLOMBIA 0.04 0.54

× COSTA RICA 0.02 −0.85

× CZECH REPUBLIC 0.06** 0.80

× DENMARK 0.03 −0.12

× DOMINICAN REPUBLIC 0.07* 2.15**
× ECUADOR 0.06 0.95

× FINLAND 0.08*** 0.77

× FRANCE 0.01 0.24

× GERMANY 0.04*** 0.87***
× GUATEMALA 0.01 0.35

× HONDURAS −0.01 0.55

× HONG KONG −0.62*** −10.97***
× HUNGARY 0.05 0.94

× INDIA 0.20*** 3.55***
× INDONESIA 0.07** 1.88***
× IRELAND 0.07* 1.85**
× ISRAEL 0.01 −1.00

× ITALY 0.06*** 0.87***
× JAPAN 0.01 −0.23

× KOREA, SOUTH 0.07*** 0.65

× MALAYSIA 0.13*** 2.05***
× MEXICO 0.08*** 1.53***
× NETHERLANDS 0.04* 0.47

× NEW ZEALAND −0.02 −0.18

× NICARAGUA 0.05 −1.74

× PERU −0.01 −0.85

× PHILIPPINES 0.06* 1.35**
× POLAND 0.17*** 2.35***
× PORTUGAL 0.08** 1.39*
× ROMANIA 0.09** 1.50

× RUSSIA 0.12** 1.33

× SINGAPORE −0.01 −0.88

× SLOVAKIA 0.04 0.44

× SOUTH AFRICA −0.02 −1.36

× SPAIN 0.06*** 0.75

× SWEDEN 0.09*** 1.35***
× SWITZERLAND 0.00 −0.67

× TAIWAN 0.02 −0.02

× THAILAND 0.09*** 1.84***
× TURKEY 0.16*** 2.84***
× UNITED KINGDOM 0.04*** 0.46

× VIETNAM 0.29*** 5.32***

Num.Obs. 1 948 501 1 948 501
R2 0.878 0.878

* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure 3: Scatterplot between cross-price elasticity with China and distance to Chinese price

preferences over the set Om of varieties supplied by different source countries o:

Uim =

( ∑
o∈Om

exp(X ′omβ + ξom)
1
σi q

σi
σi−1

io

)σi−1

σi

.

Xom is a vector of observable characteristics and ξom is the “quality” of variety o. This measure of
quality contains all characteristics that enter the utility function – both tangible and intangible – which
are observable to consumers and unobservable to the econometrician. qio is the physical quantity of good
from country o purchased by consumer i. This utility function features mixed-preferences since σi is the
consumer-specific elasticity of substitution across varieties. β is a (nX × 1) vector of parameters driving
the relative preference for the different observable characteristics and we assume that it is constant.
However, we show in appendix D that the estimation of the model can be extended to let β vary across
consumers. Let αi ≡ σi − 1. The share of variety o in consumer i’s expenditure is

sio =
exp (−αi ln pom +X ′omβ + ξom)∑

o′∈Om exp (−αi ln pom +X ′omβ + ξom)
, (4)

with pom the price faced by consumers in market m for goods for origin o. pom includes tariffs and
transportation costs. The aggregate revenue market share of variety o in market m is

som =

∫
sioeim di∫
eim di

=

∫
sioωimdi, (5)
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with eim the total budget that consumer i spends on varieties from marketm and ωim ≡ eim∫
eim di

the share
of consumer i in the aggregate sales of market m. Assuming that all consumers in a given destination
have identical Cobb-Douglas preferences across HS6 products, then eim ∝ yi and ωim = yi∫

yi di
= ωid:

the share of consumer i in the sales of any market m is equal to i’s share of the national income.

Substitution patterns Introducing mixed-CES preferences in a gravity equation delivers more
realistic substitution patterns relative to a simple CES case. To see this, consider the expression of the
cross-price elasticity of variety o′ 6= o with respect to the price of o.

∂ ln so′

∂ ln po
=

1

s′o

∫
αisio′sioωid di. (6)

All things equal, this cross-elasticity is large if varieties o and o′ serve similar consumers, which happens if
o and o′ share similar product characteristics. For instance, varieties with low prices will be purchased by
price-sensitive consumers. As a result, an increase in the price of one of these varieties will induce price-
sensitive consumers to reallocate their consumption, benefiting predominantly other affordable varieties.
As such, mixed-CES preferences relax the IIA condition: when c increases its price and loses market
shares, not all competing varieties benefit in the same proportion. Instead, varieties closer to c in the
product space experience a larger increase in their market shares. By comparison, with simple CES (i.e.
when αi = α for all consumers) the cross-elasticity collapses to:

∂ ln so′

∂ ln po

∣∣∣∣
αi=α ∀i

= αso,

in which case the IIA restriction holds because all varieties o′ 6= o are equally impacted by the change in
the price of o.

Random Coefficients To discipline the distribution of preferences across consumers, we assume
that αi verifies:

αi = α+ πµd + λV
1/2
d νi + γεi, (7)

with εi a random shock and νi the standardized demographic shock: for a consumer i from destination
d, ln yi = µd + V

1/2
d νi. We expect π and λ to be negative: richer consumers are less price elastic. (7)

allows for λ 6= π. Economically speaking, this means that idiosyncratic income shocks V 1/2
d νi may impact

differently the price elasticity αi than shocks to the mean income µd. It could be for instance that the
price-elasticity of a consumer does not depend on her absolute level of income but rather on her distance
to the average national income, in which case λ 6= π = 0.

Hereafter we refer to θ ≡ {λ, γ} as the “non-linear parameters”. If θ = 0, there is no dispersion across
consumers within a market, and we are back to simple CES preferences. Importantly, the estimation
procedure does not impose parametric assumptions on the distribution of these random coefficients.
This is in contrast with traditional estimation methods that require to integrate the distribution of
random coefficients to evaluate an objective function, and therefore need to assume a specific parametric
distribution for these coefficients. By contrast, we only assume that the mean and variance of the log-
income ln yi – respectively µd and Vd – vary by destination and are known to the econometrician.9 We
also normalize εi to have zero mean and unit variance. Finally, we assume that νi and εi are i.i.d. across
consumers.

9In appendix D, we show how to extend the estimation to a model with multiple demographics.
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3.2 Estimation

The presence of heterogeneity in preferences poses challenges for the estimation of the model. It requires
the econometrician to evaluate the integral featured in equation (5) which complicates the estimation
of the model. By contrast, the model without random coefficient – with θ = 0 – generates a log-linear
demand equation that can be estimated with standard linear regressions. Therefore, Salanié and Wolak
(2022) proposes to estimate an approximation of the true model around θ = 0, in the context of mixed
logit preferences. In this paper, we extend their approach to mixed CES preferences with demographic
differences across markets.10 Both extensions fit the specific needs of international trade data. First,
mixed CES preferences imply that the consumer-level market share depends on log-prices, as opposed to
prices with mixed logit preferences.11 Since prices tend to be noisy in trade data, using log-prices help
mitigate the role of measurement error and outliers. Second, considering demographics makes it possible
to leverage the variation across destination markets from international trade data to identify the impact
of demographics on consumer preferences and substitution patterns.

The “small-σ” approach To understand the “small-σ” approach developed in Salanié and Wolak
(2022), it is useful to first sketch the way mixed demand systems are traditionally estimated. Following
Berry et al. 1995 (hereafter, BLP), the identification usually comes from orthogonality conditions between
structural errors ξ and instruments Z:

E(ξZ) = 0. (8)

Let ξm(θ) be the vector of “structural errors” of the model. For any candidate parameter value θ,
ξm(θ) is such that the market shares are equalized in the data and the model :

ξm(θ) : ξ s.t. som(ξ, θ) = Som, (9)

with Som the observed market share. θ̂ is obtained by iterating over θ until minimizing the sample
distance between E(ξ(θ)Z) and 0. This can be computationally challenging, notably because each
interation involves inverting market shares and estimating (β1, β2) in order to obtain ξm(θ). By contrast,
the solution proposed by Salanié and Wolak (2022) is to estimate the model through a linear regression
equation obtained from a Taylor expansion. Let θ̃ be the vector of non-linear parameters re-scaled by a
scalar σ : θ = σθ̃. They perform a Taylor expansion of the structural errors ξ(θ) around σ = 0:

ξ(θ) = ξ(σθ̃) = ξ(0) +
∂ξ(σθ̃)

∂σ

∣∣∣∣
σ=0

σ +
∂2ξ(σθ̃)

∂σ2

∣∣∣∣
σ=0

σ2

2
+O(σ2). (10)

The Regression Equation After some algebra, (10) delivers the following regression equation:

ln som = X ′omβ − α ln pom − πµd ln pom + γ2Kom + λ2VdKom + ξom + (α+ πµd) lnPm +O(σ2) (11)

with

Kom ≡ 1
2 (ln pom − ln pm)2

ln pm ≡
∑
o som ln pom.

10Breinlich, Fadinger, Nocke, and Schutz (2020) also derive a log-linear gravity equation through a first order
approximation. However, while we are interested in extending the standard gravity equation to mixed preferences,
they focus on a generalization to oligopolistic competition.

11 Mixed CES preferences are getting increasingly adopted in empirical models (Adao et al., 2017; Dubé et al.,
2021; Head and Mayer, 2021). See Birchall and Verboven (2022) for a comparison of mixed logit and mixed CES
preferences in terms of own and cross-price elasticity.
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and Pm the price index.12 Kom is what Salanié and Wolak (2022) refer to as an “artificial regressor”.
Kom is (half) the squared distance of variety o to the weighted average log price in the market. Accord-
ing to equation (11), ln som is increasing in this squared distance. This means that the second order
approximation preserves a major feature of the mixed CES model: varieties that are more isolated in the
price space have a larger market share, all things equal. The only difference between the exact model
and the approximated model is that the approximation only involves the distance to the mean product
characteristic. By contrast, in the exact model, sales depend on the distance to each competing variety.

Demographic moments enter two terms of equation (11). First, ln som depends on the interaction
between mean income µd and Kom. We expect market shares to be less elastic to prices in richer
markets, which corresponds to the case π > 0. Second, demographics enter the equation through the
interaction term VdKom: the dispersion of log-income shapes the relationship between market shares
and price differentiation. Interestingly, this interaction always has a positive impact on market shares
since γ2 > 0. In words, it means that the return to product differentiation is larger in markets with
more income dispersion. The intuition is the following: less income dispersion means less preference
dispersion. As a result, there is less scope to gain market shares by adopting a niche position in the
product space.

Importantly, equation (11) extends naturally to multiple non-linear characteristics and demographics.
The expression and derivation of (11) in the general case can be found in appendix (D).

Bringing the Linearized Model to the Data Equation (11) can be estimated by 2SLS. It is
necessary to instrument ln p (as well as µd ln p) for obvious simultaneity reasons. Note that it is also
necessary to instrument Kom because it depends on ln p and s, which are both endogenous variables. If
Zlnp is a set of instrumental variables for prices and l̂n p and ŝ are respectively the predictions of ln p

and s based on Zlnp, then a natural instrument for Kom is

K̂om =
1

2

[
l̂n pom −

∑
o

ŝom l̂n pom

]2

Accordingly, one can obtain an instrument for VdKom by interacting Vd with K̂om.
Hereafter, we use the acronym “FRAC” to refer to the 2SLS estimator of equation (11). This acronym

introduced by Salanié andWolak (2022) stands for Fast, Robust and Approximately Correct. “Fast” refers
to the fact that 2SLS is faster to compute than non-linear GMM techniques usually required to estimate
mixed preferences. “Robust” emphasizes the fact that equation (11) does not require distributional
assumptions on the random coefficients, beside specifying their mean and variance. “Approximately
Correct” has to do with the fact that (11) is an approximation of the true model. At the end of this
section, we use simulated data to show that in spite of this approximation, FRAC adequately estimates
substitution patterns.

3.3 Counterfactual Market Shares in the Linearized Model

Once estimated θ, practitioners will likely be interested in computing cross (-price) elasticities between
varieties from different source countries. One approach is to plug θ̂ into the full model and evaluate
equation (6). We propose a different approach which consists in computing the cross-elasticties from the

12 In the exact model, there are as many CES price indices as consumers. However, once linearized, the
aggregate demand equation is consistent with a representative consumer having CES preferences and whose price
index verifies

(α+ πµd) lnPm = −
∑
o∈Ωm

exp
(
X ′omβ − α ln pom − πµd ln pom + γ2Kom + πVdKom + ξom +O(σ2)

)
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linearized model. This alternative approach presents two advantages: (i) it does not require to specify the
distribution of the random coefficient shocks νi and εi and (ii) it does not require numerical integration
techniques because it delivers a closed form expression for the elasticity.

In order to derive the expression of the cross price elasticity ∂ ln so
∂ ln pc

in the linearized model, let us first
consider the expression of the market share. Slightly re-arranging (11) gives

som =
exp(X ′omβ − ᾱd ln pom + ΣdKom + ξom)∑
k exp(X ′omβ − ᾱdln pkm + ΣdKkm + ξkm)

, with

(
ᾱd

Σd

)
≡

(
α+ πµd

γ2 + λ2Vd

)
. (12)

As we show in appendix (F), getting an expression for the price elasticity from (12) is straightforward:

∂ ln som
∂ ln pcm

= −Σd
∂ln pm
∂ ln pcm

}ln pom + Σd(1o=c − sc)}ln pcm − ᾱd(1o=c − sc) (13)

with }ln pom ≡ ln pom−
∑
k som ln pom the deviation of o to the weighted average log price. Equation (13)

reveals that the way varieties respond to a change in the average price depends on their position with
respect to this average price. For varieties whose prices are above the average (}ln pom > 0), an increase
in the average decreases their market shares because it reduces their price differentiation. Conversely, a
variety whose price stands below the average will benefit from an increase in the average price.

Although equation (13) is analytically informative, it raises a problem: ∂ ln som
∂ ln pcm

depends on the

elasticity of the average price ∂ln pm
∂ ln pcm

which depends itself on the vector of elasticities ∂ ln som
∂ ln pcm

. Therefore,
getting an equilibrium expression for the market share elasticities requires finding a fixed point for
∂ln pm
∂ ln pcm

. As we demonstrate in appendix F, this fixed point has a closed form solution which can be
easily computed from the data:

∂ln pm
∂ ln pcm

=
sc

{
Σd}ln p2

cm − ᾱd}ln pcm + 1
}

1 + ΣdVln p
m

, (14)

with Vln p
m =

∑
o so

(
ln pom − ln pm

)2
, the market share weighted variance of log prices.

In this section we described to “small-σ” approach to estimate and implement counterfactual analysis
in the context of mixed-CES preferences. In appendix E, we provide simulation-based evidence of the
ability of the “small-σ” to estimate the cross elasticities.

4 Empirical Implementation

We now implement the estimation strategy described in the previous section, which allows us to estimate
a gravity equation with rich patterns of substitution across countries. We start by describing the data
employed to implement our estimation, before showing our results.

4.1 Data

The estimation of our gravity model does not require more data than usually employed in this kind of
exercise. It requires data on bilateral trade flows across countries, traditional bilateral gravity variables
such as distance, common languages or colonial history, as well as information regarding trade policy
such as tariffs, or preferential trade agreement. In the context of this paper, we augment this set of data
with moments of the income distribution of the destination countries, to improve the identification of
the random coefficients, as well as information regarding the domestic good. Although these two pieces
of information are not required, they are useful to document the implementation of the model.

First, we use trade data from BACI that is available at the bilateral level and disaggregated by year
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and HS6 product categories. We obtain export values in US dollars and export quantities measured
in weight. From these exported values and quantities, we construct unit values that we use as proxy
for prices in our analysis. We augment these bilateral trade flows with tariffs measures obtained from
the MacMap dataset. This dataset, developed with the CEPII, provides measures of applied tariff
duties at the bilateral level and disaggregated at the HS6 level. In the context of the estimation of the
import demand system, we will use these tariffs as instruments for the prices of exported goods: because
they increase the final price of these exports, while being uncorrelated with the demand shifter in the
import demand function, this measure is a perfect instrument to consistently estimate the price-elasticity
of imports. We also use standard gravity variables, such as geographical distance, common language,
colonial links, in our main specification. These variables are obtained from the gravity database, provided
by the CEPII.

In addition to these standard datasets, some of the specifications require demographics information
about the destination markets, and data regarding the domestic good. We obtain the average income
per capita and the Gini index from the World Development Indicators database from the World Bank.
This information allows us to obtain the mean and standard deviation of the income distribution in
each destination markets. Finally, to obtain information on the domestic good, we rely on trade data
and the World Input Output Database (WIOD). We first need the share of the domestic good at the
destination-product level, that we obtain from the WIOD.13 Moreover, we compute the price of the
domestic good from the export data of that country. We observe the FOB prices of the good exported
from each destination markets at the HS6 level, which we use as proxy for the price of the domestic good
in that market.14

To facilitate the estimation of the model, we reduce the coverage of this dataset: we restrict our
sample to the 39 destinations that are included in the World Input Output Database (WIOD).15 We
focus on this limited set of destinations because we use domestic information from the WIOD that only
include these destination markets. Moreover, we restrict our analysis to the exporting performance of the
top 100 exporting countries to this set of destinations, to eliminate countries with missing or imprecise
observations. Finally, we estimate the model using the years 2001, 2004, 2007 and 2010: these are the
years for which tariffs data are available from the MacMap database. Because our estimation mostly
relies on cross-sectional variations, four years of data provide sufficient variation to precisely identify the
parameters of the model.

4.2 Econometric Specification

The main econometric equation comes directly from the model derived in the previous section. From
(11), we can write the trade flow from origin country o to destination d in product k at time t as

ln exportodkt =X ′odktβ − α ln podkt + π µd × ln podkt + γ2Kodkt + λ2 Vd ×Kodkt

+ δokt + δdkt + εodkt.

This gravity regression contains six bilateral variables Xodkt that are traditionally included in the gravity
models. In our specifications, we use the physical distance, whether the two countries share a language,
a currency, a border, the same main religion and a history of colonial links. In additional to these gravity
variables, we have variables that identify our demand system. The price of the variety (inclusive of tariffs
and transportation costs) – podkt – identifies the average price-elasticity α, while the artificial regressor

13The WIOD only provides the share of domestic consumption in total consumption at the CPA level, which
is more aggregated than the HS6 product categories. We use a conversion table to assign HS6 products to CPA
categories.

14More details on the construction of these variables appear in appendix A.
15The database includes 42 countries but we exclude Cyprus, Malta and Taiwan due to data constraints.
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Kodkt captures the heterogeneity in price-elasticity γ, that generates rich substitution patterns. Finally,
the interaction of the price with the average income µd and the interaction between the variance of the
income Vd and the artificial regressor Kodkt capture the role of income in shaping heterogeneity in the
price-elasticity. To faciliate the interpretation of the coefficients, both µd and Vd are deviated from their
respective sample means.

We add two sets of fixed effects to this equation. First, we include a market-level fixed effect δdkt
that controls for the price index that is specific to the market. As a result, we do not need to normalize
our regression by the the market share of an outside good, or to compute the price index based on the
set of varieties available to the consumers. Second, we include a producer fixed effect δokt to control for
supply shocks that would apply to many destination markets. As a result, our identification relies on
variations at the bilateral level, where producers perform differently in different destinations based on
their relative position on the market.

Despite this set of fixed effects, the estimating equation is subject to endogeneity concerns due to
the presence of prices and artificial regressors. These regressors are constructed using market shares and
prices, which are both endogenous variables, and therefore need to be instrumented. To deal with the
endogeneity of prices, we use the tariff rate at the bilateral level that can be arguably used as a cost
shifter: it is likely to shift the final price of a good while, at the same time, not being correlated with
the demand residual in the gravity regression. To instrument the artificial regressor, we first estimate a
gravity model using the six exogenous gravity variables, the tariff rates and the two sets of fixed effects.
From this gravity model, we obtain a prediction of the market share of each variety, which allows us to
construct an exogenous version of the artificial regressor. Formally, we have

K̂odkt =
1

2
(ln p̂odkt −

∑
o′

ŝo′dkt ln p̂o′dkt)
2

in which p̂odkt and ŝo′dkt are predicted version of the market share and prices using exogenous variables
instead. We then use this exogenous artificial regressor as instrument for the true artificial regressor.

4.3 Results

We present the results of our estimation in table 4. In columns (1) et (2), we run a simple structural
gravity regression that includes the price of the trade flows and the set of bilateral gravity variables.
In column (1), prices are not instrumented, which explains the small coefficient on prices at -0.08. In
column (2), we show that the instrumentation of prices using tariffs generates a more realistic price
elasticity around -2.29, which validates the instrumental strategy. In addition to these consistent results
regarding the effect of prices, we also find expected results on the gravity variables. The geographical
distance has a negative impact on trade flows, but each variable describing a common feature between
countries generates more trade between these countries.

In columns (3) to (5) of table 4, we introduce the artificial regressors that identify the heterogeneity
in consumer preferences, which is characteristic of the mixed-CES model. In columns (3) and (4), we add
the artificial regressor on prices, to capture the role of price differentiation. Even though this regressor
is not instrumented in column (3), we still find a positive coefficient, which shows that varieties with
a price that differs from the average price perform better in export markets. This benefit from price
differentiation is confirmed in column (4) in which the coefficient on the artificial regressor Kln p is even
larger. This larger coefficient from the instrumentation is expected since the instrument only identifies
the patterns of substitution through supply shocks. By contrast, the OLS coefficient in column (4) is
also identified from demand shocks, that are likely to be positively correlated between similar varieties.
As a result, the correct identification through supply shocks better captures the stronger substitution
patterns between varieties that are closer in the price space. This gain from price differentiation is
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Table 4: FRAC regressions – estimation results

(1) (2) (3) (4) (5)

ln p −0.08*** −2.29*** −2.50*** −2.68*** −2.76***
(0.00) (0.07) (0.08) (0.08) (0.09)

Kln p 0.30*** 0.54*** 0.60***
(0.01) (0.02) (0.02)

ln p× µY 0.30***
(0.04)

Kln p × VY 0.17***
(0.06)

log distance −0.91*** −0.46*** −0.48*** −0.49*** −0.46***
(0.00) (0.01) (0.01) (0.01) (0.02)

Common currency 0.18*** 0.15*** 0.13*** 0.11*** 0.11***
(0.00) (0.01) (0.01) (0.01) (0.01)

Common border 0.67*** 0.57*** 0.57*** 0.57*** 0.56***
(0.00) (0.01) (0.01) (0.01) (0.01)

Common language 0.24*** 0.17*** 0.19*** 0.20*** 0.21***
(0.00) (0.01) (0.01) (0.01) (0.01)

Common religion 0.12*** 0.07*** 0.07*** 0.08*** 0.04***
(0.01) (0.01) (0.01) (0.01) (0.01)

Colonial link 0.20*** 0.06*** 0.06*** 0.06*** 0.06***
(0.00) (0.01) (0.01) (0.01) (0.01)

ln p instrumented N Y Y Y Y
Kln p instrumented . . N Y Y

F-stat first stage . 6 155 5 242 2 801 1 117

Notes: N = 11 660 255. Standard errors between parentheses are clustered at the origin-product
and destination-product levels. All regressions include origin-product-year and destination-
product-year fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01.

important economically: a variety that is positioned 0.5 log-point above or below the average price
enjoys an additional 7 percent export value ( 1

20.52 × 0.54) relative to a variety with a price equal to the
mean.

In column (5), we introduce demographics to better capture the distribution of heterogeneity across
consumers. First of all, we find that richer consumers have a lower price-elasticity given the positive
coefficient on the interaction between income and price.16 Moreover, we also find that destinations with
larger income inequality features more dispersion in preferences, given the positive coefficient on the
interaction between the variance in income and the artificial regressor. As an illustration of the effect
of the income distribution, the United States that record higher income on average and more inequality
have an average price-elasticity of -2.56 and a parameter on the artificial regressor of 0.63.

Even though the positive role of the variance is consistent with the effect of average income, it is
reassuring to see that the identification of a role for income is not only driven by variation in the price-
elasticity across destinations, but also by a stronger role for price differentiation within destinations
with more income inequality. This result connects our finding to the micro-foundations of the mixed
CES model, which generates complex substitution patterns from heterogeneity in consumer preferences.

16This result is reminiscent of Bergstrand (1990)’s evidence that bilateral trade decreases with income per
capita differences between the origin and destination countries.
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Finally, remember that the role of income was over-identified in a regression that features a role for
average income across destinations and for the variance in income within a country: in theory, both the
average and variance identifies the same effect of income on the price-elasticity, such that the coefficient
associated with the variance should be the square of the coefficient associated with the average. In our
regression, we cannot reject this relationship with a coefficient on the variance (0.17) that is much smaller
than the coefficient on the average (0.30).

Overall, these results confirm that the data strongly reject the CES assumption that implies symmet-
ric patterns of substitution across firms. We find that the performance of a country in export markets
depends on its position in the price distribution: countries that are able to occupy a segment of the
market that is less dense perform better than countries located closer to the average exporter. As a
result, countries or firms are more affected by a change in the export performance of a country that is
located near them.

Alternative specifications In addition to the results showing the relevance of the augmented
gravity model, we now show alternative specifications to document the versatility of the method. In table
5, we show the results of specifications that include the domestic good as outside good, similar to the
current practice in the Industrial Organization literature, and use alternative measures of differentiation.

In columns (1) and (2) of table 5, we incorporate the possibility for the consumer to choose the
domestic good as an option. The results in the first two columns of table 5 show that adding this
domestic variety has a limited impact on the parameter estimates of the model. We do find a smaller
role for vertical differentiation once we account for the domestic variety, as witnessed by the smaller
value of the estimates on the artificial regressors. However, this might be due to the fact that we have
limited information on the different choices among the domestic varieties, which might mis-measure the
extent of the vertical differentiation between these varieties. Overall, these results are reassuring on the
ability of the model to capture realistic substitution patterns when using trade data only, by focusing
essentially on the import demand system.

In column (3), we estimate the model without prices. This specification mimics traditional gravity
regressions which aim at estimating the tariff elasticity of trade flows rather than the price-elasticity. In
this scenario, we directly use the bilateral tariffs in the specification as a measure of trade barriers and use
the gdp per capita to capture possible patterns of substitution across countries: we might expect countries
with similar level of developments to have a higher degree of substitution between them. The results of
column (3) confirm this intuition: the artificial regressor based on the gdp per capita, rather than price,
is highly significant. This implies that countries with similar gdp per capita are closer substitutes. This
specification shows that the FRAC method can be applied to trade data without information on prices
and yet capture realistic substitution patterns.

Finally, we show in column (4) that we can also include additional artificial regressor to capture other
sources of differentiation. In this column, we allow for the patterns of substitution to differ based on the
geographical origin of the trade flow. We divide the set of origin countries in 13 regions and construct the
artificial regressor to test whether countries from the same region display stronger substitution patterns
between them. In the case of a discrete variable, the artificial regressor is

Kregion =
1

2
− sregion (15)

where sregion is the market share of the region that a country belongs to.17 Intuitively, a country that

17To derive the expression of Kregion, consider that consumer preferences include a full set of regional dummies
1o∈r for each one of the different regions r. Consumers differ in the valuation of each one of these dummies.
Assuming that the variance of the valuation is the same for each dummy Σr = Σregion ∀r, Σregion can be
identified by including the artificial regressor 1

2

∑
r(1o∈r − sr,m)2 in the gravity equation. One can show that

when market fixed effects are included in the equation, including 1
2

∑
r(1o∈r − sr,m)2 is equivalent to including
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Table 5: FRAC regressions: alternative specifications

(1) (2) (3) (4)

ln p −2.43*** −2.58*** −2.78***
(0.07) (0.08) (0.08)

Kln p 0.22*** 0.37*** 0.55***
(0.01) (0.02) (0.02)

ln p× µY 0.38***
(0.04)

Kln p × VY 0.26***
(0.05)

log tariff −2.49***
(0.06)

KlnGDPc 0.23***
(0.00)

Kregion 0.35***
(0.02)

log distance −0.47*** −0.43*** −0.93*** −0.51***
(0.01) (0.02) (0.00) (0.02)

Common currency 0.13*** 0.12*** 0.19*** 0.12***
(0.01) (0.01) (0.01) (0.01)

Common border 0.57*** 0.55*** 0.68*** 0.57***
(0.01) (0.01) (0.00) (0.01)

Common language 0.18*** 0.20*** 0.24*** 0.20***
(0.01) (0.01) (0.00) (0.01)

Common religion 0.07*** 0.03*** 0.15*** 0.09***
(0.01) (0.01) (0.01) (0.01)

Colonial links 0.06*** 0.06*** 0.20*** 0.04***
(0.01) (0.01) (0.00) (0.01)

N 11 660 255 11 660 255 11 619 710 11 660 255
F-stat first stage 2 977 1 118 3 772 437 1 937

Notes: Standard errors between parentheses are clustered at the origin-product
and destination-product levels. All regressions include origin-product-year and
destination-product-year fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01.

belongs to a region that performs well in a specific market indicates more direct competition for that
country. As a result, this country does not perform as well in this specific market.18 The results in
table 5 shows that geographical differentiation has an important role on export performance: countries
perform relatively better when competing countries from the same region are less present in a destination
markets. To put things in perspective, the coefficient equal to 0.35 means that a country belonging to a
region with a market share of 20 percents exports 3.5 percent less than a country from a region with a
market share of 10 percents. Therefore, this regression shows that both vertical differentiation – through
prices – and geographical differentiation – through the region of origin play a role in shaping export
performance across countries.

artificial regressor Kregion = 1
2
− sregion.

18Note that a similar closed-form solution exists in the nested CES model, that can accommodate heterogeneous
substitution patterns based on a discrete grouping. In the nested CES model, the regressor that captures these
patterns of substitution is based on the market share of a variety within the group. The FRAC framework
identifies these effects in a similar fashion, but can accommodate discrete and continuous variables with linear
estimation.
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5 Out of sample predictions

In section 2 of this manuscript, we studied the reallocation patterns across countries induced by the
imposition of tariffs on Chinese goods during the recent US-China trade war. This episode allowed us
to estimate the cross-price elasticities of many exporters with respect to Chinese exports, and show that
these elasticities are not constant across countries, rejecting the IIA assumption imposed by standard
gravity models. Specifically, countries that gained the most from the imposition of tariffs on Chinese
exports to the US were countries with similar prices to China. This result motivated the development
of the mixed-CES model that can generate a role for vertical differentiation and more realistic patterns
of substitution across countries.

In this section, we circle back to the motivating evidence and test the ability of our estimated model
to predict the reallocation patterns across countries that resulted from the trade war. We rely on the
expression derived in the section 3 for the cross-price elasticity, coupled with the estimated parameters of
the model, to obtain a prediction for which countries should gain the most from this episode. Importantly,
this prediction is made out of sample, in the sense that it only relies on information available before the
actual start of the trade war. Therefore, it is a true test for the ability of the model to improve the
predictive power of standard gravity models.

5.1 Implementation

The objective is to obtain a prediction for the normalized cross-price elasticity, eo,C,m ≡ 1
sC,m

∂ ln so,m
∂ ln pC,m

,
that we estimate separately for each origin country in section 2. This object can be estimated using
FRAC. Specifically, plugging equation 13 into 14 we have

eFRACo,C,m = ᾱd−Σd(ln pC,m − ln pm)− Σd(ln po,m − ln pm)

[
1− ᾱd(ln pC,m − ln pm) + Σd(ln pC,m − ln pm)2

1 + ΣdVln p
d

]

This equation indicates that we can directly compute the cross-price elasticity between two varieties,
by knowing the distribution of prices ln p and market shares s in the market and the value of the
parameters ᾱd and Σd.

To compute this object, we rely on observations from the year 2017, preceding the trade war that
took place in 2018: for each country o exporting to the US and each hs10 product k that will be
targeted by a tariff, we observe the price and market share for the year 2017. Moreover, we compute
the US-specific parameters based on the mean and variance of the income distribution in the United

States:

(
ᾱUS

ΣUS

)
=

(
α̂+ π̂µUS

γ̂2 + λ̂2VUS

)
. We combine these observations and estimated parameters for the

US to obtain a prediction of the cross-price elasticity of country o with respect to tariffs on Chinese
products, êo,C,k,US , for each hs10 category k. Finally, we compute the average cross-price elasticity as
êFRACo,C,US = 1

Nk

∑
k ê

FRAC
o,C,k,US .

5.2 Results

In figure 4, we compare the estimated cross-elasticity in section 2 with the elasticities predicted by our
model: the y-axis reports the predictions for each origin country o based on the formula above, while the
x-axis is based on the estimation of the country-specific cross-price elasticities in section 2. This figure
shows that the model does a good job at predicting which countries won the most from the reduction in
Chinese exports to the United States. In particular, it identifies the biggest winners such as Vietnam,
India or Turkey with large cross-price elasticities.
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Figure 4: Prediction vs realization of trade reallocation from the US-China trade war.

Notes: Each point reports the predicted and estimated cross-price elasticity of an origin country. The dots are
predictions based on the FRAC model, while the triangles are based on a CES model. The transparency of each
marker is related to the standard error of their estimated elasticity. The regression line is based on a regression
weighted by the inverse of the standard error of the estimated elasticity.

To quantify the performance of the model at predicting the reallocation of Chinese exports across
countries, we run a linear regression between the two measures that is represented with a dashed line
on the figure. This relationship is significantly positive with an estimated coefficient of 0.95 (p-value
< 0.001) and a R2 equal to 0.27. As a comparison, we also report the prediction in the case of a CES
model. In this scenario, the model does not predict any heterogeneity in the reallocation of Chinese
market shares across countries: all countries feature the same cross-price elasticity which is equal to
the estimated elasticity of substitution of the CES model, 2.29. In conclusion, our model that allows
for heterogeneous patterns of substitutions across countries is a significant improvement to predict the
winner and losers from the reallocation effects of a large trade shock.

5.3 The Unequal Impact of Trade Wars on the Cost-of-Living of US con-
sumers

Through the lens of our structural model, the uneven redistribution of Chinese market shares across
source countries (figure 4) reveals that US consumers have heterogeneous preferences. This heterogeneity
implies that consumers differ in the composition of their import basket, with consumers importing more
intensively from China losing more purchasing power due to trade wars.

In this section, we use our structural estimates (table 4, column 5) to quantify the unequal impact
of trade wars on the cost-of-living of US consumers. Let dτk be the cumulative change in US tariffs
on Chinese imports between 2017 and 2019, for product k. We make the following counterfactual
experiment: if trade wars had happened in 2017, increasing Chinese prices to some counterfactual value
p̆k,C,2017 = pk,C,2017(1 + dτk), by how much would have increased the cost of imports?
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In order to compute the consumer-specific import price index, we first compute the price index at
the consumer × product level and then aggregate across products. A consumer is fully characterized by
her income shock ν and her random shock ε, which together determine her price elasticity

α(ν, ε) = α+ πµY,US + λV
1/2
Y,USν + γε.

For a consumer with shock realisation (ν, ε), the CES import price index of product category k at date
t is

Pkt(ν, ε) =

( ∑
o∈Ωkt

exp(X ′oktβ + ξokt)p
−α(ν,ε)
okt

)− 1
α(ν,ε)

Since consumers have Cobb-Douglas preferences across products, the overall import price index is

Pt(ν, ε) ∝
∏
k

Pkt(ν, ε)
ηk

with ηk the budget share of product k in aggregate US imports. Analogously, we define P̆t(ν, ε) as the
import price indexed when Chinese prices are equal to their counterfactual value p̆kCt. The percentage
impact of trade wars on the import cost is

P̂ (ν, ε) =
P̆2017

P2017
(ν, ε)− 1

Following the same logic as for the price index, we can compute the consumer × product specific import
share of China

sCkt(ν, ε) =
exp (−α(ν, ε) ln pCkt +X ′Cktβ + ξCkt)∑

o′∈OCkt exp (−α(ν, ε) ln pokt +X ′oktβ + ξokt)
,

which we aggregate across products to obtain the consumer-specific Chinese import penetration:

sCt(ν, ε) =
∑
k

ηksCkt(ν, ε)

In figure 5 we plot the import share sC,2017(ν, ε) for ε = 0 (the mean value of ε) and for values of
ν corresponding to the percentiles of the standard normal. As depicted in figure 5, our estimates imply
that Chinese import penetration is about 2 percentage points larger for US consumers at the bottom of
the income distribution than at the top.

The direct implication of these differences in Chinese import penetration is that poor consumers are
more sensitive to tariffs on Chinese products. To get a sens of the magnitude of this differential impact,
in figure 6 we plot P̂ , the percentage change impact of trade wars on the import price. Consumers at the
bottom of the US income distribution suffered roughly 10% more that consumers at the top. Notice that
these results were obtained without giving up on the simplicity of our estimation method: quantifying the
price index impact required neither assumptions on the distribution of random coefficient ε nor numerical
integration technique. Our empirical method can therefore be used to easily evaluate the distributional
impact of trade policy both across source countries and across consumers.
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6 Conclusion

In this paper, we propose a strategy to estimate mixed CES preferences using bilateral country-level
trade data. We rely on the “small-σ” approach from Salanié and Wolak (2022) to linearize the demand
system and structurally derive a log-linear gravity equation. Compared to standard models, our gravity
equation features “artificial regressors”, which measure the distance of a variety to its competitors in terms
of product characteristics. These regressors identify the role of product differentiation in substitution
patterns. The larger the coefficient on artificial regressors, the more substitution patterns between two
varieties depend on their relative positioning in the product space, the starker the violation of the IIA
assumption. Importantly, our augmented gravity equation makes it possible to relax the IIA assumption
and obtain realistic substitution patterns at virtually no cost compared : estimation relies on linear
techniques and has the same data requirement as traditional gravity estimation. Perhaps the only
additional cost is to construct the additional regressors, which is straighforward: these regressors are
simply quadratic distances of a variety’s product characteristics to the its average competitor.

When implemented on bilateral trade data, our estimation reveals important deviations from the IIA
assumption. Varieties which are similar in terms of prices or geographical location are significantly more
substitutable. We further document the out-of-sample performance of our method in the context of the
recent US-China trade war. Using our structural gravity and data prior to the beginning of the war, we
are able to predict which source country most benefited from the reduction of Chinese exports to the
US. In comparison, CES preferences make the prediction that all source countries equally benefited from
the trade war. The data strongly rejects this prediction.

In light of its simplicity, our method provides an important tool to evaluate the impact of product
differentiation on export performance and the resilience to competition shocks.
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Appendices

A Data Construction

Our estimation mainly relies on BACI. In this dataset, a unit of observation is a combination of a source
country, a destination country, a six digit product category of the HS classification (HS6) and a year.
For each observation, we know the value of the shipment along with the physical quantity shipped. This
appendix describes the way we prepare the data for estimation.

Geographical Coverage We limit the set of destination countries to the 40 countries present in
the WIOD database. 19 Because trade flows involving Luxembourg and Belgium are reported together
in the raw trade data, we input all of Luxembourg’s trade to Belgium. We drop Taiwan, Malta and
Cyprus for which the tariffs are missing. In total, we have 36 destinations. We keep observations for the
top 100 exporters to these destinations. We eliminate destination × HS6 × year markets with less than
5 exporters.

Tariffs data Our tariff measures come from the Market Access Map (MAcMap) dataset provided by
the CEPII. It provides bilateral information on the applied tariffs rates at the HS6 level for four years:
2001, 2004, 2007 and 2010.

Market Share and Price of the domestic Good In order to study the role of the domestic
good in our demand system estimation, we need information on the domestic market share and price.
At the two-digits level of the CPA classification, we construct the market share of the domestic good
by computing the share of domestic consumption in total consumption from the WIOD database. We
then convert these domestic shares to HS6 using a correspondence table available on RAMON Eurostat
Metadata Server.

The estimation also requires to know the price of the outside good. However, the price of the
domestic variety is not available in our international trade data since domestic goods do not cross a
border. In order to proxy the price of the domestic good in a given country and year, we use the price
of its exports as measured in the BACI dataset. Since we observe this price for many destinations, we
infer the domestic unit values by regressing the logarithm of the FOB unit value on a set of fixed effects:

ln pijkt = δikt + γj + εijkt.

δikt is the average price of variety ikt, controlling for the destination market. We use it as a proxy for
domestic prices. However, some countries don’t export the relevant products ikt. When this is the case,
I estimate the regressions at a lower level (HS4 or HS2) and extrapolate the predicted price for the good.

Income Distribution Our estimation requires information on income distribution. We obtain infor-
mation on income per capita and the Gini index by destination country from the World Bank. In order
to feed this information into the estimation, we assume that income distribution is log-normal. This
distribution is convenient because it makes it possible to recover the mean µyd and standard deviation
σyd parameters from the average income per capita myd and Gini Index Λyd , through following formula

19For countries absent from WIOD, we are unable to construct the domestic market share. Observing the
domestic market share is when estimating an import demand system. Nonetheless, we impose this data restriction
throughout our analysis to keep the set of destinations fixed across estimations.
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σyd =
√

2Φ−1
(

1+Λyd
2

)
µyd = lnmyd − 1

2σyd

B Additional Tables

C Derivation of Equation (11)

In this appendix, we derive equation (11) using the “small-σ” approach. Let Gd be the such that
Σd = σ2G2

d, with Σd the income-weighted variance of αi in destination d. We can re-write equation (7)
as

αi(σ) = α+ πµd + σGdεi, (16)

with εi a scalar shock whose income-weighted mean is zero and whose income-weighted variance is one.
For any variable x, let

˙
xo ≡ xo − xr be the deviation of xo relative to a reference variety r. The market

share of variety o in consumer i’s expenditure is

sio(σ,
˙
ξm) =

exp
(
−αi(σ)

˙
ln pom +

˙
X ′omβ +

˙
ξom

)
1 +

∑
o′ 6=r exp

(
−αi(σ)

˙
ln po′m +

˙
X ′o′mβ +

˙
ξo′m

) ,
with

˙
ξm the vector of normalized demand quality in market m. The aggregate revenue market share

of variety o is

som(σ,
˙
ξm) =

∫
sioωiddi, (17)

with
∫
ωid = 1, ωid ∝ yi. Let

˙
ξm(σ) be the vector of structural errors in market m, i.e. the vector of

errors which, for a given value of the scaling parameter σ, equalize the market shares in the data and in
the model:

˙
ξm(σ) :

˙
ξ s.t. som(

˙
ξ, σ) = Som ∀o 6= r, (18)

We seek to obtain an analytical expression for the second-order expansion of
˙
ξm(σ) around σ = 0

˙
ξm(σ) =

˙
ξ(0) +

∂
˙
ξ(σ)

∂σ

∣∣∣∣
σ=0

σ +
∂2

˙
ξ(σ)

∂σ2

∣∣∣∣
σ=0

σ2

2
+O(σ2). (19)

First-order derivative of ξ(σ) Hereafter, we drop subscript m to save on notations. In this

paragraph, we derive an expression for
∂

˙
ξ(σ)

∂σ

∣∣∣∣
σ=0

. One important derivative that we will use throughout:

∂sio(σ,
˙
ξ)

∂σ
= sio(σ,

˙
ξ)}ln pio(σ)Gεi (20)
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(1) (2)

Treatment × ARGENTINA 0.01 0.03
(0.04) (0.96)

× AUSTRALIA 0.04 0.72
(0.03) (0.69)

× AUSTRIA 0.12*** 2.02***
(0.02) (0.62)

×BELGIUM 0.05** 0.52
(0.02) (0.58)

×BRAZIL 0.04 1.30**
(0.02) (0.54)

×CANADA −0.01 −0.20
(0.01) (0.29)

×CHILE −0.01 −0.41
(0.04) (1.39)

×CHINA −0.30*** −6.39***
(0.01) (0.23)

×COLOMBIA 0.04 0.54
(0.04) (1.05)

×COSTA RICA 0.02 −0.85
(0.05) (1.11)

×CZECH REPUBLIC 0.06** 0.80
(0.03) (0.58)

×DENMARK 0.03 −0.12
(0.03) (0.53)

×DOMINICAN REPUBLIC 0.07* 2.15**
(0.04) (0.94)

×ECUADOR 0.06 0.95
(0.05) (1.48)

×FINLAND 0.08*** 0.77
(0.03) (0.61)

×FRANCE 0.01 0.24
(0.02) (0.34)

×GERMANY 0.04*** 0.87***
(0.01) (0.28)

×GUATEMALA 0.01 0.35
(0.06) (1.58)

×HONDURAS −0.01 0.55
(0.06) (1.77)

×HONG KONG −0.62*** −10.97***
(0.04) (0.70)

×HUNGARY 0.05 0.94
(0.03) (0.66)

×INDIA 0.20*** 3.55***
(0.02) (0.35)

×INDONESIA 0.07** 1.88***
(0.03) (0.70)

×IRELAND 0.07* 1.85**
(0.04) (0.87)

×ISRAEL 0.01 −1.00
(0.03) (0.63)
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×ITALY 0.06*** 0.87***
(0.01) (0.30)

×JAPAN 0.01 −0.23
(0.01) (0.29)

×KOREA, SOUTH 0.07*** 0.65
(0.02) (0.41)

×MALAYSIA 0.13*** 2.05***
(0.03) (0.58)

×MEXICO 0.08*** 1.53***
(0.02) (0.39)

×NETHERLANDS 0.04* 0.47
(0.02) (0.47)

×NEW ZEALAND −0.02 −0.18
(0.04) (0.76)

×NICARAGUA 0.05 −1.74
(0.07) (2.11)

×PERU −0.01 −0.85
(0.04) (1.26)

×PHILIPPINES 0.06* 1.35**
(0.03) (0.68)

×POLAND 0.17*** 2.35***
(0.03) (0.54)

×PORTUGAL 0.08** 1.39*
(0.03) (0.81)

×ROMANIA 0.09** 1.50
(0.04) (0.95)

×RUSSIA 0.12** 1.33
(0.05) (1.27)

×SINGAPORE −0.01 −0.88
(0.03) (0.75)

×SLOVAKIA 0.04 0.44
(0.04) (0.84)

×SOUTH AFRICA −0.02 −1.36
(0.04) (0.99)

×SPAIN 0.06*** 0.75
(0.02) (0.48)

×SWEDEN 0.09*** 1.35***
(0.02) (0.47)

×SWITZERLAND 0.00 −0.67
(0.02) (0.42)

×TAIWAN 0.02 −0.02
(0.01) (0.31)

×THAILAND 0.09*** 1.84***
(0.02) (0.46)

×TURKEY 0.16*** 2.84***
(0.02) (0.58)

×UNITED KINGDOM 0.04*** 0.46
(0.01) (0.30)

×VIETNAM 0.29*** 5.32***
(0.03) (0.53)

N 1 948 501 1 948 501
R2 0.878 0.878

* p < 0.1, ** p < 0.05, *** p < 0.01
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with }ln pio(σ) ≡ ln po − ln pi(σ) and ln pi(σ) ≡
∑
o′ ln po′sio′(σ). Taking the first-order total derivative

of equation (34) with respect to σ gives

dso(
˙
ξ(σ), σ)

dσ
=
∂so(

˙
ξ(σ), σ)

∂σ
+
∑
o′ 6=r

∂so′(
˙
ξ(σ), σ)

∂
˙
ξo′

∂
˙
ξo′(σ)

∂σ
= 0. (21)

Let J + 1 be the number of varieties on the market. Equation (37) implies:

∂
˙
ξ(σ)

∂σ
= −B(σ)−1A(σ), (22)

with A(σ) a J × 1 vector and B(σ) a J × J matrix such that Ao(σ) ≡ 1
So

∂so(
˙
ξ(σ),σ)

∂σ and Bo,o′(σ) ≡
1
So

∂so(
˙
ξ(σ),σ)

∂
˙
ξo′

, respectively.
When σ = 0, consumers are identical:sio(0) = So

}ln pio(0) = }ln po
∀i, (23)

with }ln po ≡ ln po − ln p and ln p ≡
∑
o So ln po. Plugging (36) and (39) into Ao(0), we get

Ao(0) =
1

So

∫
sio(0)}ln pio(0)Gεiωid di

= }ln poG

∫
i

εiωid di

= 0, (24)

where the third equality uses the fact that εi has a zero income-weighted mean. Assuming that B(0) is
invertible, from equation (38) and (40) we have

∂
˙
ξ(0)

∂σ
= 0.

Second order derivative of ξ(σ) Next, we turn to the second order derivative. For each j, we
have:

∂2so(
˙
ξ(σ), σ)

∂σ2
=
∂2so(

˙
ξ(σ), σ)

∂σ2
+ 2

∑
k 6=r

∂2so(
˙
ξ(σ), σ)

∂
˙
ξk∂σ

∂
˙
ξk(σ)

∂σ
+
∑
k 6=r

∂so(
˙
ξ(σ), σ)

∂
˙
ξk

∂2

˙
ξk(σ)

∂σ2

+
∑
k 6=r

∑
l 6=k,r

∂2so(
˙
ξ(σ), σ)

∂
˙
ξk∂

˙
ξl

∂
˙
ξk(σ)

∂σ

∂
˙
ξl(σ)

∂σ
= 0 (25)

We want to evaluate this term for σ = 0. Since
∂

˙
ξk

∂σ (0) = 0, the second and fourth terms from
equation (41) disappear when σ = 0:

∂2so(
˙
ξ(0), 0)

∂σ2
+
∑
k 6=r

∂so(
˙
ξ(0), 0)

∂
˙
ξk

∂2

˙
ξk

∂σ2
(0) = 0

We can rewrite this as
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∂2

˙
ξo(0)

∂σ2
= −B(0)−1D(0) (26)

with D(σ) a J × 1 vector such that Do(σ) ≡ 1
So

∂2so(
˙
ξ(σ),σ)

∂σ2 :

Do(σ) =
1

So

∫
i

∂sio(σ)

∂σ
}ln pio(σ)Gdεiωid di−

1

So

∫
i

sio(σ)

(∑
k

ln pk
∂sik(σ)

∂σ

)
Gdεiωid di

=
1

So

∫
i

sio(σ)}ln pio(σ)Gdεi}ln pio(σ)Gdεiωid di−
1

So

∫
i

sio(σ)

(∑
k

ln pk

(
sik(σ)}ln pik(σ)Gdεi

))
Gdεiωid di

=
1

So

∫
i

sio(σ)}ln p
2

io(σ)G2
dε

2
iωid di−

1

So

∫
i

sio(σ)

(∑
k

ln pksik(σ)}ln pik(σ)G2
dε

2
iωid di

)
.

When σ = 0, this becomes

=
1

So

[
So}ln p

2

oG
2
d

(∫
i

ε2iωid di

)
− So

∑
k

ln pkSk}ln pkG
2
d

(∫
i

ε2iωid di

)]
= }ln p

2

oG
2
d −

∑
k

ln pkSk}ln pkG
2
d di

=
1

σ2

[
}ln p

2

oΣd −
∑
k

Sk}ln p
2

kΣd di

]
,

where the second equality uses the fact that
∫
i
ε2iωid di is to the (income-weighted) variance of εi (because

εi has a zero mean), which is one. The second equality uses the definition Σd ≡ σ2G2
d as well as the fact

that
∑
k Sk

}ln pkΣdln p = 0: deviations to the mean – }ln pk – add up to zero.
Moving now to matrix B(0) – the other term involved in ∂2ξo(0)

∂σ2 (equation 42):

Bo,o′(σ) ≡ 1

So

∂so(ξ(σ), σ)

∂ξ′o

=

 1
So

∫
i
sio(σ)sio′(σ)ωid di if o 6= o′

1
So

∫
i
sio(σ)(1− sio(σ))ωid di if o = o′

.

Therefore, we have

Bo,o′(0) =

So′ if o 6= o′

1− So if o = o′
,

so that we can write B(0) = I−M with I the identity matrix andM a J×J matrix of rank 1: Mo,o′ ≡ So′ .
Using Miller (1981)’s lemma on the inverse of the sum of matrices, we have B(0)−1 = I + 1

1−trace(M)M ,
with trace(M) =

∑
k 6=r Sk. Plugging this expression for B(0)−1 into (42):

∂2ξ(0)

∂σ2
= −M−1D(0) = −D(0)− 1

1−
∑
k 6=r Sk

MD(0)

= −D(0)− 1

Sr
MD(0),

which implies
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∂2ξo(0)

∂σ2
=−Do(0)− 1

Sr

∑
k 6=r

SkDk(0)

= − 1

σ2

{
}ln p

2

oΣd −
∑
k

Sk}ln p
2

kΣd

}
− 1

σ2

1

Sr

∑
k 6=r

Sk}ln p
2

k −
∑
l 6=r

Sl
∑
k

Sk}ln p
2

kΣd


= − 1

σ2

{
}ln p

2

oΣd −
∑
k

Sk}ln p
2

kΣd

}

− 1

σ2

1

Sr

{∑
k

Sk}ln p
2

kΣd − Sr}ln p
2

rΣd − (1− Sr)
∑
k

Sk}ln p
2

kΣd

}

= − 1

σ2

(
}ln p

2

oΣd − }ln p
2

rΣd

)
= − 1

σ2
˙

}ln p2
oΣd

Taylor expansion To conclude, let us plug the expression for the first and second derivatives of
structural error

˙
ξ(0) into Taylor expansion (35):

˙
ξo(σ) =

˙
ξo(0) +

∂
˙
ξo(0)

∂σ
σ +

∂2

˙
ξo(0)

∂σ2

σ2

2
+O(σ2)

= ln(So/Sr)−
˙
X ′oβ − α

˙
ln po − π

˙
ln poµd + 0− 1

2 ˙
}ln p2

oΣd +O(σ2) (27)

Equation (11) is obtained by swapping log(Sj/S0) and ξj(σ) in (45):

lnSo = lnSr +
˙
X ′oβ − α

˙
ln po − π

˙
ln poµd + 0 +

1

2 ˙
}ln po +O(σ2)

= X ′oβ − α ln po − π ln poµd + Σd
1

2
}ln p

2

o + ξo + (α+ πµd) lnP (28)

(29)

with
(α+ πµd) lnP = −

∑
k

exp

(
X ′kβ − α ln pk − π ln pkµd + Σd

1

2
}ln p

2

k + ξk +O(σ2)

)
. Moreover, from (16) it is straightforward to show that Σd, the variance of αi, verifies Σd = λ2Vd + γ2.
Plugging this expression into (46) gives

lnSo = X ′oβ − α ln po − π ln poµd + γ2Ko + λ2VdKo + ξo + (α+ πµd) lnP (30)

D Model Extension

In this appendix, we generalize the model from section (3) by allowing for multiple random coefficients and
multiple demographics. The regression equation that we derive from this general model nests equation
(11) as a special case.

The Extended Model Let X1,om and X2,om be respectively the vector of linear and non-linear
characteristics of variety o in marketm (X2,om includes log prices). Preferences over linear characteristics
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are constant across consumers: β1i = β1 ∀i. By constrast, preferences for non-linear characteristics differ
across consumers:

β2i = β2 + Πµd + ΛV
1/2
d νi + Γεi. (31)

with µd and Vd the income-weighted mean and variance of the nD×1 vector of demographic shocks Di. νi
is the standardized demographic shock: Di = µd+V

1/2
d νi. εi is a nε×1 vector of random shocks with zero

mean and unit variance. νi and εi are independent from each other and i.i.d. across consumers within
destinations. Π is a nX2

× nD matrix mapping destination-level mean demographics into destination-
level mean preferences. Λ is a nX2 × nD matrix mapping individual demographic deviations from the
national mean into preference deviations. Finally, Γ is a nX2

× nε matrix mapping random shocks εi
into preferences.

Let Σd be the the income-weighted variance of β2i in destination d. Since νi and εi are uncorrelated,
and both have zero mean and unit variance on each destination, we have

Σd = ΛVdΛ
′ +H,

with H ≡ ΓΓ′.

Let Gd be the (nX2
× nX2

) matrix such that Σd = σ2GdG
′
d. We can re-write equation (31) as

β2i(σ) = β2 + Πµd + σGdεi. (32)

with εi a nX2
× 1 vector of shocks whose income-weighted mean is zero and whose income-weighted

variance is the identity matrix.20 For any variable x, let
˙
xo ≡ xo − xr be the deviation of xo relative to

a reference variety r. The market share of variety o in consumer i’s expenditure is

sio(σ,
˙
ξm) =

exp
(

˙
X ′1,omβ1 +

˙
X ′2,omβ2i(σ) +

˙
ξom

)
1 +

∑
o′ 6=r exp

(
˙
X ′1,o′mβ1 +

˙
X ′2,o′mβ2i(σ) +

˙
ξo′m

) ,
with

˙
ξm the vector of normalized demand quality in market m. The aggregate revenue market share of

variety o is

som(σ,
˙
ξm) =

∫
sioωiddi, (33)

with
∫
ωid = 1, ωid ∝ yi. Let

˙
ξm(σ) be the vector of structural errors in market m, i.e. the vector of

errors which, for a given value of the scaling parameter σ, equalize the market shares in the data and in
the model:

˙
ξm(σ) :

˙
ξ s.t. som(

˙
ξ, σ) = Som ∀o 6= r, (34)

We seek to obtain an analytical expression for the second-order expansion of
˙
ξm(σ) around σ = 0

20 Shock ε is related to ν and εi through

σGdεi = ΛV
1/2
d νi + Γεi
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˙
ξm(σ) =

˙
ξ(0) +

∂
˙
ξ(σ)

∂σ

∣∣∣∣
σ=0

σ +
∂2

˙
ξ(σ)

∂σ2

∣∣∣∣
σ=0

σ2

2
+O(σ2). (35)

First-order derivative of ξ(σ) Hereafter, we drop subscript m to save on notations. In this

paragraph, we derive an expression for
∂

˙
ξ(σ)

∂σ

∣∣∣∣
σ=0

. One important derivative that we will use throughout:

∂sio(σ,
˙
ξ)

∂σ
= sio(σ,

˙
ξ)X̌2,io(σ)′Gεi (36)

with X̌2,io(σ) ≡ X2,o − X̄2,i(σ) and X̄2,i(σ) ≡
∑
o′ X2,o′sio′(σ). Taking the first-order total derivative

of equation (34) with respect to σ gives

dso(
˙
ξ(σ), σ)

dσ
=
∂so(

˙
ξ(σ), σ)

∂σ
+
∑
o′ 6=r

∂so′(
˙
ξ(σ), σ)

∂
˙
ξo′

∂
˙
ξo′(σ)

∂σ
= 0. (37)

Let J + 1 be the number of varieties on the market. Equation (37) implies:

∂
˙
ξ(σ)

∂σ
= −B(σ)−1A(σ), (38)

with A(σ) a J × 1 vector and B(σ) a J × J matrix such that Ao(σ) ≡ 1
So

∂so(
˙
ξ(σ),σ)

∂σ and Bo,o′(σ) ≡
1
So

∂so(
˙
ξ(σ),σ)

∂
˙
ξo′

, respectively.
When σ = 0, consumers are identical:sio(0) = So

X̌2,io(0) = X̌2,o

∀i, (39)

with X̌2,o ≡ X2,o − X̄2 and X̄2 ≡
∑
o SoX2,o. Plugging (36) and (39) into Ao(0), we get

Ao(0) =
1

So

∫
sio(0)X̌2,io(0)′Gεiωid di

= X̌
′
2,oG

∫
i

εiωid di

= 0, (40)

where the third equality uses the fact that (i) εi has a zero mean and (ii) εi is independent from income
yi, which implies

∫
εiωid di =

∫
εi di = 0. Assuming that B(0) is invertible, from equation (38) and (40)

we have

∂
˙
ξ(0)

∂σ
= 0.
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Second order derivative of ξ(σ) Next, we turn to the second order derivative. For each j, we
have:

∂2so(
˙
ξ(σ), σ)

∂σ2
=
∂2so(

˙
ξ(σ), σ)

∂σ2
+ 2

∑
k 6=r

∂2so(
˙
ξ(σ), σ)

∂
˙
ξk∂σ

∂
˙
ξk(σ)

∂σ
+
∑
k 6=r

∂so(
˙
ξ(σ), σ)

∂
˙
ξk

∂2

˙
ξk(σ)

∂σ2

+
∑
k 6=r

∑
l 6=k,r

∂2so(
˙
ξ(σ), σ)

∂
˙
ξk∂

˙
ξl

∂
˙
ξk(σ)

∂σ

∂
˙
ξl(σ)

∂σ
= 0 (41)

We want to evaluate this term for σ = 0. Since
∂

˙
ξk

∂σ (0) = 0, the second and fourth terms from
equation (41) disappear when σ = 0:

∂2so(
˙
ξ(0), 0)

∂σ2
+
∑
k 6=r

∂so(
˙
ξ(0), 0)

∂
˙
ξk

∂2

˙
ξk

∂σ2
(0) = 0

We can rewrite this as

∂2

˙
ξo(0)

∂σ2
= −B(0)−1D(0) (42)

with D(σ) a J × 1 vector such that Do(σ) ≡ 1
So

∂2so(
˙
ξ(σ),σ)

∂σ2 :

Do(σ) =
1

So

∫
i

∂sio(σ)

∂σ
X̌2,io(σ)′Gdεiωid di−

1

So

∫
i

sio(σ)

(∑
k

X ′2,k
∂sik(σ)

∂σ

)
Gdεiωid di

=
1

So

∫
i

sio(σ)X̌2,io(σ)′GdεiX̌2,io(σ)′Gdεiωid di−
1

So

∫
i

sio(σ)

(∑
k

X ′2,k
(
sikX̌2,ik(σ)′Gdεi

))
Gdεiωid di

=
1

So

∫
i

sio(σ)X̌2,io(σ)′GdεiX̌2,io(σ)′Gdεiωid di−
1

So

∫
i

sio(σ)

(∑
k

sik(σ)X̌2,ik(σ)′GdεiX
′
2,k

)
Gdεiωid di

=
1

So

∫
i

sio(σ)X̌2,io(σ)′Gdεiε
′
iG
′
dX̌2,io(σ)ωid di−

1

So

∫
i

sio(σ)
∑
k

sik(σ)X̌2,io(σ)′Gdεiε
′
iG
′
dX2,kωid di.

When σ = 0, this becomes

Do(0) =
1

So

[
SjX̌

′
2,oGd

(∫
i

εiε
′
iωid di

)
G′dX̌2,o − Sj

∑
k

SkX̌
′
2,kGd

(∫
i

εiε
′
iωid di

)
G′dX2,k

]
= X̌

′
2,kGdG

′
dX̌2,o −

∑
k

SkX̌
′
2,kGdG

′
dX2,k

=
1

σ2

[
X̌
′
2,oΣdX̌2,o −

∑
k

SkX̌
′
2,kΣdX2,k

]
(43)

=
1

σ2

[
X̌
′
2,oΣdX̌2,o −

∑
k

SkX̌
′
2,kΣdX̌2,k

]
(44)

where the second equality uses the fact that
∫
i
εiε
′
iωid di =

∫
i
εiε
′
i di because εi is independent of yi.

Moreover,
∫
i
εiε
′
i di is equal to the variance of εi (because εi has a zero mean), which is equal to the

identity matrix. The third equality uses the definition Σd ≡ σ2GdG
′
d. The fourth equality makes use of

the fact that
∑
k SkX̌

′
2,kΣdX̄ = 0: deviations to the mean add up to zero.
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Moving now to matrix B(0) – the other term involved in ∂2ξo(0)
∂σ2 (equation 42):

Bo,o′(σ) ≡ 1

So

∂so(ξ(σ), σ)

∂ξ′o

=

 1
So

∫
i
sio(σ)sio′(σ)ωid di if o 6= o′

1
So

∫
i
sio(σ)(1− sio(σ))ωid di if o = o′

.

Therefore, we have

Bo,o′(0) =

So′ if o 6= o′

1− So if o = o′
,

so that we can write B(0) = I−M with I the identity matrix andM a J×J matrix of rank 1: Mo,o′ ≡ So′ .
Using Miller (1981)’s lemma on the inverse of the sum of matrices, we have B(0)−1 = I + 1

1−trace(M)M ,
with trace(M) =

∑
k 6=r Sk. Plugging this expression for B(0)−1 into (42):

∂2ξ(0)

∂σ2
= −M−1D(0) = −D(0)− 1

1−
∑
k 6=r Sk

MD(0)

= −D(0)− 1

Sr
MD(0),

which implies

∂2ξo(0)

∂σ2
=−Do(0)− 1

Sr

∑
k 6=r

SkDk(0)

= − 1

σ2

{
X̌
′
2,oΣdX̌2,o −

∑
k

SkX̌
′
2,kΣdX̌2,k

}
− 1

σ2

1

Sr

∑
k 6=r

SkX̌
′
kΣdX̌2,k −

∑
l 6=r

Sl
∑
k

SkX̌
′
2,kΣdX̌2,k


= − 1

σ2

{
X̌
′
2,oΣdX̌2,o −

∑
k

SkX̌
′
2,kΣdX̌2,k

}

− 1

σ2

1

Sr

{∑
k

SkX̌
′
kΣdX̌2,k − SrX̌

′
2,rΣdX̌2,r − (1− Sr)

∑
k

SkX̌
′
2,kΣdX̌2,k

}

= − 1

σ2

(
X̌
′
2,oΣdX̌2,o − X̌

′
2,rΣdX̌2,r

)
= − 1

σ2 ˙
X̌ ′2,oΣd

˙
X̌2,o

Taylor expansion To conclude, let us plug the expression for the first and second derivatives of
structural error

˙
ξ(0) into Taylor expansion (35):

˙
ξo(σ) =

˙
ξo(0) +

∂
˙
ξo(0)

∂σ
σ +

∂2

˙
ξo(0)

∂σ2

σ2

2
+O(σ2)

= ln(So/Sr)−
˙
X ′oβ −

˙
X ′2,oΠµd + 0− 1

2 ˙
X̌ ′2,oΣd

˙
X̌2,o +O(σ2) (45)

Equation (11) is obtained by swapping ln(Sj/S0) and ξj(σ) in (45):
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lnSo = lnSr +
˙
X ′oβ +

˙
X ′2,oΠµd + 0 +

1

2 ˙
X̌ ′2,o +O(σ2)

= X ′oβ +X ′2,oΠµd +
1

2
X̌
′
2,oΣdX̌2,o + ξo + (α+ πµd) lnP +O(σ2) (46)

(47)

with
(α+ πµd) lnP = −

∑
k

exp

(
X ′kβ +X ′2,kΠµd +

1

2
X̌
′
2,oΣdX̌2,k + ξk +O(σ2)

)
. Moreover, from (32) it is straightforward to show that Σd, the variance of β2,i, verifies Σd = ΛVdΛ

′+H,
with H ≡ ΓΓ′. Plugging this expression into (46) gives

lnSo = X ′oβ +X ′2,oΠµd +
1

2
X̌
′
2,oHX̌2,o +

1

2
X̌
′
2,oΛVdΛ

′X̌2,o + ξo + (α+ πµd) lnP +O(σ2) (48)

In the special case where log-income is the only demographics (Di = ln yi) and log-prices the only
non-linear characteristics (X2,o = ln po), then (48) collapses to equation (11).

Estimation (46) can be estimated by 2SLS. To get the list of regressors entering the estimation of
(46), let us re-write its different terms using summations rather than matrices. We index non-linear
product characteristics by m or n and demographics by a or b. We drop subscript o. Let us start with
X ′2Πµd:

X ′2Πµd =

nD∑
a

nX2∑
m=1

Πa,mµd[a]X ′2[m]

The parameter Π involved in X ′2Πµd term can be estimated using a full set of interactions between
product characteristics X ′2[m] and the mean value for each demographics µd[a]. Let us now study
1
2X̌
′
2HX̌2:

1

2
X̌
′
2HX̌2 =

nX2∑
m=1

1

2
Hm,mX̌

2

2[m] +

nX2∑
m,n<m

Hm,nX̌2[m]X̌2[n]

The parameterH involved in 1
2X̌
′
2HX̌2 can be estimated through quadratic terms X̌

2

2[m] for each product
characteristics and a full set of interactions X̌2[m]X̌2[n]. Notice that the quadratic terms identify 1

2Hm,m,
not Hm,m. Let us now re-write the final term

1

2
X̌
′
2ΛVdΛ

′X̌2 =

nD∑
a

nX2∑
m=1

1

2
Λ2
a,mVd[a, a]X̌2[m]

2
+

nD∑
a

nX2∑
m,n<m

Λa,mΛa,nVd[a, a]X̌2[m]X̌2[n]

+

nD∑
a,b<a

nX2∑
m=1

Λa,mΛb,mVd[a, b]X̌2[m]
2

+

nD∑
a,b<a

nX2∑
m,n<m

2Λa,mΛb,nVd[a, b]X̌2[m]X̌2[n]

To be brought to the data, this term requires a full set of interactions between:

• the variance of demographics Vd[a, a] and quadratic terms X̌2
2 [m].

• the covariance of demographics Vd[a, b] and quadratic terms X̌2
2 [m].

• the variance of demographics Vd[a, a] and interactions terms X̌2[m]X̌2[n].
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• the covariance of demographics Vd[a, b] and interactions terms X̌2[m]X̌2[n].

Identification Estimating Λ from (48) by 2SLS may raise some over-identification issue. In equation
(48), the nD × nX2

coefficients from matrix Λ are identified from 1
2X̌
′
2,oΛVdΛ

′X̌2,o. The problem is
that each coefficient shows up in multiple terms of 1

2X̌
′
2,oΛVdΛ

′X̌2,o. This overidentification means
that in general (48) cannot be estimated through linear methods. There is one special case where this
overidentification issue as absent: when demographics are uncorrelated (V [a, b] = 0 ∀a 6= b) and when
product characteristics do not depend on the same demographics (Λa,mΛa,n = 0 ∀a, ∀m 6= n).

E Simulation Results

In this subsection, we apply the FRAC estimator to simulated data. We want to assess the ability of
FRAC to capture the realistic substitution patterns emerging from a mixed CES data generating process
(DGP).

Data Generating Process We simulate the data for nm = 200 markets, with no = 25 varieties on
each market. Varieties have two observable characteristics: a scalar X and log prices ln p, both of which
are drawn from a standard normal distribution:

Xom, ln pom ∼ N(0, 1).

Consumers have mixed CES preferences, such that i’s demand for variety o is described by equation
(4). The coefficient on X is set to β = 2. We will consider three different distributions for αi, the random
coefficient on log prices elasticity:

αi ∼


Normal(µα, Vα)

LogNormal
(

lnµα − 1
2 ln

(
1 + Vα

µ2
α

)
, ln
(

1 + Vα
µ2
α

))
Uniform

(
−
√

3V
1/2
α + µα,

√
3V

1/2
α + µα

)
These different distributions are parametrized to ensure that they have the same mean µα = 3 and
variance Vα = 0.5. The goal is to assess the influence of the random coefficient distribution on the
estimation results. Figure 7 depicts the density of the alternative distributions.

The error of the model is ξ ∼ N(µξ, Vξ) with µξ = −5 and Vξ = 0.5. We approximate the aggregate
demand through nc = 1000 consumers. For each consumer, we draw a random coefficient α(f)

i , f =

{Normal, Log-Normal, Uniform} from each of the three distributions. Accordingly, we construct the
consumer-level market shares and the aggregate market shares for each distributions

(f)
io =

exp
(
−α(f)

i ln pom+X′omβ+ξom
)

∑
k∈Om exp

(
−α(f)

i ln pkm+X′kmβ+ξkm

)
s

(f)
om = 1

nc

∑nc
i=1 s

(f)
io

, f = {Normal, Log-Normal, Uniform}

Estimation From the simulated data, we estimate θ = {α, γ} in three ways. First, we regress by
OLS the log market shares on market fixed effects, X and ln p. This gravity equation is consistent with
CES preferences. We refer to the resulting estimates as “CES” estimates. Second, we estimate θ from
the linearization of the mixed CES preferences (equation 11). Specifically, we regress ln s(f) on a set of
market fixed effects, X, ln p and the artificial regressor

K(f) ≡ 1

2

[
ln pom −

∑
k

s
(f)
km ln pkm

]2

.
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Figure 7: Distribution of Random Price Coefficients
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Notes: This figure depicts the density of the three alternative distributions
(normal, log-normal and uniform) that we use to simulate αi, the random
coefficient on prices. All these distributions have the same mean µα = 3 and
the same variance Vα = 0.5.

K(f) is endogenous because it depends on s(f)
km. We therefore instrument it with

K̂(f)
om ≡

1

2

[
ln pom −

∑
k

exp

(
l̂n s

(f)

km

)
ln pkm

]2

,

where l̂n s
(f)

om is the linear prediction of ln s
(f)
om based on X, ln p and market fixed effects. We refer to the

resulting estimates as “FRAC” estimates.
Third, we estimate θ by non-linear GMM, following BLP. Let Zom be a set of instruments orthogonal

to the ξom. Let ξ(f)(θ) be the vector of structural errors of the model, i.e. the vector of ξ’s equalizing
the predicted market shares from the model to the actual market shares in the (simulated) data. θ̂(f)

BLP

is obtained by minimizing the distance to zero of a set of moment conditions E
[
Zξ(f)(θ)

]
. Importantly,

recovering the structural error ξ(f)(θ) requires to fully specify the distribution of random coefficient αi.
We estimate θ̂(f)

BLP assuming that αi is normally distributed, even if f – the true distribution of the
random coefficient – is not. We therefore refer to these estimates as “BLP-normal” estimates. Our set of
BLP instruments is Z = {X, ln p, K̂(f)}. As pointed out by Gandhi and Houde (2019), BLP instruments
should include exogenous measures of local competition in the product space to identify γ, the dispersion
in random coefficients. K̂(f)

om is precisely a measure of local competition as it captures the price distance
of variety o to the average competitor.

Note that when the DGP for αi is non-normal, both FRAC and BLP-normal are mis-specified,
although for different reasons. On the one hand, FRAC does not require assumptions on the distribution
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Table 6: Estimates from Simulated Data

CES FRAC BLP-normal

(1) (2) (3) (4) (5) (6) (7) (8) (9)
RC distribution: Normal Log-normal Uniform Normal Log-normal Uniform Normal Log-normal Uniform

β (X) 1.974 1.978 1.977 1.988 1.987 1.987 1.990 1.987 1.987
(0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

−α (ln p) -2.407 -2.542 -2.537 -3.010 -2.940 -2.943 -2.986 -2.916 -2.915
(0.017) (0.013) (0.013) (0.027) (0.026) (0.027) (0.025) (0.025) (0.025)

γ2 (K) 0.440 0.290 0.294 0.526 0.314 0.317
(0.018) (0.018) (0.018) (0.027) (0.022) (0.030)

N 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000

Notes: The true value of the parameters are β = 2, −α = 3 and γ2 = 0.5. Estimates from columns (1)-(3) are obtained through OLS
regressions of log market shares on log prices and market fixed effects. Estimates from columns (4)-(6) are obtained through 2SLS
regressions of log market shares on market fixed effects, log prices and artificial regressor K, using K̂ as an instrument for K. Columns
(7)-(9) are obtained from R command “BLPestimatoR”. We assume that the random coefficient are normally distributed. We use X
as a linear product characteristic, ln p as non-linear product characteristic and X, ln p and K̂ as instruments. All standard errors are
clustered at the market level.

of αi. FRAC is therefore mis-specified as a second order approximation to the correctly specified model.
On the other hand, BLP-normal estimates the exact model but under a mis-specified distribution of
random coefficients. In the next paragraph, we compare the consequences of these different types of
mis-specification for the estimated substitution patterns.

Results: parameter estimates Table 6 reports the different estimates of θ based on simulated
data. All specifications deliver estimates of β – the preference for product characteristic X – which are
comparable in magnitude and close to the true value β = 2. The same applies for −α, except for the
CES specification which tends to overerestimate it. Compared to the FRAC estimates, it suggests that
−α̂CES picks up some of the effect of the omitted variable K.21 Regarding γ2 – the variance of the
random coefficient – BLP-normal and FRAC deliver similar estimates. When the random coefficients
are normal, both BLP-normal and FRAC estimates are close to the true value of 0.5. Specifically, BLP-
normal is at 0.53 while FRAC is at 0.44. When the random coefficients are not normal but rather uniform
or log-normal, both FRAC and BLP-normal are further away from the truth with an estimate for γ2 close
to 0.3. Therefore the mis-specification coming from linearizing the model (FRAC) and from assuming
the wrong distribution (BLP-normal) deliver comparable biases in terms of structural parameters.

Results: cross-elasticity estimates The main strength of mixed preferences is to deliver rich
substitution patterns. Therefore, beyond the estimates of the structural parameters, it is really the
precision of the estimated substitution patterns that matters. It could be that an estimator does not
deliver the true value of the structural parameter and yet delivers good estimates of cross-price elasticities.
To study elasticity estimates, let us define eo,c ≡ 1

sc
∂ln so
∂ln pc

as the cross-price elasticity of o with respect
to c, normalized by sc. Under this normalization, the CES cross-price elasticity is constant across all
varieties – êCESo,c = α̂CES ∀o – which facilitates the comparison of predictions across estimators.

Figure 8 plots the relationship between the true and the estimated elasticity. Panel (a) and (b) depict
this relationship in the case of a normally distributed RC. Unsurprisingly, BLP-normal performs well in
this particular case, since the model is correctly specified. FRAC also does a good job at predicting the
true elasticity, except for the upper tail of cross-price elasticities.

Next, we compare FRAC and BLP-normal when the true DGP is not normal, in which case both

21α̂FRAC measures the marginal effect of prices when K = 0, that is for a variety which is positioned in a very
competitive region of the price distribution. By contrast, α̂CES measures the marginal effect of prices on average.
Therefore it makes sense that α̂CES < α̂FRAC
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estimators are mis-specified. It is therefore not clear ex-ante which should perform better. As depicted
in panel (c), (d), (e) and (f), and similarly to the Normal case, both FRAC and BLP-normal are able
to precisely predict the elasticities for most of the data when the RC is not normal. The impact of
the DGP on the relative predictive preformance of FRAC and BLP-normal is concentrated on larger
true elasticities. In the log-Normal case, BLP-normal is not as dominant over FRAC as in the Normal
case. This is because in the log-normal case (i) FRAC predictions stand closer to the truth and (ii)
BLP-normal tends to over-estimate large cross-price elasticities. In the case of a uniform DGP, FRAC
predictions are even closer to actual values than in the log-Normal case, to the extent that FRAC clearly
dominate BLP-Normal when it comes to predicting large values of cross-elasticities.

To sum up, both estimators deliver accurate and robust predictions for most of the data, except
for the largest values. For extreme values, which estimator dominates depends on the (unknown) dis-
tribution of random coefficients. There is therefore no strict dominance of BLP-normal over FRAC in
terms of prediction. Moreover, FRAC strictly dominates BLP-normal in terms of implementation and
transparency of the identification.

F Deriving Cross-Elasticities

From the definitions ln p ≡
∑
k sk ln pk and }ln po = ln po − ln p, we get

d ln p

d ln pc
=
∑
k

d ln sk
d ln pc

sk ln pk + sc (49)

d ln so
d ln pc

=
Σd
2

[
d }ln po
d ln pc

−
∑
k

sk
d }ln pk
d ln pc

]
− ᾱ(1o=c − sc) (50)

d }ln po
d ln pc

= 2}ln po

(
1o=c −

d ln p

d ln pc

)
(51)

Plugging (51) into (50) gives

∂ ln som
∂ ln pcm

= −Σd
∂ln pm
∂ ln pcm

}ln pom + Σd(1o=c − sc)}ln pcm − ᾱ(1o=c − sc)

which is nothing but main text equation (13). Plugging (13) into (49) gives the equilibrium expression
for ∂ln pm

∂ ln pcm
(equation 14).
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(f) Top 5% Excluded
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Figure 8: Normalized Cross-price Elasticity – Truth versus Estimates

This graph plots the normalized cross-price elasticity eo,c ≡ 1
sc

∂ln so
∂ln pc

of variety o with respect
to a reference variety c 6= o. The x-axis is the true elasticity while the y-axis is the estimated
elasticity, obtained either by CES, FRAC or BLP-normal. The left column of panels reports
the full sample. In the right column, the top 5% largest true elasticities are excluded. In
panels (a) and (b) the data is simulated assuming that random coefficients are normal.
Panels (c), (d) and (e), (f) are respectively simulated with log-normal and uniform random
coefficients.
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