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ABSTRACT 

The conditions that ensure the existence of a unique stable equilibrium - determinacy conditions - for 
rational expectations models with Markov switching depend on the stability concept, contrasting with 
standard linear rational expectations models. In this paper, we offer a unified framework for the two 
commonly used stability concepts: boundedness and mean-square stability. We derive determinacy 
conditions for both concepts based on simple metrics. Qualitatively, we show that mean-square stable 
solutions are always at least as many as bounded solutions. We then apply and discuss our results in two 
monetary models. 
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NON-TECHNICAL SUMMARY 

Standard dynamic stochastic general equilibrium models have recently been augmented to allow for regime-
switching behavior of private agents and public authorities. This new class of models - known as Markov-switching 
rational expectations (MSRE) models - are proven to be powerful in explaining non-linear or time-varying 
macroeconomic phenomena. However, the underlying theory lacks unity and the literature has not yet reached a 
consensus on the determinacy conditions of such systems - conditions under which there exists a unique stable 
equilibrium. 

There are various perspectives on how to interpret rational expectations models through the number of stable 
solutions. First, one can consider determinacy as a selection criterion among multiple models, interpreting the 
absence of stable solution or its multiplicity as a sign of misspecification. Second and quite contrary to the first 
interpretation, one can consider the number of stable equilibria as informative about true economic problems: for 
instance, the multiplicity of stable equilibria is sometimes interpreted as a consequence of bad monetary policy (see 
for instance Lubik and Schorfheide (2004) and the discussion about the Taylor principle). Regardless of the 
interpretation, identifying the number of stable solutions is a prerequisite for understanding a model and its ability 
to account for economic fluctuations. 

Since the earlier contributions of Davig and Leeper (2007) and Farmer et al. (2009b), identifying determinacy has 
been a subtle and difficult task. Due to the inherent non-linearity of regime-switching models, it is not possible to 
apply the well-known methodologies for linear models to this class of rational expectations models. So far, two 
major stability concepts to characterize determinacy have been used: boundedness and mean-square stability. 
Barthelemy and Marx (2019) and Cho (2021) have recently derived determinacy conditions for these two concepts. 
Not surprisingly, the determinacy conditions do not coincide with each other. But more surprisingly the methods 
used to derive the determinacy conditions seem very different raising the question of whether there exists a way to 
unify the two approaches. Such a lack of methodological consensus might be responsible for not using Markov-
switching models in macroeconomics more frequently. 

In this paper, we develop a unified framework that works for both stability concepts and allows to better understand 
the differences between the two stability concepts and their implications. Specifically, we consider a class of MSRE 
models for which determinacy using boundedness and mean-square stability concepts are well-defined. Our main 
contribution is to establish a complete classification result for MSRE models under the standard hypotheses 
assumed for mean-square stability. We derive necessary and sufficient conditions for determinacy, indeterminacy 
and the case of no stable solution under both stability concepts. Then, we show that the MSRE models have in total 
six partitions with always more mean-square-stable solutions than bounded ones. We also propose efficient ways to 
check determinacy in practice for the two stability concepts. Finally, we apply the results to two applications: a 
monetary model in the vein of Davig and Leeper (2008) and a model of monetary and fiscal interaction in the vein 
of Cho (2021).  

As an illustration, we present below some results for the monetary model à la Davig and Leeper (2008). In this 

model, monetary policy follows a Taylor-like rule 𝑖𝑡 = 𝛼(𝑠𝑡)𝜋𝑡 where 𝜋𝑡 is inflation; 𝑖𝑡 stands for the nominal 

interest rate and the coefficient 𝛼 measures the reactiveness of monetary policy to inflation. This coefficient can 

take two values 𝛼(1) and 𝛼(2) depending on the policy regime denoted by 𝑠𝑡, with transition probabilities 𝑝𝑖𝑗 . In 

addition, inflation is determined through a Fisherian equation linking the nominal interest rate, inflation, and the 

real interest rate supposed exogenous: 𝑖𝑡 = 𝐸𝑡𝜋𝑡+1 + 𝑟𝑡. Plugging the switching Taylor rule into this equation shows 
that the higher α, the stronger the response of monetary policy to realized inflation and hence the lower the impact 
of future expectations on current inflation. This model is simpler than the general case we deal in the paper since 
there are no backward components in the equation. As a result, we get only three cases (instead of 6), which are 

represented in Figure 1. For values of  (𝛼(1), 𝛼(2)) above the blue line, there exists a unique MSS solution which 

is also bounded. For values of  (𝛼(1), 𝛼(2)) between the solid blue and dotted magenta lines, there exists a unique 
bounded equilibrium but several MSS equilibria. Below the magenta dotted line, there are several MSS and bounded 
equilibria. Three remarks are in order. First, the gap between the two determinacy frontiers crucially depends on the 
probability of switching from one regime to the other, for very persistent regimes (left figure), this gap is not 
quantitatively important. Second, the qualitative results do not depend on the exact stability concept that is used: 
for instance, in this calibrated and simple model, the more monetary policy reacts to inflation in one regime the less 
monetary policy needs to react in the other regime to rule out equilibrium multiplicity (indeterminacy) and self-
fulfilling prophecies. Third, monetary policy should be more active (higher level of α’s, and the more so for more 
persistent policy) to rule out equilibrium multiplicity under MSS than boundedness. In the fiscal-monetary model 
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presented in the paper, we show that the existence of stable solution requires a more passive fiscal policy for 
boundedness compared to MSS.  

More generally, this study proposes a complete methodological foundation for studying the class of macroeconomic 
models known as Markov-switching rational expectations models. We find that only six configurations are possible 
and the two stability concepts lead to the same conclusion in three of them. In any case, there are always more 
mean-square stable solutions than bounded ones in this class of models. Finally, we believe that our proposed 
approach is tractable enough and easy to apply for more advanced macroeconomic topics that involve strong non-
linearities -e.g., Covid crisis, policy regime shift, financial crisis and so on- impossible to analyse in the context of 
standard linear models. 

Figure 1. Classification of regime-switching Fisherian model 

 
Note: This figure depicts the region for determinacy and indeterminacy for the Fisherian model in boundedness (BDD) and 
mean-square stability (MSS), for two sets of values of probabilities p11=p22=0.9 (high persistence, left panel), and p11=p22=0.5 
(low persistence, right panel). Solid (Dashed) thick line separates the regions of determinacy and indeterminacy in mean-quare 
stability (boundedness) for p11=p22=0.9. The numbers 1, 2 and 3 represent respectively partition 1: determinacy in both 
stabilities, partition 2: determinacy in boundedness and indeterminacy in mean-square stability, partition 3: indeterminacy in 
both stabilities. The point x corresponds to a set of parameters α(1)=2 and α(2)=0.93 corresponding to a continuum of mean-
square stable solutions and a unique bounded solution. 
 

Une approche unifiée des conditions de détermination 
dans les modèles à changement de régimes.  

RÉSUMÉ 

Les conditions qui garantissent l’existence d’un équilibre stable unique – conditions de détermination- pour des 
modèles à anticipations rationnelles avec des changements de régime markoviens dépendent du concept de 
stabilité, à la différence des modèles linéaires à anticipations rationnelles. Dans ce papier, nous proposons un cadre 
unifié pour les deux concepts de stabilité usuellement utilisés : l’espace des processus bornés et celui des processus 
à espérance et variance bornées (mean-square stable). Nous exprimons les conditions de détermination pour ces 
deux concepts à l’aide de métriques matricielles simples. Nous montrons que les solutions à espérance et variance 
bornées sont toujours plus nombreuses que les solutions bornées. Nous appliquons et discutons nos résultats pour 
deux modèles monétaires. 
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1 Introduction

Standard dynamic stochastic general equilibrium models have recently been augmented by

regime-switching behaviors of private agents and public authorities. This new class of models

– known as Markov-switching rational expectations (MSRE) models – are proven to be

powerful in understanding non-linear or time-varying macroeconomic phenomena.1 However,

the underlying theory lacks unity and especially the determinacy conditions — conditions

under which there exists a unique stable equilibrium — have not yet reached a consensus.

There are various perspectives on how to interpret rational expectations models through

the number of stable solutions. First, one can consider determinacy as a selection criterion

among multiple models, interpreting the absence of stable solution or its multiplicity as a sign

of misspecification. Second and quite contrary to the first interpretation, one can consider the

number of stable equilibria as informative about true economic problems: for instance, the

multiplicity of stable equilibria is sometimes interpreted as a consequence of bad monetary

policy (see for instance Lubik and Schorfheide (2004) and the discussion about the Taylor

principle). Regardless of the interpretation, identifying the number of stable solutions is a

prerequisite for understanding a model and its ability to account for economic fluctuations.

Since the earlier contributions of Davig and Leeper (2007) and Farmer et al. (2009b),

identifying determinacy has been a subtle and di�cult task.2 Due to the inherent non-

linearity of regime-switching models, it is not possible to apply the well-known methodologies

for linear models to this class of rational expectations models. So far, two major stability

concepts to characterize determinacy have been used: boundedness and mean-square sta-

bility. Barthélemy and Marx (2019) and Cho (2021) have recently derived determinacy

conditions for these two concepts. Not surprisingly, the determinacy conditions do not co-

incide with each other. But more surprisingly the methods used to derive the determinacy

conditions seem very di↵erent raising the question whether there exists a way to unify the

two approaches. Such a lack of methodological consensus might be responsible for not using

Markov-switching models in macroeconomics more frequently.

In this paper we develop a unified framework that works for both stability concepts and

allows to better understand the di↵erences between the two stability concepts and their

implications. Specifically, we set out the common set of models and the solution space for

1See Bianchi (2013), Sims and Zha (2006), Davig and Leeper (2008), Svensson et al. (2008), Baele et al.
(2015), Bianchi and Melosi (2017) and Ascari et al. (2020) among others.

2Other important contributions include, among others, Farmer et al. (2009a, 2011), Cho (2016), Foerster
et al. (2016) and Neusser (2019).
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which determinacy using boundedness and mean-square stability concepts are well-defined.

Our main contribution is to establish a complete classification result for MSRE models

under the standard hypotheses assumed for mean-square stability. We derive necessary and

su�cient conditions for determinacy, indeterminacy and the case of no stable solution under

both stability concepts. Then, we show that the MSRE models have in total six partitions3

with always more mean-square-stable solutions than bounded ones. We also propose e�cient

ways to check determinacy in practice for the two stability concepts. Finally, we apply the

results to two applications: a monetary model in the vein of Davig and Leeper (2008) and

a model of monetary and fiscal interaction in the vein of Cho (2021). In both examples,

monetary policy should be more active to rule out equilibrium multiplicity under MSS than

boundedness, whereas, in the fiscal-monetary model, existence of stable solution requires a

more passive fiscal policy for boundedness compared to MSS.

This study is organized as follows. Section 2 sets out the common class of models and

the solution space, and formally defines boundedness and mean-square stability for rational

expectations solutions. Section 3 derives our main classification result. Section 4 applies our

results to two economic examples. Section 5 concludes.

2 Setting

Environment We consider the following class of linear models with rational expectations

and regime switching:

xt = Et[A(st)xt+1] + B(st)xt�1 + C(st)✏t, 8t � 0, (1)

where time is discrete and indexed by t � 0, xt is a n ⇥ 1 vector of endogenous variables

with x�1 being initially given. ✏t is a m ⇥ 1 vector of structural exogenous shocks. st is

an ergodic Markov process valued in {1, 2, ..., S} and the transition probability is defined as

pij = Pr(st+1 = j|st = i) for i, j = 1, ..., S such that
P

S

j=1 pij = 1 for all i. Et denotes

the expectations operator given information available at date t. A(·), B(·) and C(·) are

conformable coe�cient matrices of appropriate dimensions.4 The matrices A(·) may be

singular but we assume that their rank does not depend on the regime. As it is standard in

3In three of them, both stability concepts coincide: a unique, multiple and no stable solution under both
stability criteria. The remaining three partitions are the cases of 1) a unique bounded stable solution and
multiple mean-square solutions, 2) no bounded solution and a unique mean-square stable solution and 3) no
bounded solution and multiple mean-square stable solutions.

4Appendix A shows how to deal with models in which A depends on future regime.
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the literature, we assume that the vector xt only includes variables that are undetermined

at date t. A rational expectations solution is a stochastic process {xt}t2N that solves model

(1). Any such a solution can be put into the following convenient form:

xt = [⌦(st)xt�1 + �(st)✏t] + wt, (2)

wt = F (st)Et[wt+1], (3)

where regime-dependent matrices ⌦, � and F satisfy the following system of equations:

B(st)� [1n � Et(A(st)⌦(st+1))]⌦(st) = 0n⇥n, (4a)

C(st)� [1n � Et(A(st)⌦(st+1))]�(st) = 0n⇥m, (4b)

A(st)� [1n � Et(A(st)⌦(st+1))]F (st) = 0n⇥n. (4c)

A process (2) is called a fundamental or minimum state variable (MSV) solution when

wt = 0n⇥1. There are finitely many solutions for ⌦(st), but �(st) and F (st) are uniquely

associated with each ⌦(st). Henceforth, solving for MSV solutions is equivalent to solving

for ⌦(st).

When wt 6= 0n⇥1, it is referred to as a sunspot process and (2) as a sunspot solution.

Notice that (3) is a purely forward-looking homogenous model for wt. Farmer et al. (2009b)

show that any process that solves (3) can be put in the following form:

wt = ⇤(st�1, st)wt�1 +G(st)⌘t, (5)

where ⌘t is any stochastic process such that Et[⌘t+1] = 0n⇥1.5

Stability concepts We now introduce two well-known concepts of stability: bounded sta-

bility and mean-square stability.

Definition 1. (Bounded Process) An n�dimensional stochastic process {xt}t2N is bounded

if there exists N 2 (0,1), such that ||xt|| < N for any history and any date t � 0.

As it is common in the literature, we also discard exotic solutions that do not converge

to a steady-state.6

5Using (5), the general solution (2) can be equivalently written as: xt = [⌦(st) + ⇤(st�1, st)]xt�1 �
⇤(st�1, st)⌦(st�1)xt�2 + �(st)✏t � ⇤(st�1, st)�(st�1)✏t�1 + G(st)⌘t. This will also be abusively called a
sunspot solution even when ⌘t depends on structural shocks.

6Interested reader may refer to Appendix.B for the technical details
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Definition 2. (Mean-square stable Process) An n�dimensional stochastic process {xt}t2N
is mean-square stable (MSS) if, for any initial condition x�1, there exist an n ⇥ 1 vector µ

and an n⇥ n matrix ⌃ such that lim
t!+1

E0(xt) = µ and lim
t!+1

E0(xtx
0
t
) = ⌃.

Clearly, the two stability concepts are distinct. Boundedness relates to the classic C1

norm in the infinite space of stochastic processes whereas mean-square stability relates to the

convergence of the first two moments. As such, determinacy conditions using the two stability

concepts have been identified based on diverse hypotheses such as di↵erent assumptions on

shock processes, and unharmonized approaches in the literature.

The main purpose of this study is to propose a unified single measure to characterize

determinacy in both stability concepts. To do so, we make the two following assumptions.

Assumption 1. The structural shock ✏t is bounded and mean-square stable.

Assumption 2. The sunspot shock ⌘t is bounded, mean-square stable and independent of w�1

and st for all t � 0.

Only boundedness (mean-square stability) would be required for the shock processes if one

is interested in examining a unique bounded (mean-square stable) rational expectations so-

lution. Therefore, Assumptions 1 and 2 are restrictive for each stability concept. However,

both boundedness and existence of finite first and second moments are well-accepted require-

ments for the shock processes in macroeconomics. More crucially, these assumptions enable

us to clarify the determinacy conditions under two stability concepts using a single measure.

Henceforth, Assumptions 1 and 2 are assumed to hold in what follows.

Unified Measures for the Two Stability Concepts Before presenting the main results, let

us introduce the scalar µn(M,P ) which measures the asymptotic explosiveness of a stochastic

product of matrix M given the transition probability matrix P and a norm. Formally,

µn(M,P ) = lim
k!+1

(EkM(s0) · · ·M(sk)kn)1/nk . (6)

where st 2 {1, ..., S} for all t � 0 and for all n 2 [1, ...,1]. The exact definition of expec-

tations in Equation (6) is given in Appendix C. Our measure extends the standard spectral

radius introduced in Protasov (1997) for uniformly distributed matrices (see, for instance,

Jungers and Protasov (2010)) to an environment with transition probabilities pij. In words,

µn(M) measures the overall growth of the product of random matrices, for a given norm
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where P is skipped in our measure for brevity. Notice that the underlying norm k.k is

unimportant given the equivalence of norms in finite dimensional spaces.

The main results of this study critically hinge on the following ranking condition:

Lemma 1. For a given set of argument matrices {M(s)}s2{1,,...,S}, a fixed norm and probability

P , the following holds:

µ1(M)  µ2(M)  µ1(M) (7)

Proof. See Appendix C.

For the class of solutions to model (1), Lemma 1 implies that a fundamental solution

xt = ⌦(st)xt�1 + �(st)✏t is bounded if and only if µ1(⌦0) < 1 and is MSS if and only if

µ2(⌦0) < 1 under Assumption 1. That is, if a fundamental solution is bounded, it is also

mean-square stable. By the same token, if a sunspot process is bounded, it is mean-square

stable under Assumption 2. Henceforth, there are always at least as many MSS solutions

that bounded ones. However, determinacy in boundedness (MSS) is the case in which there

exists a unique bounded (MSS) fundamental solution and non-existence of bounded (MSS)

sunspot processes. This explains why determinacy in boundedness is neither necessary nor

su�cient for that in mean-square stability in a general setup under regime-switching as we

prove in the following section.

3 Determinacy conditions

For an expositional purpose, we first derive the determinacy conditions in forward-looking

models. We then extend to models with backward-looking components.

Forward-looking models For models without backward looking components in whichB(st) =

0n⇥n, there always exists a unique fundamental solution xt = C(st)✏t, and it is both bounded

and mean-square stable under Assumption 1. Therefore, determinacy is equivalent to the

case of no stable sunspot processes subject to Equation (3) with F (st) = A(st) (see Equa-

tion (4c)). Our innovation is to show that such a condition is simply characterized by our

proposed unified measure, without solving for all of the sunspot processes, and examining

their stability. Formally,

Proposition 1. For Model (1) with B(st) = 0n⇥n, there exists a unique bounded (mean-square

stable) solution if and only if µ1(A)  1 (µ2(A)  1). Moreover, µ1(A)  µ2(A).
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Proof. See Appendix D.

Proposition 1 highlights that a unique mean-square stable solution implies a unique

bounded solution, but the converse is not true.7 Moreover, Proposition 1 partitions the

entire class of forward-looking regime-switching models into three: if µ2(A)  1 there exists

a unique solution under both stability concepts; if µ1(A)  1 < µ2(A) there is a unique

bounded solution but multiple MSS ones; otherwise there are multiple MSS and bounded so-

lutions. It is also important to remind that in the absence of regime-switching, µ1(A) = µ2(A)

and they are just the maximum absolute eigenvalue of A.

Generalization Assumptions 1 and 2 allow us to apply the strategy developed by Cho

(2021) for mean-square stability to boundedness. This strategy is based on the analysis of

the minimum of modulus (MOD) solution. Suppose that there are H fundamental solutions.

Without loss of generality, these solutions are indexed such that µ2(⌦0
1)  ...  µ2(⌦0

H
).

⌦1(st) is referred to as the MOD solution in the mean-square stability sense. The same set

of solutions can be similarly indexed for boundedness such that µ1(⌦̃0
1)  ...  µ1(⌦̃0

H
).

⌦̃1(st) is now the MOD solution in boundedness sense. Notice that ⌦1(st) can di↵er from

⌦̃1(st), even if this seems rare in practice.

As in Cho (2021), the characterization of the determinacy, indeterminacy and no stable

solution regions can be done by analyzing the properties of the MOD solution. We can now

state the main proposition that gives this characterization for both stability concepts.

Proposition 2. Determinacy for the general MSRE model (1) is characterized as follows.

1. There exists a unique bounded solution if and only if µ1(F̃1)  1 and µ1(⌦̃0
1) < 1

2. There exists a unique MSS solution if and only if µ2(F1)  1 and µ2(⌦0
1) < 1

Proof. See Appendix E.

The Proposition’s novelty is that the determinacy conditions for both stability concepts

are perfectly symmetric thanks to Assumption 2. Assertion 1 restates Proposition 3 in

Barthélemy and Marx (2019) using µ1 and µ1 metrics and MOD solution but also gives

7The proof relies on the following observation. For mean-square stability, µ2(A)µ2(⇤0) � 1 for all
⇤(st, st+1) in Equation (5) subject to wt = A(st)E[wt+1] and there exists a ⇤⇤(st, st+1) such that
µ2(A)µ2(⇤⇤0) = 1. Hence, µ2(A)  1 if and only if there is no mean-square stable sunspot process, i.e.,
µ2(⇤0) � 1 for all ⇤(·). For boundedness, the same logic holds with µ1(A) and µ1(⇤0). Therefore, determi-
nacy in mean-square stability (µ2(A)  1) implies determinacy in boundedness (µ1(A)  1).
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a necessary and su�cient condition for a unique bounded solution.8 Assertion 2 is the

restatement of Proposition 3 in Cho (2021) for mean-square stability in terms of our unified

measure.9 It is important to note both two metrics jointly determines the existence and

uniqueness of a bounded (MSS) solution, i,e., it is not the case that one metric is a condition

for the existence and the other is for uniqueness. Now the following proposition presents the

complete classification result for the MSRE models.

Proposition 3. There are six mutually disjoint and exhaustive partitions for regime-switching

rational expectations models under the two stability concepts given by Table 1:

Table 1: Classification of the MSRE models by Boundedness and Mean-square Stability

µ1(F̃1) < µ2(F1)  1 6.
NSS(MSS)
NSS(BDD)

4.
DET(MSS)
NSS(BDD)

1⇤.
DET(MSS)
DET(BDD)

µ1(F̃1)  1 < µ2(F1) 5.
IND(MSS)
NSS(BDD)

2.
IND(MSS)
DET(BDD)

1 < µ1(F̃1) < µ2(F1) 3.
IND(MSS)
IND(BDD)

1  µ2(⌦0
1) < µ1(⌦̃0

1) µ2(⌦0
1) < 1  µ1(⌦̃0

1) µ2(⌦0
1) < µ1(⌦̃0

1) < 1

MSS and BDD in parenthesis stand for mean-square stability and boundedness. DET, IND and NSS represent

the case of determinacy, indeterminacy and no stable solution. There are six di↵erent partitions. We assign

numbers 1 through 6 to those six partitions. Empty entries indicate the cases in which it is not possible that

the two conditions in the row and column hold. Partition 1⇤ is possible only if ⌦1 = ⌦̃1.

Proof. See Appendix F

This proposition confirms that determinacy in boundedness is neither necessary nor suf-

ficient for determinacy under MSS. A novel finding is that there are only six partitions of

MSRE models. The two stability concepts lead to the same conclusion for partitions 1, 3

and 6 and di↵er in partitions 2, 4 and 5, which arise only for MSRE models: in the absence

of regime-switching, partitions 2, 4 and 5 disappear, and ⌦̃1 = ⌦1 by construction.10 So the

important question is to understand how likely the partitions 2, 4 and 5 emerge in practice.

8Additionally, but less importantly, Assertion 1 also holds when A(st) is singular.
9In his Proposition 3, Cho (2021) uses the two measures ⇢( F⌦F ) and ⇢( ̄⌦⌦⌦) where ⇢(·) is the spectral

radius and the argument matrices are defined using F (st), ⌦(st) and transition probabilities. It follows that

µ2(F ) = [⇢( F⌦F )]1/2 and µ2(⌦0) = [⇢( ̄⌦⌦⌦)]1/2 from Theorem 2.5 of Ogura and Martin (2013).
10Henceforth, it is a theoretical possibility that ⌦̃1(st) 6= ⌦1(st) only under regime-switching. And if such

a model does exist, it cannot be determinate in both stability concepts.
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We illustrate this point using two economic examples in Section 4. Another important find-

ing is that mean-square stable solutions are always at least as many as bounded solutions.

If there is no bounded solution, the model has no or a unique MSS solution. If there exists

a unique bounded solution, the model has a unique or multiple MSS solutions. If there are

multiple bounded solutions, the model has MSS solutions as well.11

Finally, we address the computational procedure. As mentioned in footnote 9, it is fast to

compute µ2(F1) and µ2(⌦0
1) for mean-square stability as it amounts to computing the spectral

radii of ⌦1(st) and F1(st) weighted by transition probabilities. By contrast, the measures

for boundedness can be computationally demanding. Proposition 3 helps reduce the burden

of computing µ1(F̃1) and µ1(⌦̃0
1) in many situations. Appendix G details a practical and

e�cient implementation procedure of Proposition 3, including the computational time.

4 Applications

In this section, we first present a simple forward-looking model for which our determinacy

conditions can be expressed analytically. We then consider a richer bivariate model of fiscal-

monetary policy interactions in which all six cases addressed in Table 1 emerge.

4.1 A Fisherian monetary model

We reexamine the Fisherian model analyzed by Davig and Leeper (2007), which consists

of a Fisher equation it = rt + Et[⇡t+1] and a simple Markov-switching monetary policy

rule, it = ↵(st)⇡t where i, r, ⇡ are the nominal interest rate, real interest rate and inflation,

respectively. Assume that rt is an exogenous i.i.d process and Assumptions 1 and 2 hold.

This model can be cast into a univariate model as follows.

↵(st)⇡t = Et[⇡t+1] + rt. (8)

In this forward-looking model, A(st) = 1/↵(st). The unique fundamental solution ⇡t =

rt/↵(st) is both bounded and mean-square stable, thus determinacy boils down to judging

non-existence of stable sunspot process subject to wt = A(st)Etwt+1. In this univariate

11We also present this classification graphically in Figure 3.
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model, µ1(A) and µ2(A) can be analytically derived as follows (See Appendix H.1).

µ1(A) = ⇢

 "
p11

|↵(1)|
p12

|↵(1)|
p21

|↵(2)|
p22

|↵(2)|

#!
and µ2(A) = ⇢

 "
p11

↵(1)2
p12

↵(1)2

p21

↵(2)2
p22

↵(2)2

#!
.

Figure 1 displays the two determinacy regions µ1(A)  1 and µ2(A)  1 with respect to

↵(1) and ↵(2) for two alternative set of transition probabilities: when regimes are long-lasting

(p11 = p22 = 0.9); when regimes are short-lasting (p11 = p22 = 0.5). The calibration with

long-lasting regimes is similar to Davig and Leeper (2007). As a numerical example, we use

the example in Farmer et al. (2010a) and consider ↵(1) = 2 and ↵(2) = 0.93, which is denoted

by ⇥ in Figure 1. We find that µ1(A) = 0.9779 < 1 < µ2(A) = 1.0218. Thus, according to

Proposition 1, there exists a mean-square stable sunspot process, but no bounded sunspot

exists. That is, there exists a (continuum of) mean-square stable sunspot process wt =

⇤⇤(st�1, st) + ⌘t such that µ2(⇤⇤0) = 1
µ2(A) < 1 (See footnote 7). By contrast, µ1(⇤0) �

1
µ1(A) > 1 among all sunspot processes satisfying wt = A(st)Et[wt+1] = A(st)Et[⇤(st, st+1)]wt

from Equations (3, 5). Hence, all sunspot processes are not bounded.12

This example confirms that boundedness is less stringent than mean-square stability in

characterizing determinacy for purely forward-looking models. More concretely, a central

bank that wants to rule out mean-square stable inflation processes needs to react more

strongly (higher ↵2 for a given ↵1) or to remain more often in the active regime (higher p22)

compared to the case in which it wants to rule out bounded inflation only. The di↵erence

between the two determinacy frontiers is quantitatively negligible when regimes are persistent

(p11 = p22 = 0.9), but less so when regimes are less persistent (p11 = p22 = 0.5). When

regimes are more short-lived, the degree of aggressiveness required in regime 2 to ensure

uniqueness of a bounded solution is significantly lower than for mean-square-stability.

4.2 Fiscal-monetary interaction

Our second illustration relies on the model presented in Cho (2021), a simplified version of

Leeper (1991) with a regime-switching in monetary and fiscal policies, with only two di↵erent

12This can also be confirmed numerically as follows. Among all ⇤(·), we compute ⇤⇤(·) such that ⇤⇤(·) =
min(µ2(⇤0)) following Cho (2021). Specifically it is given by ⇤⇤(1, 1) = 0.4789, ⇤⇤(1, 2) = 15.6901, ⇤⇤(2, 1) =
0.0314, and ⇤⇤(2, 2) = 1.0298. Then, from footnote 7, µ2(⇤⇤) = 1

µ2(A) < 1. This sunspot process is

unbounded because if the economy stays too long in regime 2, inflation diverges as ⇤(2, 2) > 1. But since
this event is of su�ciently low probability, inflation is still mean-square stable.
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regimes.13 The model consists of the two following equations:

⇡t =
1

↵(st)
Et⇡t+1 +

1

↵(st)
rt, (9)

bt = ✓(st)bt�1 � c(st)⇡t. (10)

where bt is the government debt-to-GDP ratio. Equation (9) is just a rewriting of Equation

(8), and Equation (10) is a standard representation of the fiscal block in the spirit of the fiscal

theory of the price level. The linearized government budget constraint is bt = (1/�)bt�1 �
⌧t � b̄(1/� � ↵(st))⇡t where � is the time discount factor, b̄ is the steady state value of bt. ⌧t

represents the regime-switching tax policy such that ⌧t = �(st)bt�1. Plugging the tax policy

into the budget constraint yields (10) where ✓(st) = 1/� � �(st) and c(st) = b̄(1/� � ↵(st)).

We follow the convention that the monetary policy is active (passive) if ↵ � (<)1 and the

fiscal policy is active (passive) if ✓ � (<)1 in the fixed regime context. In what follows,

we fix the parameter values as � = 0.99, b̄ = 1, p11 = 0.95, p22 = 0.9. We consider three

di↵erent scenarios. This model, its calibration and di↵erent scenarios are discussed in Cho

(2021) and we refer to this paper for complements. See Appendix I for the computational

details and further discussions14.

Regime-switching in Monetary Policy only Suppose that fiscal policy is passive in both

regimes with ✓ = 0.8. We evaluate model determinacy with respect to ↵(st). The MOD

solution evolves independently of the fiscal policy and is mean-square stable and bounded

as µ2(⌦1) = µ1(⌦1) = ✓ < 1. Possible configurations exactly coincide with the Fisherian

model. Panel A of Figure 2 shows determinacy frontiers.

Regime-switching in Fiscal Policy only Suppose now that monetary policy is active in

both regimes with ↵ = 1.5. Determinacy is then examined in terms of fiscal policy ✓(st).

In this case, all sunspot processes are unbounded and not mean-square stable: µ2(F1) =

µ1(F1) = 1/↵ < 1. Therefore, the model is either determinate in boundedness (mean-square

stability) if µ1(⌦1) < 1 (µ2(⌦1) < 1), or has no stable solution otherwise. A unique bounded

solution requires the fiscal policy to be both passive as in the fixed regime case, whereas a

13An application of this type of model in the mean-square stability sense is analyzed by Cho and Moreno
(forthcoming), who focus on the economy switching over the zero lower bound and standard regimes.

14This example is a good laboratory to compare the computational cost between boundedness and mean-
square stability. The average-time is 10� 100 larger for boundedness with respect to mean-square stability.
Still, for any set of parameters’ values, checking determinacy for boundedness takes at most a few seconds
(see Appendix G for the details).
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temporarily active fiscal policy is admissible for unique mean-square stable solution as long

as the policy is not too passive. See Panel B of Figure 2. In this example, determinacy

region in boundedness is tighter than that in the mean-square stability, contrary to the case

above.

Regime-switching in both policies The last scenario allows both policies to be regime-

switching, which is rich enough to exhibit all six partitions of Proposition 3. We fix a policy

combination in regime 1 with ↵(1) = 1.5 and ✓(1) = 0.8 – an active monetary and passive

fiscal policy mix –, and evaluate determinacy in terms of ↵(2) and ✓(2). Panel C of Figure

2 displays all six partitions. This example suggests that ruling out equilibrium multiplicity

requires a more active monetary policy for MSS compared to boundedness, while existence

of stable solution requires a more passive fiscal policy for boundedness compared to MSS.

To summarize, our examples clearly demonstrate that the conclusions on model determi-

nacy di↵er in the two stability concepts when regime switches. While the di↵erence is not

quantitatively sizable in our examples, it is an open question whether the di↵erence can be

sizeable in more complex/more realistic models.

5 Conclusion

This study proposes a complete methodological foundation for studying the class of macroe-

conomic models known as Markov-switching rational expectations models. First, we derive

necessary and su�cient conditions that ensure a unique, multiple and no stable solution(s)

for two standard stability concepts: boundedness and mean-square stability. We character-

ize these conditions using two simple unified metrics as a function of only one fundamental

solution known as MOD solution. Second, we find that only six configurations are possible.

The two stability concepts lead to the same conclusion in three of them and they di↵er in

the remaining three. In any case, there are always more mean-square stable solutions than

bounded ones in this class of models due to ranking between metrics gauging the stability.

We finally believe that our proposed approach is tractable enough and easy to apply for more

advanced macroeconomic topics that are hard to analyze in the context of standard linear

rational expectations models.
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Figure 1: Classification of Regime-switching Fisherian model
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This figure depicts the region for determinacy and indeterminacy for the model (8) in boundedness (BDD)

and mean-square stability (MSS), for two sets of values of probabilities p11 = p22 = 0.9 (high persistence, left

panel), and p11 = p22 = 0.5 (low persistence, right panel). Solid (Dashed) thick line separates the regions

of determinacy and indeterminacy in mean-quare stability (boundedness) for p11 = p22 = 0.9. The numbers

1, 2 and 3 represent respectively partition 1: determinacy in both stabilities, partition 2: determinacy in

boundedness and indeterminacy in mean-square stability, partition 3: indeterminacy in both stabilities. The

point ⇥ corresponds to a set of parameters ↵(1) = 2 and ↵(2) = 0.93 corresponding to a continuum of

mean-square stable solutions and a unique bounded solution.

13



Figure 2: Classification of Regime-switching Model with Monetary and Fiscal Policy Inter-
actions

A. Regime-Switching in Monetary Policy with Passive Fiscal Policy
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B. Regime-Switching in Fiscal Policy with Active Monetary Policy
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C. Regime-Switching in Both Monetary and Fiscal Policies
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This figure depicts the region of determinacy, indeterminacy and no stable solution for the model of (9)

and (10) in boundedness and mean-square stability under three scenarios. In all panels, solid (Dashed) line

represents classifications by mean-quare stability (boundedness). Both stability concepts lead to the same

conclusion on the classification for the three regions denoted by 1 (determinacy), 3 (indeterminacy) and 6

(no stable solution). They di↵er in the remaining three regions denoted by 2, 4 and 5. Refer to the six

partitions in Table 1 for more details.

14



References

Ascari, G., A. Florio, and A. Gobbi (2020): “Controlling Inflation With Timid

Monetary–Fiscal Regime Changes,” International Economic Review, 61, 1001–1024.

Baele, L., G. Bekaert, S. Cho, K. Inghelbrecht, and A. Moreno (2015):

“Macroeconomic Regimes,” Journal of Monetary Economics, 70, 51–71.
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A More general class of models

The class of MSRE models we considered is general enough to encompass seemingly more

general models. First, models with any finite number of leads and lags of the endogenous

variables can be written in the form of our model (1). Exogenous variables such as zt =

R(st)zt�1 + ✏t can also be easily accommodated. Second, models in which A depends on

future regime st+1 as well as st can be rewritten in the form of (1) by redefining the Markov

process. Specifically, suppose that the original model is given by xt = Et[A(st, st+1)xt+1] +

B(st)xt�1 + C(st)✏t. Let yt = A(st�1, st)xt, Xt = [x0
t
y
0
t
]0 and ŝt = (st�1, st), Then it is

straightforward to rewrite the model in terms of Xt, ŝt and ✏t in the form of (1). Refer to

Cho (2021) for more detail.

B Boundedness, Asymptotic Stability, and Mean-square Sta-

bility

As explained after Definition 1, we indeed consider bounded solutions that converge

to the steady state in the absence of shocks (in control theory these processes are called

asymptotically stable).

Definition 3. Consider a bounded process

Yt = H(st)Yt�1 +G(st)⌘t

where st is Markovian, with transition matrix P .

We say that Yt is asymptotically stable if, in absence of shocks, for any � > 0, for any

initial value Y0 and draws s
t
, there exists T such that

8t � T, kYtk  �kY0k

The following result shows that an asymptotically stable process is mean-square stable.

Lemma 2. Let Yt be an asymptotically stable process. Then Yt is mean-square stable.

Proof. The proof is quite standard in control theory. An asymptotically stable process is

exponentially convergent. Precisely, assume that Yt is asymptotically stable, then there exists

K such that

8Y, kH(sK)H(sK�1) · · ·H(s1)Y k  1

2
kY k
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Iterating this property, we get that for all q 2 {2, 3, 4, ...},

kH(sKp)H(sKp�1) · · ·H(sK(p�1)+1) · · ·H(sK)H(sK�1) · · ·H(s1)Y k 
✓
1

2

◆p

kY k

This implies that Yt is exponentially decreasing and thus mean-square stable.

Notice that any solution to model (1) can be rewritten as a recursive process of the form of

the definition 3 by combining equations (2) and (5), defining Yt = [xt; xt�1]0 and generalizing

the definition of a regime as the pair [st, st�1]. See also footnote 5. Any solution that

is bounded and converges to a certain steady state in the absence of shocks and sunspots

hence satisfies Definition 3. The above Lemma then shows that, any bounded solution is

also mean-square stable. This finding is a special case of Lemma 1.

C Proof of Lemma 1

Let us first formally introduce the definition of the measure µn(M). For any given set of

n⇥ n matrices {M(st)}st2{1,,...,S} and the transition probability P of which ij-th element is

pij = Pr(st+1 = j|st = i), µn(M) in (6) – µn(M,P ), strictly speaking –, is defined as

µn(M) = lim
k!+1

0

@
X

(i1,··· ,ik)2{1,··· ,S}k
pi1i2 · · · pik�1k

kM(i1)M(i2) · · ·M(ik)kn
1

A
1/nk

for n � 1. The claim µ1(M)  µ2(M)  µ1(M) in Lemma 1 is a direct consequence of

Lemma 2.9 of Ogura and Martin (2013). Q.E.D.

D Proof of Proposition 1

When B(st) = 0n⇥n in model (1) for all st, xt = C(st)"t is the unique fundamental solution

and it is bounded and mean-square stable fundamental solution under Assumption 1. Thus

we need a necessary and su�cient condition for non-existence of stable sunspot processes for

determinacy.

Proof of Assertion 1. Proposition 1 in Barthélemy and Marx (2019) shows that there exists

no bounded sunspot processes if and only if µ1(A)  1 when A(st) is non-singular for all

st = 1, ..., S. Their Proposition 1 holds here because our Assumption 2 defines a subset of

the class of sunspot shocks in their paper. Thus, all we need to prove here is that their
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Proposition 1 also holds when for any s is r  n, independent of s where r is the rank of

A(s). We thus consider the model

wt = A(st)Et(wt+1)

For any s, there exist two orthonormal n⇥r matrices V (s) and U(s) such that V 0(s)V (s) = 1r

and U
0(s)U(s) = 1r and an invertible r ⇥ r matrix �(s) such that

A(s) = V (s)�(s)U 0(s),

from the singular value decomposition theorem. We define ut = U
0(st�1)wt, which satisfies

ut = U
0(st�1)A(st)Et(wt+1) = U

0(st�1)V (st)�(st)U 0(st)Et(wt+1) = U
0(st�1)V (st)�(st)Et(ut+1).

Thus, it follows that ut = Â(st, st�1))Et(ut+1). The results of Barthélemy and Marx (2019)

apply to Â(st, st�1) which is an invertible r⇥r matrix. Thus, determinacy depends on µ1(Â).

We notice that
pY

k=1

Â(sk, sk�1) = V
0(s0)

p�1Y

k=0

A(sk)U(sp)

Since V (s) and U(s) are orthonormal,

k
pY

k=1

Â(sk, sk�1)k = k
p�1Y

k=0

A(sk)k

We finally get that there exists a unique bounded solution if and only if µ1(Â) = µ1(A) < 1.

Proof of Assertion 2. In his Proposition 1, Cho (2021) proves that there exists no mean-

square stable sunspot process if and only if ⇢( (F ⌦ F ))  1 for the set of n ⇥ n matrices

{F (st, st+1)}st,st+12{1,,...,S} when the sunspot shock ⌘t is mean-square stable. Our A(st) is just

a special case of F (st, st+1). Also recall that µ2(A) = [⇢( (A⌦ A))]1/2 and our Assumption

2 is a subset of the class of mean-square stable sunspot shocks. Therefore, his Proposition 1

holds in our setup as well. Q.E.D.

E Proof of Proposition 2

Proof of Assertion 2 Assertion 2 for mean-square stability holds under Assumptions 1 and

2 because it is a special case of Proposition 3 of Cho (2021). Q.E.D.

Proof of Assertion 1 requires us to explain several preliminary steps. We first summarize
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the proof for Assertion 2 in mean-square stability, then derive new equilibrium properties

for boundedness analogous to those for mean-square stability. Finally a formal proof for

Assertion 1 is presented.

Suppose that there are H fundamental solutions to our model (1), ⌦h(st). Recall that

Fh(st) and �h(st) are uniquely associated with ⌦h(st) defined in (4). Without loss of gen-

erality, these solutions are indexed in an increasing order of the measure µ2 such that

µ2(⌦0
1)  ...  µ2(⌦0

H
). ⌦1(st) is referred to as the MOD solution in the MSS sense.

Proposition 2 of Cho (2021) derives the key properties among µ2(⌦0
h
) and µ2(Fh), which

are reproduced here using our measure for ease of comparison with the case of boundedness.

P1. µ2(⌦0
h
)µ2(Fh) � µ2(⌦0

1)µ2(Fh) � 1 and µ2(⌦0
h
)µ2(F1) � 1 for all h 2 {2, · · · , H}.

P2. ⌦1(st) is the unique mean-square stable real-valued MOD solution if µ2(⌦0
1)µ2(F1) < 1.

The properties P1 and P2 show that the classification only relies on the behavior of the

MOD solution. These results are summarized in Proposition 3 of Cho (2021): model (1) is

determinate if and only if µ2(⌦0
1) < 1 and µ2(F1)  1, indeterminate if and only if µ2(⌦0

1) < 1

and µ2(F1) > 1, and has no mean-square stable solution if and only if µ2(⌦0
1) � 1.15 A final

remark is that it is easy to see that a model can never be determinate if µ2(⌦0
1)µ2(F1) � 1.

To avoid unnecessary complication, we consider the class of MSRE models in which the

identification condition for the MOD solution in P2 holds.16

Now we turn to the case of boundedness. In their Proposition 3, Barthélemy and Marx

(2019) provide su�cient conditions for the three cases: unique, multiple and no bounded

solution(s) using the measure µ1 defined in (6). Here we provide a much powerful re-

sult, extending their proposition: we derive both necessary and su�cient conditions in

boundedness for all three cases. Similarly to Cho (2021), we introduce the concept of

MOD solution for boundedness. The same set of fundamental solutions are indexed as

{⌦̃1(st)}(st)2{1,...,S} in an increasing order of the measure µ1 such that µ1(⌦̃0
1)  ... 

µ1(⌦̃0
H
) where {⌦̃1(st), ..., ⌦̃H(st)} is the same as, or a permutation of {⌦1(st), ...,⌦H(st)}.

⌦̃1(st) is now the MOD solution in boundedness sense.

We now report boundedness counterparts of P1 and P2 as follows.

15One of the key equilibrium properties for Markov-switching models is that, contrary to fixed regime case
and as emphasized in Cho (2021), uniqueness of a stable fundamental solution does not imply determinacy.
Therefore, both uniqueness of a stable fundamental solution and non-existence of stable sunspot components
must be jointly examined for determinacy as we do in this paper.

16Cho (2021) dubs the set of MSRE models with µ2(⌦0
1)µ2(F1) � 1 determinacy-inadmissible, and shows

that the MOD solution in this case is exotic in the sense that it is not unique (complex-valued or repeatedly
real-valued) or such a model consists of completely decoupled systems with a particular structure.
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Proposition 4. Consider the model 1, then the following holds

1. µ1(⌦̃0
h
)µ1(F̃h) � µ1(⌦̃0

1)µ1(F̃h) � 1 and µ1(⌦̃0
h
)µ1(F̃1) � 1 for all h 2 {2, · · · , H}.

2. ⌦̃1(st) is the unique bounded real-valued MOD solution if µ1(⌦̃0
1)µ1(F̃1) < 1.

Proof. The proof mimics the strategy of Appendix C in Cho (2021). Using formula (40) in

that Appendix, we know that the spectral radius of the matrix

"
p11 [⌦h(1)]

0 ⌦ Fk(1) p12 [⌦h(1)]
0 ⌦ Fk(1)

p21 [⌦h(2)]
0 ⌦ Fk(2) p22 [⌦h(2)]

0 ⌦ Fk(2)

#

is larger than 1, when h 6= k. This implies that

X

(i1,··· ,ip)2{1,··· ,N}p
pi1i2 · · · pip�1ip

�����

�����

pY

j=1

[⌦h]
0 (ij)⌦

pY

j=1

Fk(ij)

�����

����� � ⇢
p

where ⇢ � 1 and p = 1, 2, ...,1. According to Lancaster and Farahat (1972), there exist

some norms for which

�����

�����

pY

j=1

[⌦h]
0 (ij)⌦

pY

j=1

Fk(ij)

�����

����� =

�����

�����

pY

j=1

[⌦h]
0 (ij)

�����

�����

�����

�����

pY

j=1

Fk(ij)

�����

�����

Thus,

1 
 

max
(i1,i2,··· ,ip)2{1,··· ,N}p

�����
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�����

�����

1

A
1/p
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This implies that µ1(⌦0
h
)µ1(Fk) � 1. Since ⌦̃h = ⌦j for some j = 1, ..., H, it is also true

that µ1(⌦̃0
h
)µ1(F̃k) � 1 for all h, k = 1, ..., H and h 6= k. From Lemma 1, µ1(⌦̃0

1) � µ2(⌦̃0
1).

This proves Assertion 1: µ1(⌦̃0
h
)µ1(F̃h) � µ1(⌦̃0

1)µ1(F̃h) � 1 and µ1(⌦̃0
h
)µ1(F̃1) � 1 for all

h 2 {2, · · · , H}. Hence, there is only two possibility for ⌦̃1. If µ1(⌦̃0
1)µ1(F̃1) < 1, it must be

the MOD solution in boundedness sense, proving Assertion 2. Q.E.D.

Proof of Assertion 1 The classification result for mean-square stability is identical to Propo-

sition 3 of Cho (2021), which holds under our Assumptions 1 and 2. The classification result

for boundedness is similar to Proposition 3 of Barthélemy and Marx (2019). But the condi-

tions for unique, multiple and no bounded solutions are both necessary and su�cient, once

we show that when µ1(⌦̃0
1) � 1, there is no bounded solution under Assumptions 1 and 2.
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If µ1(⌦̃0
1) � 1, then, for any ⌦̃h, µ1(⌦̃0

h
) � 1. Let us prove by contradiction that there is

no bounded solution. Suppose that there exists a bounded solution, that we denote by xt.

Then, there exists an ⌦̃h(st) for some h such that xt can be written as Equation (2), and

such that for any history, the realization is bounded. For a given set of sunspots {⌘t}t�0,

and for any initial conditions (x�1, w�1), sequence of shocks {✏t}t�0 and regimes {st}t�0, the

corresponding process is bounded. For this initial condition x�1, and the sunspots ⌘t, we

construct a process x0
t
with an initial condition x

0
�1, then

x
0
t
� xt = ⌦̃h(st)(x

0
t�1 � xt�1)

First, according to Assumption 2, the sunspots are independent of initial condition x
0
�1.

Second, since µ1(⌦̃0
h
) � 1, there exist a sequence of regimes s

t and a direction such that
TQ

k=0
⌦̃h(sk)(x0

�1 � x�1) is diverging. By construction, the associated realization x
0
t
is not

bounded, which is a contradiction. Therefore, if µ1(⌦̃0
1) � 1, then there is no bounded

solution.

F Proof of Proposition 3

First, consider the case ⌦1 = ⌦̃1. From Lemma 1, µ1(F1)  µ2(F1) and µ2(⌦0
1)  µ1(⌦0

1).

Depending on the size of µ1(F1), µ2(F1) and 1, there are three possible partitions. Same

is true for µ2(⌦0
1), µ1(⌦0

1) and 1. Hence, there are 9 partitions. Classification for the

six partitions are shown in Proposition 2. Therefore, we need to show that the remaining

partitions cannot arise. The partition with µ1(F1)  1 < µ2(F1) and 1  µ2(⌦0
1)  µ1(⌦0

1)

implies that µ2(F1)µ2(⌦0
1) > 1, contradicting that ⌦1 is the MOD solution in mean-square

stability. Same is true for the partition with 1 < µ1(F1)  µ2(F1) and 1  µ2(⌦0
1)  µ1(⌦0

1).

The remaining partition with 1 < µ1(F1)  µ2(F1) and µ2(⌦0
1) < 1  µ1(⌦0

1) implies that

µ1(F1)µ1(⌦0
1) > 1, contradicting that ⌦1 is the MOD solution in boundedness.

Second, suppose that ⌦1 6= ⌦̃1. In this case, the ranking of µn with associated with the

two MOD solutions is given by:

µ2(⌦
0
1) < µ2(⌦̃

0
1)  µ1(⌦̃0

1) < µ1(⌦0
1) (11)

µ1(F̃1) < µ1(F1)  µ2(F1) < µ2(F̃1) (12)

Therefore, µ1(F̃1) < µ2(F1) and µ2(⌦0
1) < µ1(⌦̃0

1). Again, there are 9 partitions. Clas-
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sification for partitions 2 through 6 are shown in Proposition 2, and the remaining three

partitions except partition 1 cannot arise by the same logic in the case of ⌦1 = ⌦̃1. Now it

su�ces to show that partition 1, µ1(F̃1) < µ2(F1)  1 and µ2(⌦0
1) < µ1(⌦̃0

1) < 1 , cannot

arise. In this case, it should be true that µ2(F1)µ2(⌦̃0
1) < 1 and µ1(F1)µ1(⌦̃0

1) < 1 because

µ2(⌦̃0
1) < 1 and µ1(F1) < 1 from (11,12), both of which contradict P1 for mean-square

stability and Proposition 4 for boundedness. Q.E.D.
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Figure 3: Graphical Classification of the MSRE models

Panel A. Classification when ⌦̃1(st) = ⌦1(st)

1

2

3

4

5

6

Panel B. Classification when ⌦̃1(st) 6= ⌦1(st)

2
3

4

5

6

This figure displays the classification results summarized in Table 1. Arabic numbers 1 through 6 represent

the six partitions in Table 1 in which the coordinate (1,1) can be located. The grey regions surrounded by

straight lines are where the point (1,1) cannot be located (bottom left area in Panel A and bottom left and

top right areas in Panel B). Panel A displays the classification when ⌦̃1(st) = ⌦1(st). The Red and blue

dot represent the pair (µ2(⌦0
1), µ2(F1)) for mean-square stability and (µ1(⌦0

1), µ2(F1)) for boundedness,

respectively: partitions in top right, bottom right and top left regions from the red (blue) point represents

determinacy, indeterminacy and no stable solution in mean-square stability (boundedness). Panel B displays

the classification when ⌦̃1(st) 6= ⌦1(st), which is analogous to Panel A except that partition 1 is empty and

the blue dot denotes the point (µ1(⌦̃0
1), µ1(F̃1))
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G Practical Implications

While Proposition 3 is symmetric for both stability concepts, the numerical assessment of

µ1(⌦0
1) and µ1(F1) for boundedness is computationally more demanding than µ2(⌦0

1) and

µ2(F1) for mean-square stability, because the latter two are just the function values – spectral

radii – of the MOD solution. From a practical point of view, it is thus more e�cient to begin

with computing the latter two measures for mean-square stability and exploit the ranking

information proved in Proposition 3 for boundedness. For instance, suppose that the model

is determinate in the mean-square stability (MSS): µ2(⌦0
1) < 1 and µ2(F1)  1. Proposition 3

then implies that µ1(F1) < 1 and µ2(⌦0
h
)  µ1(⌦0

h
) for all h = 2, ..., H. Henceforth, one has

only to check µ1(⌦0
h
) to see that the model has a unique bounded solution if µ1(⌦0

h
) < 1 and

no bounded solution otherwise. To this end, we propose the following procedure to identify

which one of the six partitions a given MSRE models belongs to.

[1] Classification in the mean-square stability: Compute the MOD solution in MSS following

Cho (2021). Compute µ2(⌦0
1) and µ2(F1). Follow Proposition 3.

[2] Classification in the boundedness: Compute the MOD solution in MSS, and compute

µ2(⌦0
1) and µ2(F1).

1. If µ2(⌦0
1) � 1, then there is no stable solution in both stability concepts, regardless

of ⌦̃1 = ⌦1, i.e, the MOD solution in boundedness equals the MOD solution in MSS.

(Partition 6)

2. If µ2(⌦0
1) < 1 and µ2(F1)  1 [determinacy in MSS], compute µ1(⌦0

1).

(a) If µ1(⌦0
1) < 1, then ⌦̃1 = ⌦1 and the model is determinate in boundedness.

(Partition 1)

(b) If µ1(⌦0
1) � 1, then µ1(⌦̃0

1) � 1 regardless of ⌦̃1 = ⌦1, thus the model has no

bounded solution. (Partition 4)

3. If µ2(⌦0
1) < 1 and µ2(F1) > 1 [indeterminacy in MSS], compute µ1(⌦0

1) and µ1(F1).

(a) If µ1(⌦0
1)µ1(F1) < 1, then ⌦̃1 = ⌦1.

i. If µ1(⌦0
1) � 1, then the model has no bounded solution. (Partition 5)

ii. If µ1(⌦0
1) < 1 and µ1(F1)  1, the model is determinate in boundedness.

(Partition 2)

iii. If µ1(⌦0
1) < 1 and µ1(F1) > 1, the model is indeterminate in boundedness.

(Partition 3)
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(b) If µ1(⌦0
1)µ1(F1) � 1, the model cannot be determinate in MSS. Thus, it cannot

be determinate in both stabilities. One needs to compute the MOD solution, ⌦̃1

in boundedness.

i. If µ1(⌦̃0
1) � 1, then the model has no bounded solution. (Partition 5)

ii. If µ1(⌦̃0
1) < 1 and µ1(F̃1)  1, the model is determinate in boundedness.

(Partition 2)

iii. If µ1(⌦̃0
1) < 1 and µ1(F̃1) > 1, the model is indeterminate in boundedness.

(Partition 3)

Two remarks are in order. First, when the model belongs to cases 1 and 2 in this flow

chart, one does not need to check whether ⌦1(st) is the MOD solution in boundedness as

well and it su�ces to compute µ1(⌦0
1) to identify which partition the model belongs to. For

instance, in case 1, µ2(⌦0
1) � 1 implies that µ1(⌦0

1) > 1. Moreover, µ2(F1) < 1 because

µ2(⌦0
1)µ2(F1) < 1. Therefore, that µ1(⌦0

h
) > 1 for all h = 2, ..., H from P1. Henceforth, all

fundamental solutions are unbounded. The same is true for case 2.(a) because µ1(⌦0
1) > 1.

Moreover, µ2(F1)  1. Second, one needs to identify the MOD solution in boundedness only

when the model is indeterminate in mean-square stability. So far, we have never encountered

⌦̃1 6= ⌦1 and hence case 3.(b).

We apply our procedure to the model of monetary and fiscal interaction, using a standard

desktop computer, to illustrate the computational time for the parameter values leading to

each of the 6 partitions. For mean-square stability, it takes less than 0.001 second to compute

the MOD solution and evaluate µ2(⌦0
1) and µ2(F ) in all cases. For boundedness, it is very

demanding to compute the exact values of µ1 and µ1. But the main purpose is not to

compute those, but to judge whether each of these measures is less than unity or not. In the

case of determinacy and no stable solution, it takes much less than a second to draw such a

judgment as long as these values are not too close to 1. But it takes several second in the

case of indeterminacy. We also tested our procedure for a four-dimensional model of Cho and

Moreno (forthcoming) and find that a similar result is obtained although the computational

time for implementing our procedure for boundedness increases faster than the increase in

the dimension.
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H The Fisherian monetary model

H.1 Formula for µ1(A) in Section 4.1

Here we show that µ1(A) can be easily computed as a spectral radius for the Fisherian

model in Section 4.1. This condition is then

lim
k!+1

0

@
X

(i1,··· ,ik)2{1,··· ,2}k

pi1i2 · · · pik�1ik

1

|↵(i1)||↵(i2)| · · · |↵(ik)|

1

A
1/k

= lim
k!+1

0

@kvec(
"

p11

|↵(1)|
p12

|↵(1)|
p21

|↵(2)|
p22

|↵(2)|

#k
)k1

1

A
1/k

= ⇢

 "
p11

|↵(1)|
p12

|↵(1)|
p21

|↵(2)|
p22

|↵(2)|

#
.

!

Q.E.D.

H.2 Exploring the existence of bounded sunspots

First,we notice that for any bounded solution,

wt = A(st)Etwt+1

there exists a constant C such that

kwtk1 < C lim
k!+1

µ1(A)
k

and thus w is zero.

When µ1(A) > 1, there exist z(1) and z(2) such that

"
p11A(1) p12A(1)

p21A(2) p22A(2)

#"
z(1)

z(2)

#
= µ1(A)

"
z(1)

z(2)

#

The process wt such that

wt = µ1(A)wt�1 + z(st)⌘t

with w0 = z(s1), and ⌘ a univariate bounded zero-mean random process, is a solution of the

model and is unbounded.
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I Model with monetary and fiscal interactions

In this appendix, we provide additional analysis and explain the model in depth. The first

step is to compute the MOD solution. For the model consisting of (9) and (10), the state

variables are given by bt�1 and rt. By letting bt = �(st)bt�1+q(st)rt is a fundamental solution

with �(st) and q(st) being unknown coe�cients, one can solve for ⌦(st) and F (st) as follows.

⌦(st) =

"
0 ✓(st)��(st)

c(st)

0 �(st)

#
, F (st) =

"
�(st)

✓(st)↵(st)
0

�c(st)�(st)
✓(st)↵(st)

0

#
. (13)

In what follows, we will consider three di↵erent scenarios. For each scenario, �(st) and

q(st) will be derived analytically. Note that, for all scenarios, stability of ⌦(st) is governed

by the scalar �(st). We find that the MOD solution in mean-square stability coincides

with that in boundedness in all three scenarios. The restriction for the sunspot component

wt = F (st)Etwt+1 can also be reduced to a univariate relation such that:

w
⇡

t
=

�(st)

↵(st)✓(st)
Et[w

⇡

t+1],

where wt = [w⇡

t
w

b

t
]0. Specifically, the following holds:

Y

i=1···K

F (si) =

2

4
Q

i=1···K

�(si)
↵(si)✓(si)

0

⇤ 0

3

5 ,

Y

i=1···K

⌦(si) =

2

4
0 ⇤
0

Q
i=1···K

�(si)

3

5 (14)

where ⇤ denotes the unimportant o↵-diagonal terms. Then µ1(⌦0) is reduced as simple

conditions on �(1) and �(2), while µ1(F ) depends on ↵(i)✓(i)
�(i) for i = 1, 2.

I.1 Regime-switching in Monetary Policy only

Suppose that fiscal policy is passive in both regimes with ✓ = 0.8. We find that for this

model to be determinate, ↵(st) > ✓. Then �(st) is simply ✓, and the MOD solution and the

associated F1(st) in Equation (13) are given by:

⌦1(st) =

"
0 0

0 ✓

#
, F1(st) =

"
1

↵(st)
0

� c(st)
↵(st)

0

#
. (15)

This solution is monetary in the sense that inflation evolves independently of the fiscal policy.

The model determinacy with ↵(st) can be evaluated following the procedure described in
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G. The MOD solution is mean-square stable as µ2(⌦0
1) = ✓ < 1. Since this is regime-

independent, µ1(⌦0
1) = ✓ < 1 as well, implying that it is also bounded. Therefore, the

model is determinate in mean-square stability if µ2(F1)  1, and indeterminate otherwise.

When µ2(F1)  1, the model is also determinate in boundedness as well because µ1(F1)  1

from Lemma 1. Hence, we need to compute µ1(F1) only when µ2(F1) > 1. Panel A of

Figure 2 displays the partition of the parameter space by the two stability concepts. Just

like Figure 1, we have partitions 1 (both determinate), 2 (determinate in boundedness and

indeterminate in mean-square stability) and 3 (both indeterminate).These results are not

surprising and the possible configurations coincide with the Fisherian model. Even if the

general model is more general, the fiscal block is always stationary, hence determinacy solely

comes from the purely forward-looking monetary block.

I.2 Regime-switching in Fiscal Policy only

The second scenario is one in which monetary policy is active in both regimes with ↵ = 1.5.

Determinacy is then examined in terms of fiscal policy stance ✓(1) and ✓(2). For this model

to contain determinacy region, we find that �(st) = ✓(st) and the MOD solution is given by:

⌦1(st) =

"
0 0

0 ✓(st)

#
, F1(st) =

"
1
↵

0

� c

↵
0

#
. (16)

Once again the MOD solution is monetary and inflation does not depend on fiscal policy

in the MOD solution, although the solution now depends on the regime-switching fiscal

policy. Notice first that µ2(F1) = 1/↵ < 1 because F1 matrix is now regime-independent.

Therefore, the model is determinate in mean-square stability if and only if µ2(⌦0
1) < 1, and

has no stable solution otherwise. To evaluate determinacy in boundedness, it is obvious that

µ1(F1) = 1/↵ < 1 as well. Then the model has a unique bounded solution if and only if

µ1(⌦0
1) < 1 and has no bounded solution otherwise. In this scenario, we also have three

partitions but following the second row in Table 1: 1 (determinacy in both stabilities), 4

(no bounded solution but determinacy in mean-square stability), and 6 (no stable solution

in both stabilities). These partitions are displayed in Panel B of Figure 2.

Therefore, in this specification, we have exactly the opposite relation between determi-

nacy in both stabilities, unique boundedness implies unique mean-square stable solution, but

the converse is not true. In fact, unique bounded solution requires the fiscal policy to be both

passive as in the fixed regime case, whereas a temporarily active fiscal policy is admissible
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for unique mean-square stable solution as long as the stance is not too strong. Recall that in

the first scenario and purely forward-looking models, determinacy in mean-square stability

implies determinacy in boundedness. To conclude, determinacy in boundedness is neither

necessary nor su�cient for determinacy in mean-square stability in general MSRE models.

I.3 Regime-switching in both policies

The last scenario allows both policies to be regime-switching, which is rich enough to exhibit

all six partitions of the classification of the model. In this case, we can evaluate the model

partition in terms of four parameters ↵(1), ↵(2), ✓(1) and ✓(2), As an illustrative purpose,

we fix a policy combination in regime 1 with ↵(1) = 1.5 and ✓(1) = 0.8 – an active monetary

and passive fiscal policy mix –, and evaluate determinacy in terms of ↵(2) and ✓(2).

While it is easy to compute the MOD solution numerically, it is instructive to understand

its equilibrium properties as follows. Depending on the policy stances in this scenario, the

MOD solution can be of the monetary equilibrium similar to (15) and (16), but it can also

be fiscal in the sense inflation can be a↵ected by the fiscal block, which would prevail if the

fiscal policy is relatively more aggressive than the monetary policy. To be more specific,

the solution restriction (4) can be represented as �(j), j = 1, 2 for the following quadratic

polynomial equations:

✓
pj1

�(1)

c(1)
+ pj2

�(2)

c(2)

◆
�
✓
pj1

✓(1)

c(1)
+ pj2

✓(2)

c(2)
+

↵(j)

c(j)

◆�
�(j) +

↵(j)✓(j)

c(j)
= 0. (17)

Then it is straightforward to show that ⌦(st) and the associated F (st) satisfy

⌦(st) =

"
0 ✓(st)��(st)

c(st)

0 �(st)

#
, F (st) =

"
�(st)

✓(st)↵(st)
0

�c(st)�(st)
✓(st)↵(st)

0

#
. (18)

Now we follow the procedure of identifying the six partitions. We first identify the MOD

solution, and compute µ2(⌦0
1) and µ2(F1). From Equation (17), it is easy to see that there

are four solutions for �(st), thus for ⌦(st) as well. In principle, one can identify the MOD

solution by computing and finding the smallest µ2(⌦0
h
, for h = 1, 2, 3, 4. But it is di�cult to

solve for all of the fundamental solutions. Thus one can apply the solution method proposed

by Cho (2021) and use the identification condition: If µ2(⌦)µ2(F ) < 1, it is the MOD

solution in the mean-square stability sense. The same is true for boundedness: ⌦ is MOD

solution in boundedness if µ1(⌦)µ1(F ) < 1. In any case, we find that the MOD solution in
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boundedness is the same as that in mean-square stability.

Notice that the stability of ⌦(st) is governed by the regime-switching scalar �(st) and the

non-existence of stable sunspots and other fundamental solutions can be fully identified by
�(st)

✓(st)↵(st)
in both stability concepts. This simple structure allows us to compute the µ1(⌦0

1)

and µ1(F1) easily. Panel C of Figure 2 displays all six partitions.

Both the top left and bottom right regions belong to partition 1: determinacy in both

stability concepts. However, the equilibrium property di↵ers across the two regions. The

former is associated with a combination between active monetary and passive fiscal policy in

the regime-switching context, whereas the latter is associated with a passive monetary and

active fiscal policy combination. Therefore, the equilibrium is monetary in the former and

fiscal in the latter. This is qualitatively similar to the fixed regime case, but our contribution

is to identify these regions exactly under the both stability concepts.

Region 3 is also similar to the case of passive monetary and passive fiscal policy mix, thus

indeterminacy prevails in both stability concepts. In contrast, there is no stable solution in

both stability in the region 6, which corresponds to overall active monetary and active

fiscal policy mix. Two regions identified by partition 2 make di↵erence between the two

stability concepts. In these regions, the model is viewed as determinate in boundedness

but indeterminate in mean-square stability sense. Therefore, while the model has a unique

bounded solution, there exists a continuum of mean-square stable solutions as well in these

regions. Similarly, the two regions denoted by partition 4 represent the case in which there

exists a unique mean-square stable solution, but it is unbounded (no bounded solution exists).

Finally, the partition 5 is the case where there exists a continuum of mean-square stable

solutions (indeterminacy) but all of them are unbounded.
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