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ABSTRACT 

We introduce an approach to measure the risk of inflation dispersion among euro area 
countries. Our measure reflects the dissimilarity between the full predictive inflation 
distributions of member countries, and thus captures how "far" apart inflation levels are 
expected to be. The risk of inflation dispersion exhibits a countercyclical behavior along the 
business cycle. We document that the rising risk of inflation dispersion is mainly driven by a 
deterioration in financial conditions, while a robust anchoring of inflation expectations in 
each country tends to mitigate this risk. We further demonstrate that our measure has 
predictive power for future euro area inflation realizations as well as for variations in the 
monetary authority's interest rate. 
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NON-TECHNICAL SUMMARY 

 

The resurgence of inflation in the euro area, spurred by the post-COVID crisis recovery and 
tensions in oil and natural gas markets following the war in Ukraine, has coincided with a 
significant increase in inflation differentials between member countries, reaching 
unprecedented levels and all-time highs.  

Inflation divergence has drawn attention of policymakers since it can challenge the 
effectiveness of monetary policy. Adjusting nominal interest rates based on a single inflation 
target might result in an excessively accommodative monetary policy for nations 
experiencing notably higher inflation than the euro area average. Conversely, countries with 
inflation considerably below the average may encounter unwarranted tightening policy 
pressures.  

Accurately assessing the risk of inflation dispersion is thus of deep relevance for 
policymakers. A key consideration is to determine whether inflation differentials are 
temporary or have the potential to persist over an extended period. Simultaneously, gaining 
insights into the drivers of inflation disparities provides valuable perspectives for predicting 
their future evolution and evaluating the risks associated with sustained divergences. 
Moreover, in the context of a monetary union, where countries share the same nominal 
interest rate, a high dispersion of inflation rates translates into a high dispersion of real 
interest rates between member countries. In this context, the risk of inflation dispersion may 
also be informative of the risk of financial fragmentation in the euro area, which may impair 
the transmission of monetary policy. However, the lack of reliable and available tools for 
analyzing these risks makes investigation on this important issue very limited. Indeed, current 
available measures of inflation dispersion typically rely on realized inflation, and thus, by 
construction, do not contain any forward-looking information about expected inflation 
dispersion at medium and long-term horizons. 

In order to properly build a measure of expected inflation dispersion among euro area 
countries, one needs to take a probabilistic forecasting approach by considering not only 
cross-country differences in point forecasts of inflation, but also cross-country differences 
in density forecasts since they bring additional information, namely differentials in 
uncertainty and tail risks. This is what we intend to do in this paper. More specifically, our 
dispersion measure reflects the dissimilarity, i.e., the distance, between the full predictive 
inflation distributions of euro area member countries. Therefore, it captures how "far'' apart 
inflation levels are expected to be between euro area members for a given horizon. 

We provide evidence that the risk of inflation differentials shows a strong countercyclical 
pattern, which has tendency to rapidly increase during economic downturns (Figure 1). Our 
counterfactual analyses show that the rising risk of dispersion appears to be mainly associated 
with a deterioration in financial conditions. By contrast, a robust anchoring of inflation 
expectations tends to mitigate this risk. Finally, we demonstrate that our measure has 
predictive power for future euro area inflation realizations as well as for variations in the 
monetary authority's interest rate. 
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Figure 1. The Risk of Inflation Dispersion at 12 months horizon 

 
Note: KL (Kullback-Leibler) divergence of one-year-ahead predictive inflation distributions of euro area 

countries. Gray shaded areas indicate CEPR-dated recessions. 

Le risque de dispersion de l'inflation dans la 
zone euro 

RÉSUMÉ 

Nous présentons une approche pour mesurer le risque de dispersion de l’inflation entre les pays 
membres de la zone euro. Notre mesure reflète la dissemblance entre les distributions prédictives 
d'inflation des pays membres, et capte donc la « distance » attendue entre les niveaux d'inflation. 
Le risque de dispersion de l’inflation présente un comportement contra-cyclique tout au long du 
cycle économique. Nous montrons que l'augmentation du risque de dispersion de l’inflation est 
principalement due à une détérioration des conditions financières, alors qu'un ancrage solide des 
anticipations d'inflation dans chaque pays tend à atténuer ce risque. Nous démontrons en outre 
que notre mesure a un pouvoir prédictif pour les réalisations futures de l'inflation dans la zone 
euro, ainsi que pour les variations du taux d'intérêt de l'autorité monétaire. 
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I. Introduction

The resurgence of inflation in the euro area, spurred by the post-COVID crisis recovery

and tensions in oil and natural gas markets following the war in Ukraine, has coincided with

a significant increase in inflation differentials between member countries. These differentials,

measured by the cross-country standard deviation in annual inflation rates across euro area

members, have reached either unprecedented levels (HICP) or near all-time highs (HICP ex-

cluding food and energy), as depicted in Figure 1. Inflation divergence has drawn attention of

policymakers since it can challenge the effectiveness of monetary policy.1 Adjusting nominal

interest rates based on a single inflation target might result in an excessively accommoda-

tive monetary policy for nations experiencing notably higher inflation than the euro area

average. Conversely, countries with inflation considerably below the average may encounter

unwarranted tightening policy pressures.

Accurately assessing the risk of inflation dispersion is thus of deep relevance for policy-

makers. A key consideration is to determine whether inflation differentials are temporary or

have the potential to persist over an extended period. Simultaneously, gaining insights into

the drivers of inflation disparities provides valuable perspectives for predicting their future

evolution and evaluating the risks associated with sustained divergences. Moreover, in the

context of a monetary union, where countries share the same nominal interest rate, a high

dispersion of inflation rates translates into a high dispersion of real interest rates between

member countries. In this context, the risk of inflation dispersion may also be informative

of the risk of financial fragmentation in the euro area, which may impair the transmission of

monetary policy. However, the lack of reliable and available tools for analyzing these risks

makes investigation on this important issue very limited. Indeed, current available measures

of inflation dispersion typically rely on realized inflation, as illustrated in Figure 1, and thus,

by construction, do not contain any forward-looking information about expected inflation

dispersion at medium and long-term horizons.2

1For example, in the monetary policy statement of July, 27th 2023, Christine Lagarde expressed her
concern about the heterogeneity in inflation between euro are members: “The numbers that we see now for
Spain, with inflation trending towards 2% and hopefully sustainably so, plus unemployment numbers that are
as low as they have ever been, is a good set of numbers for the country and for the economy at large. It is not
the same for all Member States and there are Member States where inflation is still very high and has been
high and is expected to remain high for longer. So we have to be very attentive to the aggregate numbers.
Those are the ones that are driving our inflation outlook, helping us determine our policy. But we also have
to look at each Member State and the characteristics of each Member State. We shall see.”

2The ECB regularly publishes measures of inflation dispersion for the euro area using realized inflation.
See, for example, Issing et al., 2003 and Consolo et al. (2021).
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Figure 1. Cross-sectional Standard Deviation of Inflation in the Euro Area
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Note: The figure shows the cross-country unweighted standard deviation of annual inflation rates in the
euro area. π̄i

t,t−12 denotes the average over the last twelve months of the monthly inflation rate (core and
headline inflation rates, annualized) for the country i of the euro area (Twelve countries, fixed composition,
Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal,
Spain). HICP stands for Harmonised Index of Consumer Prices, and HICPX stands for HICP inflation
excluding energy and food. The sample is January 1999 to July 2023. Grey shaded areas indicate CEPR-
dated recessions.

In order to properly build a measure of expected inflation dispersion among euro area

countries, one needs to take a probabilistic forecasting approach by considering not only cross-

country differences in point forecasts of inflation, but also cross-country differences in density

forecasts since they bring additional information, namely differentials in uncertainty and tail

risks. This is what we intend to do in this paper. More specifically, our dispersion measure

reflects the dissimilarity, i.e., the distance, between the full predictive inflation distributions

of euro area member countries. Therefore, it captures how “far” apart inflation levels are

expected to be between euro area members for a given horizon. While our primary focus

is on assessing expected inflation dispersion over a twelve-month horizon, we also consider

shorter and longer horizons ranging from three-months to two-years ahead.

We employ a two-step method to estimate flexible parametric predictive distributions that

account for skewness and heavy tails in inflation series.3 The first step estimates the distri-

butions semi-parametrically using quantile Phillips curve regressions for the first twelve euro

area members, and in which inflation drivers are unemployment gap, oil price, financial stress,

3For empirical evidence of higher moments dynamics in inflation, see for example López-Salido and Loria
(forthcoming).
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past and expected inflation rates.4 In the second step, each estimated quantile distribution

is smoothed, each month, by interpolating between the estimated quantiles using the flexi-

ble skewed t-distribution along the lines of the work of Adrian, Boyarchenko, and Giannone

(2019) on GDP growth, and more recently López-Salido and Loria (forthcoming) on inflation.

This enables us to convert each empirical quantile distribution into an estimated conditional

distribution of inflation. Then, we apply a generalization of the Kullback and Leibler (1951)

divergence (denoted KL divergence, hereafter) for calculating the average divergence between

all predictive distributions. The resulting series captures the expected inflation divergence

between euro area members, and thus reflects the risk of inflation dispersion among euro area

countries.

Based on our measure of expected divergence at the twelve-month horizon, we provide evi-

dence that the risk of inflation differentials shows a strong countercyclical pattern, which has

tendency to rapidly increase during economic downturns. Furthermore, the risk of dispersion

demonstrates a consistent rise in the near and medium term, peaking at 18 months before

gradually diminishing. Notably, during economic contractions, medium-term KL divergence

shows greater sensitivity compared to its short-term counterpart.

We examine the sources contributing to this risk across three dimensions: quantile, inflation

driver, and country. First, the risk of inflation dispersion arises more, on average, from

variations in differences in the left tails of predictive inflation distributions than in the right

tails. There are however specific periods like the Great Recession, where differences are due to

other locations of the distributions. Second, the rising risk of dispersion appears to be mainly

associated with a deterioration in financial conditions. By contrast, a robust anchoring of

inflation expectations tends to mitigate this risk. Third, we show that no single country is

the only source of dispersion risks on average over time, but some countries play a significant

role in very specific episodes, like during the sovereign debt crisis and the COVID-19 crisis.

We also demonstrate that the measure of divergence of predictive distributions contains

information about future inflation outcomes. After accounting for a range of macroeconomic

and financial factors, we find that the risk of inflation dispersion improves inflation forecasts

up to two-years ahead. According to our baseline specification, a one standard deviation

increase in the risk of inflation dispersion predicts a 0.3 percentage points increase in inflation

at horizons of twelve and twenty-four months. Depending on the horizon, the root mean

square error (RMSE) of the forecast is reduced by 9% to 13% when contrasted with a model

that omits our measures of the risk of divergence.

4Euro area countries used are: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain.
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Finally, we find that the interest rates set by monetary authorities in the euro area partly

respond to fluctuations in the risk associated with inflation differentials. Specifically, the

effect is quantitatively significant in our regressions based on either shorter horizons up to

one-year ahead: a one standard deviation increase in the measure of inflation dispersion

is found to decrease the target interest rate by 6 to 13 basis points. The findings remain

consistent when controlling for measures of inflation and output expectations. Thus, our

estimation results suggest that the ECB responds to the risk of inflation dispersion beyond

projections for the future level of aggregate inflation.

Relation to other studies. Our paper is related to the literature on inflation differentials,

which has been a long-standing issue in the European Monetary Union.5 Inflation dispersion

was an important issue in defining the ECB’s strategy at its inception (e.g., Issing et al., 2003),

as well as in the recent ECB’s strategy review in 2021 as discussed in depth by Consolo et al.

(2021) and Reichlin et al. (2021).6 From a theoretical perspective, Benigno (2004), Benigno

and López-Salido (2006) and Kekre (2022) characterize the optimal monetary policy in a

currency union with heterogeneity between countries. Gaĺı and Monacelli (2008), Duarte and

Wolman (2008), and Ferrero (2009) consider the role of optimal fiscal policy in the analysis.

From an empirical perspective, the literature has been mainly focused on the underlying

causes of realized inflation differentials in the euro area. Notable examples include Angeloni

and Ehrmann (2007), Beck, Hubrich, and Marcellino (2009), and Estrada, Gaĺı, and López-

Salido (2013). More recently, Checherita-Westphal, Leiner-Killinger, and Schildmann (2023)

empirically study the role of fiscal policy on inflation differentials in the EMU. We revisit this

literature using our forward-looking measure of expected inflation divergence between euro

area countries, which contain information not covered by divergence measures using realized

inflation.

We also contribute to the literature on the estimation of the Phillips curve in the euro

area. Gaĺı, Gertler, and López-Salido (2001) show that standard Phillips curve fits euro

area data very well. Ball and Mazumder (2021) reveal that a non-negligible role of inflation

expectations and output gap in driving core inflation fluctuations in the euro area. Eser

et al. (2020) give a broad picture of the implication of the Phillips curve analysis in the euro

area for the conduct of ECB’s monetary policy. In line with our paper, Baba et al. (2023)

study the key drivers of the 2020-22 inflation surge across Europe and its dispersion across

countries. All of these study examine the response of the conditional mean of euro area

5Haan (2010) offers a survey of this abundant literature subsequent to the creation of the euro area.
6As often reminded by the ECB, inflation differentials per see may not be detrimental to the monetary

union if they reflect the process of nominal convergence and economic development catch up.



5

inflation to economic conditions. Our paper offers evidence that economic factors are still at

work in the tails, but in a heterogeneous way between euro area countries.

Our paper falls also within the growing body of literature studying macroeconomic risks

initiated by Adrian, Boyarchenko, and Giannone (2019); see also among others Plagborg-

Møller et al. (2020), Figueres and Jarociński (2020), Adrian et al. (2022), Hilscher, Raviv,

and Reis (2022), and López-Salido and Loria (forthcoming). Adrian, Boyarchenko, and

Giannone (2019) estimate the conditional distribution of U.S. GDP growth as a function

of economic and financial conditions using quantile regressions.7 While this literature has

focused on the predictive distributions of one single economic variable (such as GDP growth

or inflation) with a particular emphasis on tail risks, we extend it in some way to the question

of the heterogeneity of these distributions between countries by building our measure of KL

divergence. Interestingly, Korobilis and Schröder (2023) develop a multicountry quantile

factor augmented vector autoregression (QFAVAR) to capture heterogeneities both across

euro area countries and across characteristics of the predictive distributions. However, the

question of the degree of divergence is not addressed.

The rest of the paper is organized as follows. Section II presents quantile Phillips curve

for each euro area countries, and discuss cross-country dispersion of parameters. Section

III present and apply our approach to measure the risk of inflation dispersion. Section IV

discusses the sources of inflation disperion risk by quantile, by inflation driver, and by country.

Section V presents the policy implications. Section VI concludes.

II. Quantile National Phillips Curve

II.1. Phillips Curve Quantile Regressions. We rely on quantile regression models for

studying the determinants of cross-country dispersion of the entire distribution of inflation.

We follow the empirical strategy developed by López-Salido and Loria (forthcoming).8 The

key difference is that we apply this strategy to the first twelve countries of the euro area,

instead of the euro area as a whole.

Let us denote by π̄i
t+1,t+h the annualized average growth rate of Harmonized Index of

Consumer Prices excluding food and energy (HICPX) between t + 1 and t + h for country

i, and by xi
t a 1 × k-dimensional vector containing the conditioning variables for country i,

including a constant. Our benchmark horizon is h = 12, that is the average inflation over the

next year. We consider a linear model for the conditional inflation quantiles whose predicted

7Macroeconomic tail risks can also be studied through the lens of Markov-switching models, as in Caldara
et al. (2021) in the U.S. and Lhuissier (2022) in the euro area.

8The paper considers U.S economy, euro area but also a panel of OECD countries. See also Busetti,
Caivano, and Rodano (2015) and Chortareas, Magonis, and Panagiotidis (2012) for the estimation of quantile
Phillips curve for the euro area as a whole.
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value:

Q̂τ (π̄
i
t+1,t+h|xi

t) = xi
tβ̂

i
τ , (1)

is a consistent linear estimator of the quantile function of π̄i
t+1,t+h conditional on xi

t; where

τ ∈ (0, 100) is the quantile expressed in percentage, β̂i
τ is a k × 1-dimensional vector of

estimated quantile-specific parameters. More specifically, our quantile regression model for

inflation is as follows:

Q̂τ (π̄
i
t+1,t+h|xi

t) = µ̂i
τ +

(
1− λ̂i

τ

)
π∗,i
t−1 + λ̂i

τπ
LTE,i
t

+ θ̂iτ
(
ui
t − u∗,i

t

)
+ γ̂i

τ

(
πo,∗
t − π∗,i

t

)
+ δ̂iτf

i
t , (2)

where all variables are monthly time series covering January 1999 through July 2023.9 Data

sources are presented in the online Appendix. We impose some constraints, based on the lit-

erature, and use the inequality constrained quantile regression method developed by Koenker

and Ng (2005) for the estimation.

The variables π∗,i
t−1 and πLTE,i

t represent average inflation over the previous twelve months

and a measure of long-term inflation expectations, respectively. The relative importance of

both variables is determined by the parameter λi
τ , with 0 ≤ λi

τ ≤ 1, as in Gaĺı and Gertler

(1999), Blanchard, Cerutti, and Summers (2015) and López-Salido and Loria (forthcom-

ing) among others. We use six- to ten-years-ahead inflation expectations from Consensus

Economics as long-term inflation expectation series.10

Our second factor is the unemployment gap measured as the difference between the unem-

ployment rate ui
t and the natural rate of unemployment u∗,i

t , which is obtained by applying

the HP filter to the unemployment rate with the smoothing parameter equal to 14,400. The

parameter θiτ captures the slope of the Phillips curve at various inflation quantiles. Following

Blanchard, Cerutti, and Summers (2015), we impose θiτ ≤ 0.

The third factor πo,∗
t − π∗,i

t represents variations in relative oil price, where πo,∗
t is the

average inflation over the previous twelve months of crude oil price. This allows to capture

the pass-through of oil prices into core inflation measures.11 Our approach captures the

effects of oil prices not only on the conditional mean of inflation, but on the entire inflation

9Our sample size aligns closely with other empirical studies examining the relationships between macroe-
conomic tail risks and financial conditions in the euro area. Notable examples include Figueres and Jarociński
(2020) and López-Salido and Loria (forthcoming).

10As an alternative, inflation-linked swap (ILS) rates could be useful for deriving market-based measures
of long-term inflation expectations. However, they are only available since 2004.

11Blanchard, Cerutti, and Summers (2015) consider import-price inflation in their estimated Phillips curve,
that is proxied by oil price inflation at a monthly frequency in López-Salido and Loria (forthcoming). We
also consider commodity and energy prices instead of oil price using the above-described specification of the
augmented quantile Phillips curve. The results are robust to the choice of the series and are not reported
here.
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distribution. Cross-quantile and cross-country variations in the parameters γi
τ in equation

(2) capture its effects. Here again, we follow Blanchard, Cerutti, and Summers (2015) and

impose γi
τ ≥ 0.12

The fourth factor f i
t represents financial conditions. The literature has documented firms

financing conditions also helps to explain inflation dynamics. Notable examples include Del

Negro, Giannoni, and Schorfheide (2015), Christiano, Eichenbaum, and Trabandt (2015)

and Gilchrist et al. (2017). More importantly, López-Salido and Loria (forthcoming) extend

the analysis to consider the effect of financial conditions on the conditional distribution

of inflation. Following these authors, we approximate f i
t by the Composite Indicator of

Systemic Stress (CISS), except for Luxembourg for which we use the Country-Level Index

of Financial Stress (CLIFS).13 The parameter associated with financial conditions in our

empirical specification of the Phillips curve is δiτ . This coefficient is left unconstrained in that

case, since no consensus has been reached in the literature regarding the effect of financial

conditions on the overall inflation distribution.

II.2. Cross-country Heterogeneity of Phillips Curve parameters. Figure 2 synthe-

sizes the estimated coefficients across quantiles and countries.14 For each variable, it shows

two different kinds of information on estimated coefficients. The first one is about the mag-

nitude of the coefficient and the second one is about its cross-country dispersion.

For the magnitude, we report the mean of the estimated coefficients for each quantile to

determine to what extent the variable has a greater or lesser impact on inflation (in average

for all countries) depending on the quantile considered. For the cross-country dispersion, we

report the standard deviation of the estimated coefficients for each quantile to determine to

what extent the impact of this variable on inflation is more or less dispersed across countries,

depending on the quantile under consideration. Ultimately, we can identify the quantiles

for which certain variables play an important role in inflation dynamics and are a source of

structural heterogeneity between countries.

12The literature provides evidence of the role of energy price and import prices as a key inflation deter-
minant. For instance, Kilian and Zhou (2021) find that gasoline prices do not explain the improved fit of
the Phillips curve augmented by household inflation expectations during the years that followed the Great
Recession. On the other hand, Matheson and Stavrev (2013) find an increasing importance of import-price
in explaining inflation fluctuations, while Salisu, Ademuyiwa, and Isah (2018) point a better forecast perfor-
mance when including oil prices into the Phillips curve.

13The CISS, developed by Kremer, Lo Duca, and Holló (2012), is a weekly index maintained by the
ECB. It includes 15 raw series, mainly market-based financial stress measures that are split equally into
five categories: financial intermediaries, money markets, equity markets, bond markets and foreign exchange
markets. The CLIFS, proposed by Peltonen, Klaus, and Duprey (2015), follows the approach of the CISS,
but with slightly different market segments.

14We provide a more complete description of results in the online Appendix.
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Figure 2. Estimated Coefficients by Quantile: Magnitude and Dispersion
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Note: For each estimated coefficient of the quantile regression defined by equation (2), the figure reports
the unweighted mean of the estimated coefficients (blue solid line with circles) and the standard deviation
(red dashed line with diamonds). For each panel, the title panel gives the symbol of the coefficient and the
associated variable in parenthesis.

For unemployment gap, the figure suggests a steeper Phillips curve for higher quantiles:

the average value of coefficients reaches its maximum for τ = 10, with a value of −0.09, and

its minimum at the quantile τ = 95, with a value of −0.29. The cross-country dispersion of

the estimated coefficients is the highest for the top quantile (τ = 95). Unemployment gap

can therefore be considered as a potential source of inflation dispersion risk at the upper tail

of the distribution. For energy prices, the magnitude of estimated coefficients increases with

the quantile considered, with a sharp increase between τ = 50 and τ = 95 (from 0.64 to

1.83). Estimated coefficients are less dispersed in the middle of the distribution than in the

tails. This suggests that energy prices can therefore be considered as a source of inflation

dispersion for both downward and upward inflation risks. Regarding financial stress, the

magnitude of estimated coefficients is the lowest for τ = 75 and increases when we consider
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Figure 3. Dispersion of Conditional Quantiles
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extreme quantiles. The cross-country dispersion of estimated coefficients exhibits a U-shaped

with high values extreme quantiles. This suggests that financial stress may be responsible

of inflation dispersion especially both at the left and the right of predictive distributions.

Finally, for inflation expectations, the magnitude of estimated coefficients decreases with the

quantile while its cross-section dispersion increases. Since the complement of this coefficient,

(1− λ), accounts for inflation inertia it means that past inflation can be a potential source

of dispersion for upward risks associated to the quantile τ = 90.

II.3. Cross-country Heterogeneity of Quantile Regressions. Figure 3 depicts the evo-

lution of the dispersion of conditional quantiles across countries for the one-year forecast

horizon. Two stylized facts emerge. First, there is strong evidence of time variation in the

cross-country dispersion of conditional quantiles. For any quantile, the dispersion tends to

increase during economic downturns like the Great Recession, the sovereign debt crisis, and

the Covid-19 crisis. Clearly, the dispersion is countercyclical. Second, there are significant

differences in magnitude of variations across quantiles over time. The cross-country stan-

dard deviation of the 50th quantile appears to be always smaller than either the lower or the

upper quantiles throughout the sample. This means that particular attention must be paid

on tail risks when investigating cross-country divergence. In particular, inflation dispersion

is clearly higher for the upper quantiles (75th and 95th) than for other quantiles during the
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2001-2003 economic downturn, marked by the 9/11 terrorist attacks, Dot-com bubble, and

corporate scandals. By contrast, from the Great Recession of 2008-09 to the COVID crisis,

the situation is reversed. The highest inflation dispersions are associated with downside risk

of inflation (5th and 25th quantiles).

To sum up, the evolution of the cross-country dispersion varies differently depending on the

quantile. So focusing exclusively only on one particular quantile is not sufficiently informative

about the degree of expected inflation dispersion among euro area countries. In the next

section, we propose a unified measure that consider all quantiles of the distribution.

III. Measuring Divergence

This section relies on the quantile regression Phillips curve estimates to construct our

measure of the risk of inflation dispersion. Section III.1 shows how we map the quantile

regression estimates into a flexible distribution to recover a probability density function for

each country. Section III.2 shows how our measure of divergence is computed using those

distributions.

III.1. The Conditional Inflation Distribution. The quantile regression (2) furnishes us

with rough estimates of the quantile function, which represents an inverse cumulative distri-

bution function. However, translating these estimates into a probability distribution function

becomes challenging due to approximation errors and estimation noise. Following Adrian,

Boyarchenko, and Giannone (2019), we map the quantile regression estimates into a skewed

t-distribution to recover and show a probability density function. The skewed t-distribution

was developed by Azzalini and Capitanio (2003) and has the following form:

f(π̄i
t+1,t+h|xi

t, µ
i
t, σ

i
t, η

i
t, κ

i
t) =

2

σi
t

t(zit,t+h;κ
i
t)T

(
ηitz

i
t,t+h

√
κi
t + 1

κi
t + (zit,t+h)

2
;κi

t + 1

)
,

where zit,t+h =
π̄i
t+1,t+h(xt)−µi

t

σi
t

, and t and T represent the density and cumulative distribution

function of the student t-distribution, respectively. The four time-varying parameters of the

distribution pin down the location µi
t, scale σi

t, shape ηit, and fatness κi
t for each country

i, where ηit and κi
t parameters control the skewness and the kurtosis of the distribution,

respectively.

For each month and each country, we choose the four parameters (µi
t, σ

i
t, η

i
t, κ

i
t) of the

skewed t-distribution to minimize the squared distance between our estimated quantile func-

tion Q̂τ (π̄
i
t+1,t+h|xi

t) obtained from the quantile Phillips curve model in equation (2) and the

quantile function of the skew t-distribution to match the 5th, 25th, 75th and 95th quantiles.

As an illustration, Figure 4 plots the fitted conditional probability density functions of

country-specific inflation for four sample dates at different points of the business cycle: April
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2000, during the dotcom bubble burst; December 2007, which represented the end of the

ECB’s tightening cycle before the financial crisis; May 2010, when the Greece received its

first bailout; and June 2020, which is the COVID-19 period.

Figure 4. One-year Ahead Predictive Densities
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Note: The panels in this figure show the estimated skewed t-density functions for one-year-ahead country-

specific inflation for four sample dates at different points of the business cycle: April 2000, December 2007,

May 2010, and June 2020.

When comparing the conditional densities among different countries on a specific date,

notable variations are observed in these densities. These differences stem not only from

changes in the estimated values at the point forecast (at the mode) but also from variations

in the upper and lower ends of the distributions. During the period of financial distress,

marked by the dotcom bubble in the 2000s, some distributions take on a Gaussian shape and

are mostly confined to positive values, while others exhibit smaller expected values, higher

variance, and positive skewness.
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Similarly, when comparing the conditional densities across four different dates, significant

time variations in the entire distributions are observed. These variations, once again, arise

from both changes in the point forecast and risks associated with the tails.15 In December

2007, during the expansion of the business cycle, the predictive inflation distributions are

concentrated around the ECB’s two percent inflation target. In contrast, during economic

slowdowns, like in April 2000, May 2010, or June 2020, the distributions appear considerably

more dispersed, with greater variations in the point forecast, larger variance, compared to

the more stable distribution observed in December 2007.

To accurately assess the risk of inflation dispersion, it is therefore crucial to consider cross-

country differences in the complete distributions of future inflation, rather than focusing solely

on the forecast midpoint. In the following section, we introduce a measure that accounts for

this aspect.

III.2. KL divergence. This section aims to quantify the expected disparity in future infla-

tion among euro area countries by measuring the dissimilarity between all predictive inflation

distributions. This comprehensive approach allows us to provide a thorough assessment of

the expected divergence between countries, considering not just point forecasts but the full

predictive distributions.

More formally, we denote by f̂π̂t+1,t+h
(π̄i;xi

t) = f(π̄i; µ̂i
t+h, σ̂

i
t+h, α̂

i
t+h, ν̂

i
t+h) the estimated

conditional skew-t density in country i. We define the average divergence, DKL,t(h), at

horizon h as

DKL,t(h) =
1

N(N − 1)

N∑
i

N∑
j

KLi,j,t(h), for i ̸= j, (3)

where

KLi,j,t(h) =

∫ ∞

−∞
log

(
f̂t+h(π̄

i;xi
t)

f̂t+h(π̄j;xj
t)

)
f̂t+h(π̄

i;xi
t)dπ̄

i, (4)

is the KL divergence,16 which measures the divergence of f̂ (π̄i) from f̂ (π̄j) and where the

expectation defined with respect to the density f̂(π̄i). This measure is always positive and is

equal to zero if and only if f(π̄i) = f(π̄j). Intuitively, KL measures the divergence between

the conditional density of country i and the conditional density of country j. KL is considered

as a good indicator of the correlation degree between two densities. For N = 2, the average

divergence is fundamentally the divergence in the sense of KL. Our generalized KL divergence

to multiple dimensions (N ≥ 2) follows Sgarro (1981) and takes the average divergence of

15Figure C1 in the online Appendix shows changes over time in the dispersion across countries of the four
moments of the skewed t-distribution.

16See Kullback and Leibler (1951).
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distributions. Our measure can be interpreted as a sort of “directed distance” between all

distributions.

Figure 5. The Risk of Inflation Dispersion DKL,t(h = 12)
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Note: The KL measure DKL,t(h = 12) of one-year-ahead predictive inflation distributions of euro area

countries defined by equation (3). Gray shaded areas indicate CEPR-dated recessions.

A KL value of zero suggests no risk of inflation dispersion in the euro area, indicating

that predicted inflations for each member are identical and drawn from the same predictive

distributions. An increase (decrease) in the KL value reflects a divergence (convergence) in

the predicted inflation distributions among euro area members, signifying a higher (lower)

risk of inflation dispersion. In simpler terms, a greater (lower) KL value implies a higher

(lower) likelihood that future realized inflation will vary significantly, based on the current

dissimilarity (similarity) in predicted inflation distributions.

Figure 5 depicts our estimated measure of expected divergence in inflation among members

of the euro area at horizon h = 12, denoted DKL,t(h = 12) . Our indicator reveals a clear

countercyclical pattern, tending to notably escalate during economic downturns. Examples

of such downturns include the period from 2000 to 2002, characterized by events like the

9/11 terrorist attacks, the Dot-com bubble, and corporate scandals, the Great Recession

in 2008-09, the sovereign debt crisis in 2010-12, and the COVID-19 recession. Notably, the

peaks in divergence appear most pronounced during the Great Recession, with KL divergence

values nearly doubling those observed during the sovereign debt crisis or the COVID-19
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recession. This suggests that financial conditions might serve as the primary driver behind

the generation of inflation dispersion risk. We will confirm this intuition in the next section.

Table I. Mean and standard deviation of DKL,t(h) by horizon h

Horizon h

h = 3 h = 6 h = 9 h = 12 h = 15 h = 18 h = 21 h = 24

Mean 0.88 1.18 1.27 1.61 1.69 1.72 1.65 1.46

Std. Dev. 0.66 0.88 1.06 1.39 1.32 1.24 1.05 0.99

Note: The table shows the mean and standard deviation of DKL,t(h) defined by equation (3) at horizons
h = 3, 6, . . . , 24 months over the sample period.

We generate the term structure of KL divergence to illustrate the evolution of the risk

of inflation divergence across various time horizons. The process involves using quantile

regression methods on our dataset consisting of twelve euro area countries to forecast periods

ranging from three to twenty-four months. Subsequently, for each horizon and country, we

empirically map the quantile regression estimates to the skewed t-distribution. Finally, we

compute the average KL divergence for each horizon, representing the term structure of

inflation divergence risk.

Table I displays the mean and the standard deviation of the resulting term structure

for projection horizons up to two years. The risk of divergence seems to exhibit a steady

increase in the near and medium term: its average over the sample period reaches its peak at

eighteen-month horizon before declining. Regarding the standard deviation, KL divergence is

increasingly volatile up to a one-year horizon before decreasing thereafter. Medium- and long-

term KL divergences (for h = 18 or h = 24, respectively) appear to be more responsive during

economic contractions compared to short-term KL divergence (for h = 3), as illustrated in

Figure 6.

IV. Anatomy of Risk

In this section, we examine the sources contributing to the risk of increasing inflation

divergence along three dimensions: quantile, economic factor, and country.

IV.1. KL divergence across quantiles. The KL measure used in this paper takes ad-

vantages of the entire predictive inflation distributions to measure the expected inflation

divergence between euro area countries. In this section, we investigate whether the diver-

gence is due to differences in the probability masses that the conditional distributions assign

to specific range of quantiles of the distributions.
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Figure 6. The Risk of Inflation Dispersion by Forecast Horizon

2000 2005 2010 2015 2020
Years

0

2

4

6

8

10

12
D

K
L
;t
(h

)
DKL;t(h = 3)
DKL;t(h = 12)
DKL;t(h = 18)
DKL;t(h = 24)

Note: The figure shows the evolution of KL divergence DKL,t(h) at horizons h = 3, 12, 18, and 24 defined

by equation (3), over the sample period. Gray shaded areas indicate CEPR-dated recessions.

We define the average divergence between quantiles τ and τ + 10, D
[τ,τ+10]
KL,t (h), as

D
[τ,τ+10]
KL,t (h) =

1

N(N − 1)

N∑
i

N∑
j

KL
[τ,τ+10]
i,j (h), for i ̸= j, (5)

where

KL
[τ,τ+10]
i,j,t (h) =

∫ F̂−1
t+h(π̄

i,τ+10
t )

F̂−1
t+h(π̄

i,τ
t )

log

(
f̂t+h(π̄

i;xi
t)

f̂t+h(π̄j;xj
t)

)
f̂t+h(π̄

i;xi
t)dπ̄

i, (6)

with F̂−1
t+h(.) is the cumulative distribution associated with f̂t+h(.) and F̂−1

t+h(π̄
i,τ
t ) is the level

of inflation in country i associated to the τ -th quantile. To be consistent with our baseline

measure, we set h = 12.

Table II reports the mean and the standard deviation of KL by quantiles [τ, τ + 10]. As

can be seen, the risk of inflation dispersion stems more from variations in the left tails of

predictive inflation distributions than from variations in the right tails. Notably, the mean

of the 10th quantile is almost twice as large as that of the 90th quantile. Interestingly, the

standard deviation is higher for KL measures at the tails of the distribution, namely D
[0,10]
KL,t

and D
[90,100]
KL,t . Although these statistics may mask disparities over time, they are nevertheless

useful for providing information on the role of tails in the evolution of our baseline KL

measure.
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Table II. Mean and standard deviation of D
[τ,τ+10]
KL,t by quantiles [τ, τ + 10]

Quantiles [τ, τ + 10]

[0, 10] [10, 20] [20, 30] [30, 40] [40, 50] [50, 60] [60, 70] [70, 80] [80, 90] [90, 100]

Mean 0.22 0.19 0.18 0.17 0.15 0.14 0.12 0.10 0.09 0.12

Std. Dev. 0.14 0.11 0.11 0.11 0.12 0.13 0.14 0.16 0.18 0.24

Note: The table shows the mean and standard deviation of D
[τ,τ+10]
KL,t (h = 12) defined by equation (5) for

quantiles τ = 0, 10, . . . , 90 over the sample period.

The gap between KL measures by quantile is illustrated by Figure 7, which depicts the

time series of quantile-based measures. Two main observations emerge. First, while the 10th

quantile is, on average, higher than other quantiles, specific periods exist during which other

quantiles exhibit a higher risk of dispersion. For instance, during the Great Recession,D
[90,100]
KL,t

rose dramatically, whereasD
[0,10]
KL,t remained at moderated levels. Second, our baseline measure

contains information not captured by a simple divergence measure that focuses solely around

point forecasts, such as D
[45,55]
KL,t , overlooking cross-country differences in uncertainty and tail

risks. For example, during the early 2000s, D
[0,10]
KL,t and D

[90,100]
KL,t rapidly rose while D

[45,55]
KL,t

remained relatively stable. Therefore, neglecting cross-country differences in uncertainty

and tail risks may distort the inference of the risk of inflation divergence between euro area

countries.

IV.2. KL divergence across drivers. To gain an appreciation of the economic origins of

the risk of inflation divergence described in the previous section, we investigate the role of

inflation drivers contained in our Phillips curves. To do so, we proceed as follows. Let us

consider one of the variables j = 1, ..., J introduced as a driver of inflation in the quantile

regression defined by equation (1). Since the regression is linear, we can rewrite equation (1)

as follows:

Q̂τ (π̄
i
t+1,t+h|xi

t) = xi
t,jβ̂

i
τ,j + Q̂τ,−j(π̄

i
t+1,t+h|xi

t), (7)

and

Q̂τ,−j(π̄
i
t+1,t+h|xi

t) = xi
t,−jβ̂

i
τ,−j, (8)

where j stands for the j−element and (−j) for the exclusion of the j−element from the

set of J variables. Therefore, the first term in the right-hand side of equation (7) measures

the contribution of variable j to the quantile of future inflation and the second one the

contribution of the other variables, defined by equation (8).

Using this decomposition, we compare KL measuresDKL,t,−j(h) based on Q̂τ,−j(π̄
i
t+1,t+h|xi

t),

that is the quantile predicted without variable j, to our benchmark measure DKL,t(h), based

on Q̂τ (π̄
i
t+1,t+h|xi

t), when all variables are taken into account. DKL,t,−j(h) < DKL,t(h) means
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Figure 7. The Risk of Inflation Dispersion by Quantile
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Note: The figure shows the evolution of KL divergence D
[τ,τ+10]
KL,t (h = 12) for quantiles τ = 0, 45, and 90

defined by equation (5) over the sample period. Gray shaded areas indicate CEPR-dated recessions.

that the driver j is a source of divergence since the KL is lower when the driver j is not

taken into when measuring divergence. Conversely, if DKL,t,−j(h) > DKL,t(h), the driver j

is then a source of convergence since the KL is higher when the driver j is not taken into

account when measuring divergence. For comparison purposes, alternative KL statistics (i.e.,

KL measure without variable j) are computed only for h = 12.

Figure 8 compares the KL statistics DKL,t,−j for four inflation drivers.17 Panel A shows

that unemployment plays a minor role inflation divergence. The two lines are very close,

except during the COVID crisis when removing this driver reduces KL from 5.19 to 3.32.

Apart this episode, unemployment gap turns out to be a minor source of risk of inflation

dispersion in the euro area (the mean of the KL is 1.48 in the benchmark case, slightly

higher that of 1.39 when unemployment gap is removed).

Panel B shows that the gap between KL statistics is more substantial when oil price is

removed instead of unemployment gap. Indeed, several peaks in inflation divergence for the

benchmark (the solid blue line) are not observed for the alternative KL (the dashed red line)

when oil price is removed from the inflation drivers. This is the case in the early 2000s and

during the COVID crisis, but also in and 2010, 2011 and 2015. Interestingly, we observe

17So, four of the six variables considered in the Phillips curve. We do not consider the KL when the
constant and past inflation are removed.
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Figure 8. The Risk of Inflation Dispersion by Inflation Driver
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Panel C. DKL;t without Financial stress
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Note: The figure compares the benchmark KL statistic DKL,t(h = 12) to the alternative KL statistics
DKL,t,−j(h = 12) when inflation driver j is removed for j=[Unemployment gap, Oil price, Financial stress,
Inflation expectations]. Gray shaded areas indicate CEPR-dated recessions.

the opposite for the last years and in 2009: the KL statistic is higher when oil price is not

taken into account. So even if in average, oil price is minor source of inflation dispersion

risk (the mean of KL without oil price is equal to 1.38, very close to that of computed when

unemployment gap is removed) but can be punctually a source of divergence or convergence

of inflation in the euro area.

Panel C shows that financial stress is a key source of inflation risk in the euro area.

The mean of the KL without financial indicator is 1.08, e.g. around 30% lower than for

the benchmark. The KL is substantially lower during the period 2008-2015 of financial

turbulence (the dashed red line is below the solid blue one), but also in the early 2000s and

during the COVID crisis. We further explore the role of financial conditions in the divergence

of predictive inflation distribution among countries in the online Appendix and find evidence

that financial stress is a key feature of dispersion in the tails of the distribution.
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Finally, Panel D shows that inflation expectations are a key source of inflation convergence

in the euro area. When inflation expectation is removed from the inflation drivers, the KL

statistic skyrockets several times to values above 20. This demonstrates the importance of

anchoring expectations, which makes converge inflation forecasts between countries and thus

limits the risk of inflation dispersion in the euro area.

IV.3. KL divergence across countries. To conclude this section on the characteristic

of the risk of inflation dispersion, we assess the role of each country in the divergence of

predictive distributions. We recompute the KL measure for eleven countries by sequen-

tially removing each of the twelve countries. In practical terms, we compute the divergence,

DKL,t,−k(h), at horizon h without country k as

DKL,t,−k(h) =
1

(N − 1)[(N − 1)− 1]

N−1∑
i

N−1∑
j

KLi,j,t(h)

for i ̸= j, i ̸= k, j ̸= k and k = 1, ..., N , where KLi,j,t(h) is still defined by equation (4).

The difference with respect to DKL,t(h), defined by equation (3), is that the k-country is

not considered to compute DKL,t,−k(h) which therefore measures the divergence between all

countries apart k. To measure the role of country k in the divergence of inflation risks, we

compute the deviation in percentage between the two KL statistics as follows:

dKL,t,−k(h) = 100× DKL,t,−k(h)−DKL,t(h)

DKL,t(h)
. (9)

If dKL,t,−k(h) is negative, it means that the country k is a source of divergence to the extent

that the KL is lower without the country k than when this country is included to compute

the KL. Conversely, a positive dKL,t,−k(h) means that the country k is a source of convergence

to the extent that the KL is higher without country k than when this country is included to

compute the KL. As in previous exercises, we set h = 12.

Panel A of Figure 9 reports the mean values of dKL,t,−k for each country k over the sample

period. Five countries are source of divergence of inflation risks (Greece, Luxembourg, Fin-

land, Belgium, Ireland) and seven source of convergence (Germany, Austria, Italy, France,

Portugal, Spain, Netherlands). It is important to note that our proposed measure of inflation

risk dispersion is not determined by a single marginal country. If we consider the two ex-

treme cases, KL variations are relatively modest: removing Greece from the sample reduces

dispersion by 6.3%, while excluding Netherlands increases it by 4.5%. No single country is

the only source of dispersion in the euro area on average over the period. This result does

not mean that there are not periods when certain countries play a dominant role in the risk

of inflation dispersion, especially during financial crisis.
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Figure 9. The Risk of Inflation Dispersion by Country
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Note: Panel A reports the mean values of dKL,t,−k(h = 12), defined by equation (9), for each country

k over the sample period: d̄KL,−k(h = 12) = (1/T ) ×
∑T

t=1 dKL,t,−k(h = 12). X-axis indicates country
k. Countries are ranked in ascending order. Panel B shows the values of dKL,t,−k(h = 12), defined by
equation (9) for countries k=[Greece, Netherlands] over the sample period. Gray shaded areas indicate
CEPR-dated recessions.

Panel B of Figure 9 reports the values of DKL,t,−k for the two extreme countries, namely

Greece and Netherlands, over the sample period (Figure E4 in the online Appendix reports

the values for all countries). They have radically different patterns. Without Netherlands,

the KL measure would have been slightly higher for all the period considered without large

differences. On the contrary, Greece has been at the origin of a huge increase in the risk of

inflation dispersion during the sovereign debt crisis. The KL between 2012 and 2015 would

have been drastically reduced up to 45% in September 2012.

V. Policy Implications

This sections discusses the policy implications of our measure of expected inflation disper-

sion with regard to inflation forecasting and monetary policy decisions.

V.1. The impact of risk of inflation dispersion on inflation realizations. This section

examines whether the information present in our expected inflation differential measures is

useful for predicting future inflation in the euro area. We investigate predictive regressions

in the context of final statistical releases. The variables we are interested in forecasting at

horizon H, yt+H , are HICP inflation and HICP inflation excluding food and energy.

To explore whether inflation differential risk provides insights into future inflation out-

comes, we employ established and extensive modeling techniques, wherein predictions rely

on estimations of common dynamic factors. Initial applications of dynamic factor models
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(DFMs) to macroeconomic data indicated that a limited set of factors can explain a signifi-

cant portion of the observed fluctuations in key economic indicators (e.g., Sargent and Sims,

1977; Stock and Watson, 1989, 1991; Sargent, 1989). By following this long tradition, our

forecasting exercises test whether our variables of interest have a forecast power beyond the

information content of typical inflation forecasts.

All models are specified and estimated as a linear projection of a H-step-ahead variable,

yHt+H , onto t-dated predictors. Specifically, the baseline forecasting models all have the form

yHt+H = µ+

p∑
i=1

αiyt−i+1 +
k∑

j=1

β′
jFt−j+1 + γDKL,t(h) + εHt+H ,

where µ is a constant, αi, βj and γ are unknown parameters, DKL,t(h) contains our measure

of inflation divergence at horizon h, and Ft is a r × 1 vector of predictor variables, which is

set to be the principal components from a large number of candidate predictor time series,

Zt = (Z1t, ..., ZNt),

Zt = ΛFt + et, t = 1, ..., T.

We consider a set of N = 39 variables in Zt that are related to macroeconomic, survey and

financial time series. The series are transformed by taking logarithms and/or differencing. In

general, first differences of logarithms (growth rates) are used for real quantity variables, and

first differences are used for nominal interest rates. The list of series and transformations are

reported in Table F4 in the online Appendix. We then extract their principal components

using the factor extraction technique developed by Bai and Ng (2002). The number of

estimated factors is equal to 5.

Our focus is on multistep-ahead prediction, and most of the forecasting regressions are

projections of an H-step-ahead variable yHt+H onto t-dated predictors, including also lagged

transformed values yt of the variable of interest. The price indexes are modeled as being I(1)

in logarithms. For example, when forecasting the monthly HICP:

yt+H = (1200/H)ln(HICPt+H/HICPt), and yt = 1200ln(HICPt/HICPt−1),

the H-period growth rate expressed in percentage points at an annual rate. Forecasts are

made at forecast horizon of one year and two years (twelve and twenty-four months, respec-

tively).

The results are reported in Table III for both HICP (left panel) and HICP excluding food

and energy (right panel) at twelve- and twenty-four-months-ahead forecasts. The number of

lags of yt, is chosen by Bayesian information criterion (BIC), with 0 ≤ p, k ≤ 6. For brevity,

we omit the constant, coefficients of factors, and lagged dependent variables.
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Table III. The effect of Risk of Inflation Dispersion on Inflation Realizations

HICP HICP excl. food and energy

12-months 24-months 12-months 24-months
(1) (2) (3) (4)

DKL,t(h = 3) 0.133 0.244∗∗ 0.042 0.136∗∗∗

(0.120) (0.099) (0.041) (0.049)
Observations 246 246 246 246
Adjusted R2 0.19 0.23 0.45 0.37

DKL,t(h = 6) 0.432∗∗∗ 0.446∗∗∗ 0.128∗∗∗ 0.257∗∗∗

(0.089) (0.077) (0.042) (0.036)
Observations 246 246 246 246
Adjusted R2 0.25 0.32 0.48 0.48

DKL,t(h = 9) 0.395∗∗∗ 0.338∗∗∗ 0.075∗∗∗ 0.125∗∗∗

(0.064) (0.056) (0.028) (0.034)
Observations 246 246 246 246
Adjusted R2 0.28 0.32 0.47 0.40

DKL,t(h = 12) 0.219∗∗∗ 0.224∗∗∗ 0.052∗∗ 0.113∗∗∗

(0.046) (0.039) (0.021) (0.024)
Observations 246 246 246 246
Adjusted R2 0.23 0.28 0.46 0.41

DKL,t(h = 24) 0.279∗∗∗ 0.329∗∗∗ 0.011 0.123∗∗∗

(0.069) (0.062) (0.033) (0.035)
Observations 246 246 246 246
Adjusted R2 0.22 0.28 0.45 0.38

Note: Statistical significance is shown for ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parenthe-
ses are robust to heteroskedasticity. For brevity, the table omits constant, coefficients of factors, and lagged
dependent variables. OLS estimation of equation (V.1).

For the considered forecasting horizons, and after accounting for the macroeconomic and

financial controls contained in Ft, the risk of inflation divergence, DKL,t(h), has a significant

impact on future inflation realizations for HICP at one- and two-years horizons, as indicated

in columns (1)-(2). Results are highly significant as shown by standard errors given in

parentheses (the single exception is for the 1-year forecast when h = 3). According to our

baseline measure, DKL,t(h = 12), a one standard deviation increase in the risk of inflation

dispersion predicts a 0.22× std (DKL,t(h = 12)) = 0.3 percentage points increase in inflation

at horizons of twelve and twenty-four months. Examining HICP excluding food and energy

(columns (3)-(4)), our results are still significant.

We complement this initial exercise with an assessment of the forecasting efficacy of our

expected inflation differential measures. Using the average of forecast errors, we compare
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the inflation forecasting model employing factors and lagged endogenous variables with one

that additionally incorporates measures of inflation divergence. We will denote the ratio of

mean-squared errors as RMSE (relative mean-squared error). A value less than one signifies

that the model incorporating our inflation differential measures is superior.

Table IV presents the results associated with both forecasting horizons for DKL,t(h = 12).

The findings are striking: for any horizon, our measure of divergence improves the precision

of in-sample forecasts for both inflation measures by 9% to 13%, with p-values less than 0.05,

indicating rejection of the null hypothesis of equal accuracy between the two models at the

5% significance level. Although not reported here, results are quantitatively similar for other

horizons of DKL.

Table IV. Forecast Performances

HICP HICP excl. food and energy

12-months 24-months 12-months 24-months
(1) (2) (3) (4)

DKL,t(h = 12) 0.9231 0.8943 0.9103 0.8701
(0.0185) (0.0021) (0.0210) (0.0168)

Note: Entries are RMSE ratios associated to inflation forecasts. Each panel compares a forecasting model of
inflation using the factors and lagged endogenous variable (model 1) with one where DKL,t(h = 12) is also
added (model 2). An entry less than one indicates that model 2 is superior to model 1. Values in parentheses
report the p-values of the Diebold and Mariano (1995)-West (1996) test statistic for equal predictive accuracy.

V.2. The risk of risk of inflation dispersion and ECB monetary policy. The 2003

strategy review and recent speeches by central bankers confirm the view that the ECB may

have paid attention to euro area inflation differentials over the past decades. The purpose of

this section is then to check the extent to which our measures of inflation dispersion matter

for ECB’s interest rate setting decisions.

To assess the extent to which the euro area policy rate reacts to the risk of inflation dis-

persion, we estimate a first-difference forward-looking monetary policy rule as originally pro-

posed by Orphanides (2003) to describe U.S. Federal Reserve during the Volcker-Greenspan

era. This specification of the reaction function has been applied to describe euro area policy

rates by Orphanides and Wieland (2013), Bletzinger and Wieland (2017), and Hartmann and

Smets (2018), among others. This monetary policy rule offers two main advantages. First, it

avoids the use of unobservable concepts such as the output gap or the natural interest rate in

the specification, which are subject to considerable uncertainty and data revisions. Second,

it offers a powerful real-time policy benchmark, based on forecasts for inflation and output

growth that were available at the time of monetary policy decisions.
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Following the methodology employed in the above-mentioned papers, we first estimate the

following baseline specification of the euro area monetary policy rule:

∆it = α + β(Etπt+1 − π∗) + γ(Et∆yt+1 −∆ȳt) + εt, (10)

where ∆it is the quarter-on-quarter change in the key policy rate, Etπt+1−π∗ is the one-year-

ahead expected inflation rate in deviation from ECB’s inflation target, and Et∆yt+1−∆ȳt is

the deviation of one-year-ahead expected real GDP growth from the potential output growth.

We then augment the forward-looking policy rule given in equation (10) with our measure of

dispersion risk in inflation at horizon h:

∆it = α + β(Etπt+1 − π∗) + γ(Et∆yt+1 −∆ȳt) + θhDKL,t(h) + εt,

To be in line with the rest of the paper, our dispersion measures DKL,t(h) covers the KL

metrics at different horizon h developed in Section III. Table V reports estimated coefficients

for the simple first-difference policy rule, and the outcome of augmented reaction function

estimation, which alternatively includes our measures of KL divergence. The results of the

simple first-difference monetary policy rule estimates are consistent with those discussed in

the literature (e.g., Hartmann and Smets, 2018). The response coefficients on inflation and

growth forecasts are all positive and significant at 1%. Moreover, the adjusted R2 is higher

than 50%, meaning that macroeconomic forecasts from the SPF have a strong explanatory

power of ECB’s key policy rate decisions, given the fact that the dependent variable is

expressed in first-differences.

Augmenting the first-difference monetary policy rule with our KL metrics does not con-

siderably change the response coefficients of inflation and growth forecasts, regarding both

the magnitude and the statistical significance. Regarding the interest rate reaction to KL

divergence (θh), its estimates is negative across all horizons, but appears to be significant

only at shorter horizons up to one year. A one standard deviation increase in the measure

of inflation dispersion is found to decrease the target interest rate by 6 to 13 basis points.

Note also that the magnitude of the response coefficient is decreasing as long as the time

horizon of the KL divergence is increasing at shorter horizons, despite being relatively high

for h ≥ 21. Overall, our results suggest that the risk of inflation dispersion has predictive

power for the ECB’s policy rate. These results may also be interpreted as ECB’s concerns

about the risk of euro area financial fragmentation: the ECB tends to lower the policy rate

in response to a high risk of inflation dispersion which could potentially lead to a dispersion

of real interest rates.
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VI. Conclusion

We introduced a comprehensive methodology for measuring the risk of inflation dispersion

among euro area countries over time. The approach considered the degree of dissimilarity

in predictive inflation distributions among euro area countries. By doing so, it addressed

not only cross-countries differences in point forecasts of inflation, but also cross-countries

differences in uncertainty and tail risks. Based on our measure, we documented that the

rising risk of inflation dispersion is mainly driven by a deterioration in financial conditions,

while a robust anchoring of inflation expectations in each country tends to mitigate this

risk. Finally, we showed the risk of inflation dispersion possesses predictive efficacy for future

inflation realizations as well as variations in the monetary authority’s interest rate.
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Gaĺı, J., and T. Monacelli. 2008. “Optimal monetary and fiscal policy in a currency union.”

Journal of International Economics 76:116–132.

Gilchrist, S., R. Schoenle, J. Sim, and E. Zakraǰsek. 2017. “Inflation Dynamics during the
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A. Data
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D. The Role of Financial Conditions in KL divergence
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F. List of Variables used for Forecasting Exercises
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Appendix A. Data

All variables are monthly time series covering January 1999 through July 2023. The

following variables use data obtained directly from different sources:

• Harmonized Index of Consumer Prices

– Source: ECB - ICP (Indices of Consumer prices)

– Details: Monthly – Neither seasonally nor working day adjusted – HICP - All-

items excluding energy and food – Eurostat – Index

– Data transformation: Authors’ calculations using the x13 toolbox to get season-

ally adjusted series for each euro area member countries.

• Unemployment rate

– Source: Eurostat - Unemployment by sex and age – monthly data

– Details: Monthly – Seasonally adjusted data, not calendar adjusted data – Total

– Percentage of population in the labor force

• Natural Rate of Unemployment

– Source: Authors’ calculations

– Details: HP-filtered trend (with smoothing parameter λ = 14, 400 of unemploy-

ment rate).

• Oil Prices

– Source: U.S. Energy Information Administration - Spot Prices

– Details: Crude Oil Prices: Brent - Europe - Dollars per Barrel, Not Seasonally

Adjusted

• Financial conditions (CISS)

– Source: ECB - CISS

– Details: Daily – ECB – Economic indicator – New Composite Indicator of Sys-

temic Stress (CISS) – Index

– Data transformation: Authors’ calculations to get monthly average of the series.

• Financial conditions (CLIFS)

– Source: ECB - CLIFS

– Details: Monthly – ECB – Economic indicator – Country-Level Index of Financial

Stress (CLIFS) Composite Indicator – Index

• Long-Term Inflation Expectations

– Source: Consensus Economics

– Details: Six-to-ten-years-ahead mean CPI inflation forecasts.

– Data transformation: Euro area forecasts for Luxembourg (no forecast available),

spline interpolation for all missing data in April 1999.
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Appendix B. National Phillips Curve Estimates (tables)

This section presents the results of the quantile Phillips curve estimates by country. The

results are displayed in Tables B1 to B3. Each table reports the estimated coefficients of

equation (2) for each country for quantiles τ = {10, 50, 90}, respectively. The last two rows

of the tables report the unweighted means and the standard deviations of coefficients across

countries.

First of all, the mean and the standard deviation of coefficient λi
τ associated to long-

term inflation expectations across countries remain relatively stable over the 10th and the

50th quantiles (around 0.55 and 0.25, respectively). However, the mean of the coefficient

becomes lower at the top of the distribution (90th) at around 0.39. Overall, the average

weight of inflation expectations is greater than that of past inflation for the 10th and 50th

quantiles, but is lower at the top of the distribution. This result is in line with Baba et al.

(2023) who also find that inflation has become increasingly backward looking across Europe

since the COVID pandemic. Our results also reveal that inflation anchoring is not the same

when looking at the weight of inflation expectations country-by-country. For instance, the

coefficient is close to 1 in Germany in the middle of the distribution (50th quantile), whereas

it is close to zero at the top of the distribution (90th quantile). Inversely, the coefficient is

equal to 0.49 in Greece in the middle of the distribution but increases to 0.84 at the top of

the distribution.

Focusing on the θiτ coefficient (i.e., the slope of the Phillips curve), the magnitude of the

cross-sectional mean is twice higher for the 50th and 90th quantiles than for the 10th quantile,

though the coefficient is generally not significant from zero. Unemployment seems to affect

inflation much more in the middle or at the top of the distribution than at the bottom in

the euro area, on average. This result suggests that labor market conditions matter more

for upside risks to inflation than for downside inflation risks. Such nonlinearities in the re-

lationship between slack and inflation corroborate those from Gagnon and Collins (2019) in

which the Phillips curve is normally steep but becomes nonlinear only when inflation is low.

Once again, even if the cross-sectional standard deviation does not change significantly from

a quantile to another, the estimated slope of the Phillips curve shows important disparities

across countries within and between quantiles. For instance, the coefficient is strongly nega-

tive in the Netherlands for the 10th as for the 50th quantile, but is close to zero at the top of

the distribution. This highlights important disparities across countries for each quantile.

The cross-sectional mean of the coefficient associated with financial stress, δiτ , is negative

and higer at the tails (10th and 90th quantiles) than at the middle of the distribution (−1.19

and −1.34 against −0.78). Although surprising at the top of the distribution, this result
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is consistent with the role of tighter financial conditions in the occurrence of low inflation

episodes in the euro area.18 Our results corroborate a vast literature maintaining that there is

a nonlinear relationship between financial sector and macroeconomy depending on the state

of the economy. Notable examples include He and Krishnamurthy (2012, 2013) and Brun-

nermeier and Sannikov (2014) for the theory, and Hubrich and Tetlow (2015) and Lhuissier

(2017) for the empirics. Since this coefficient is the only one to be left unconstrained in the

benchmark specification of the augmented Phillips curve model, it shows important dispari-

ties between euro area countries. The cross-sectional standard deviation is indeed very high

for the three quantiles (1.48 for the 50th quantile, 1.58 for the 90th quantile, and 2.37 for the

10th quantile). However, as for the other estimated coefficients of the model, the effect of

financial stress on inflation varies across countries and over the quantiles. For instance, the

coefficient is positive at the top but negative at the bottom of the distribution in Austria

(0.35 for the 90th quantile and −0.21 for the 10th quantile), whereas it is higher (but always

negative) in Greece at the bottom of the distribution (−5.67 for the 10th quantile and −3.06

for the 90th quantile).

Finally, the cross-sectional mean of the γi
τ coefficient is much higher for the 90th than for

the 10th quantile, suggesting that oil price affects upside risks to inflation relatively more

than downside inflation risks (1.63 against 0.60).

As a whole, and despite constrained coefficients (except on financial conditions), estimated

national Phillips curve results show important non-linearities across quantiles. Moreover, it

is worth noting that the non-linearities across quantiles are not the same for all countries,

providing grounds for looking at the dispersion of conditional quantiles across euro area

countries.

18López-Salido and Loria (forthcoming) also find that the tails of euro area inflation predictive distribution
are equally negatively affected by tighter financial conditions, contrasting with their main finding using U.S.
data.
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Table B1. Phillips Curve Estimates for the 10th Quantile

µ̂i
τ λ̂i

τ θ̂iτ γ̂i
τ δ̂iτ

Germany −1.12
[−1.90;−0.34]

0.47
[0.33;0.61]

−0.00
[−0.13;0.13]

0.38
[−0.42;1.19]

0.54
[−1.53;2.61]

France −0.72
[−1.50;0.05]

0.27
[0.13;0.41]

−0.10
[−0.23;0.03]

0.47
[−0.32;1.27]

−0.44
[−2.51;1.64]

Italy −0.59
[−1.37;0.19]

0.19
[0.05;0.33]

−0.01
[−0.14;0.12]

0.16
[−0.64;0.96]

−1.22
[−3.29;0.85]

Spain −0.97
[−1.74;−0.19]

0.43
[0.29;0.57]

−0.00
[−0.13;0.13]

0.91
[0.10;1.71]

−4.55
[−6.60;−2.51]

Netherlands −1.29
[−2.08;−0.51]

0.95
[0.81;1.09]

−0.69
[−0.81;−0.56]

0.64
[−0.17;1.44]

0.36
[−1.70;2.42]

Finland −1.14
[−1.91;−0.37]

0.54
[0.40;0.68]

−0.02
[−0.15;0.11]

0.27
[−0.53;1.06]

1.09
[−0.97;3.15]

Ireland −1.25
[−2.02;−0.48]

0.70
[0.55;0.84]

−0.00
[−0.13;0.13]

0.90
[0.09;1.70]

−4.57
[−6.61;−2.53]

Austria −0.56
[−1.34;0.22]

0.74
[0.60;0.89]

−0.00
[−0.13;0.13]

0.00
[−0.80;0.80]

−0.21
[−2.29;1.86]

Portugal −1.31
[−2.09;−0.53]

0.51
[0.37;0.65]

−0.00
[−0.13;0.13]

0.60
[−0.20;1.40]

−0.52
[−2.59;1.55]

Belgium −0.75
[−1.51;0.02]

0.92
[0.77;1.06]

−0.13
[−0.26;−0.00]

0.30
[−0.50;1.09]

−0.12
[−2.13;1.89]

Luxembourg −0.73
[−1.50;0.05]

0.39
[0.25;0.54]

−0.11
[−0.24;0.02]

0.72
[−0.09;1.53]

1.06
[−1.02;3.14]

Greece −1.13
[−1.90;−0.36]

0.47
[0.33;0.61]

−0.03
[−0.16;0.10]

1.83
[1.03;2.63]

−5.67
[−7.70;−3.63]

Mean -0.96 0.55 -0.09 0.60 -1.19

Std. Dev. 0.28 0.24 0.19 0.48 2.37

Note: Coefficients of the quantile Phillips curve defined by equation (2): Q̂τ (π̄
i
t+1,t+h|xi

t) =

µ̂i
τ +

(
1− λ̂i

τ

)
π∗,i
t−1 + λ̂i

τπ
LTE,i
t + θ̂iτ

(
ui
t − u∗,i

t

)
+ γ̂i

τ

(
πo,∗
t − π∗,i

t

)
+ δ̂iτf

i
t estimated by country

for the 10th quantile. The last two rows show the unweighted means and the standard devia-
tions of coefficients across countries. 68% confidence intervals are in brackets and are based on
block-by-block bootstrap (10,000 draws) developed in Kilian and Kim (2011).
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Table B2. Phillips Curve Estimates for the 50th Quantile

µ̂i
τ λ̂i

τ θ̂iτ γ̂i
τ δ̂iτ

Germany −0.49
[−0.84;−0.14]

0.95
[0.81;1.08]

−0.08
[−0.39;0.23]

0.37
[−0.25;0.98]

−0.32
[−3.30;2.67]

France −0.11
[−0.46;0.24]

0.31
[0.18;0.45]

−0.01
[−0.31;0.30]

0.24
[−0.37;0.85]

−0.82
[−3.77;2.14]

Italy −0.01
[−0.36;0.35]

0.20
[0.07;0.34]

−0.23
[−0.53;0.08]

0.13
[−0.49;0.74]

−0.78
[−3.75;2.19]

Spain −0.15
[−0.50;0.19]

0.52
[0.39;0.66]

−0.00
[−0.31;0.31]

0.47
[−0.14;1.08]

−1.22
[−4.17;1.73]

Netherlands −0.36
[−0.71;−0.01]

0.62
[0.48;0.75]

−1.03
[−1.33;−0.72]

0.93
[0.32;1.55]

0.15
[−2.79;3.08]

Finland −0.23
[−0.57;0.12]

0.24
[0.10;0.37]

−0.02
[−0.33;0.29]

0.99
[0.39;1.60]

0.54
[−2.41;3.49]

Ireland −0.32
[−0.66;0.03]

0.37
[0.23;0.50]

−0.00
[−0.30;0.30]

1.47
[0.86;2.08]

−1.20
[−4.17;1.77]

Austria −0.11
[−0.46;0.23]

0.80
[0.66;0.93]

−0.00
[−0.31;0.31]

0.35
[−0.26;0.96]

0.28
[−2.68;3.24]

Portugal −0.23
[−0.58;0.12]

0.51
[0.38;0.65]

−0.00
[−0.31;0.31]

0.74
[0.13;1.34]

−1.44
[−4.38;1.50]

Belgium −0.33
[−0.68;0.02]

0.72
[0.59;0.86]

−0.18
[−0.48;0.13]

0.53
[−0.07;1.14]

−0.26
[−3.23;2.72]

Luxembourg −0.19
[−0.53;0.16]

0.87
[0.73;1.01]

−0.51
[−0.81;−0.20]

0.70
[0.09;1.31]

0.63
[−2.35;3.62]

Greece 0.21
[−0.13;0.56]

0.49
[0.35;0.62]

−0.33
[−0.64;−0.02]

0.83
[0.22;1.44]

−4.90
[−7.85;−1.95]

Mean -0.19 0.55 -0.20 0.65 -0.78

Std. Dev. 0.18 0.25 0.31 0.38 1.48

Note: Coefficients of the quantile Phillips curve defined by equation (2): Q̂τ (π̄
i
t+1,t+h|xi

t) =

µ̂i
τ +

(
1− λ̂i

τ

)
π∗,i
t−1 + λ̂i

τπ
LTE,i
t + θ̂iτ

(
ui
t − u∗,i

t

)
+ γ̂i

τ

(
πo,∗
t − π∗,i

t

)
+ δ̂iτf

i
t estimated by country

for the 50th quantile. The last two rows show the unweighted means and the standard devia-
tions of coefficients across countries. 68% confidence intervals are in brackets and are based on
block-by-block bootstrap (10,000 draws) developed in Kilian and Kim (2011).
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Table B3. Phillips Curve Estimates for the 90th Quantile

µ̂i
τ λ̂i

τ θ̂iτ γ̂i
τ δ̂iτ

Germany 1.43
[0.88;1.98]

0.05
[−0.15;0.24]

−0.00
[−0.61;0.61]

0.72
[−0.00;1.44]

−1.64
[−4.55;1.27]

France 1.05
[0.50;1.60]

0.13
[−0.07;0.32]

−0.28
[−0.89;0.33]

0.90
[0.19;1.61]

−1.66
[−4.62;1.29]

Italy 1.20
[0.65;1.76]

0.34
[0.15;0.54]

−0.00
[−0.61;0.61]

1.38
[0.66;2.10]

−1.00
[−3.91;1.91]

Spain 1.17
[0.62;1.72]

0.70
[0.51;0.90]

−0.05
[−0.66;0.56]

1.23
[0.50;1.95]

−2.62
[−5.53;0.30]

Netherlands 1.26
[0.71;1.81]

0.16
[−0.04;0.36]

−0.17
[−0.78;0.44]

3.15
[2.43;3.86]

0.59
[−2.36;3.54]

Finland 0.52
[−0.02;1.07]

0.75
[0.56;0.95]

−0.00
[−0.61;0.61]

1.97
[1.24;2.69]

1.22
[−1.67;4.11]

Ireland 1.78
[1.23;2.32]

0.43
[0.23;0.62]

−0.00
[−0.61;0.61]

1.00
[0.28;1.72]

−3.09
[−6.00;−0.18]

Austria 1.14
[0.59;1.69]

0.00
[−0.20;0.20]

−0.00
[−0.61;0.61]

1.94
[1.23;2.66]

0.35
[−2.57;3.26]

Portugal 2.01
[1.47;2.56]

0.44
[0.24;0.63]

−0.23
[−0.84;0.38]

1.99
[1.27;2.71]

−3.57
[−6.46;−0.67]

Belgium 1.31
[0.76;1.86]

0.00
[−0.20;0.20]

−0.00
[−0.61;0.61]

1.83
[1.10;2.55]

−1.46
[−4.37;1.46]

Luxembourg 0.58
[0.03;1.13]

0.79
[0.60;0.99]

−0.00
[−0.61;0.61]

1.51
[0.79;2.22]

−0.17
[−3.07;2.74]

Greece 1.66
[1.10;2.22]

0.84
[0.64;1.03]

−1.11
[−1.72;−0.50]

1.92
[1.19;2.65]

−3.06
[−6.02;−0.10]

Mean 1.26 0.39 -0.15 1.63 -1.34

Std. Dev. 0.44 0.32 0.32 0.66 1.58

Note: Cefficients of the quantile Phillips curve defined by equation (2): Q̂τ (π̄
i
t+1,t+h|xi

t) = µ̂i
τ +(

1− λ̂i
τ

)
π∗,i
t−1 + λ̂i

τπ
LTE,i
t + θ̂iτ

(
ui
t − u∗,i

t

)
+ γ̂i

τ

(
πo,∗
t − π∗,i

t

)
+ δ̂iτf

i
t estimated by country for

the 90th quantile. The last two rows show the unweighted means and the standard deviations
of coefficients across countries. 68% confidence intervals are in brackets and are based on block-
by-block bootstrap (10,000 draws) developed in Kilian and Kim (2011).
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Appendix C.

Figure C1. Cross-Country Dispersion of Skewed t-Distribution Moments
over Time
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Appendix D. The Role of Financial Conditions in KL divergence

To further our understanding of the role of financial conditions, we can combine information

by driver and quantile. We apply the quantile-based KL measure defined by equation (6)

to predictive densities associated with quantiles Q̂τ,−j defined by equation (8). Figures D2

and D3 show that financial conditions is a key source of inflation dispersion risk at the tails

of predictive distributions. Removing the financial stress indicator reduces by one third the

average over the sample period of the KL associated with the quantiles [0, 10] and by half that

of associated with the quantiles [90, 1000]. Figure D2 shows that the left tails of predictive

distributions are more dispersed than at the middle and at the right and that is comes mainly

from the role of financial conditions. Panels A to C of Figure D3 confirm this conclusion

by depicting a rather flat measure of the risk of inflation dispersion when financial stress

indicator is muted.

Figure D2. The Risk of Inflation Dispersion by Inflation Driver and Quantile

[0-10] [45-55] [90-100]
0
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0.1
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Note: The figure compares the averages of KL measure by quantile for the benchamrk

D
[τ,τ+10]
KL,t (h) and D

[τ,τ+10]
KL,t−j (h) when inflation driver j is removed for j=[Unemployment gap,

Oil price, Financial stress index]. Panels B and C show the time series for D
[τ,τ+10]
KL,t (h) and

D
[τ,τ+10]
KL,t−j (h) when inflation driver j is removed for j=[Financial stress index]. Gray shaded

areas indicate CEPR-dated recessions.
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Figure D3. The Risk of Inflation Dispersion by Inflation Driver and Quantile
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Note: Panels A to C show the time series for D
[τ,τ+10]
KL,t−j (h) when inflation driver j is removed

for j=[Financial stress index]. Gray shaded areas indicate CEPR-dated recessions.
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Appendix E. Country contributions to the dispersion of inflation risks:

Results for all countries

Figure E4. Country Contributions to the Dispersion of Inflation Risks
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Note: The figure shows the values of dKL,t,−k, defined by equation (9) for each country k
over the sample period. Gray shaded areas indicate CEPR-dated recessions.
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Appendix F. List of Variables used for forecasting Exercises

Table F4. List of Variables Included in Zt to Estimate Macroeconomic and
Financial Factors

Variables Code Series (ECB SDW) Transf.

Adjusted loans to euro area private sector BSI.M.U2.Y.U.A20TA.A.1.U2.2200.Z01.E 2

Monetary aggregate M3 BSI.M.U2.Y.V.M30.X.1.U2.2300.Z01.E 2

Japanese yen/Euro EXR.M.JPY.EUR.SP00.A 1

Unemployment rate (as a % of labour force) STS.M.I8.S.UNEH.RTT000.4.000 1

Euribor 3-month FM.M.U2.EUR.RT.MM.EURIBOR3MD .HSTA 1

EER-42/Euro EXR.M.E7.EUR.EN00.A 1

CPI deflated EER-42/Euro EXR.M.E7.EUR.ERC0.A 1

Dow Jones Euro Stoxx 50 Price Index FM.M.U2.EUR.DS.EI.DJES50I.HSTA 2

Standard and Poors 500 Composite Index FM.M.US.USD.DS.EI.S PCOMP.HSTA 2

HICP - Overall index ICP.M.U2.Y.000000.3.INX 2

ECB Commodity Price index STS.M.I8.N.UWIE.CTOTNE.3.000 2

Unemployment rate, Male STS.M.I8.S.UNEH.RTM000.4.000 1

New passenger car registration STS.M.I8.Y.CREG.PC0000.3.ABS 2

Industrial new orders; total STS.M.I8.Y.ORDT.NSC002.3.000 2

Industrial production for the euro area STS.M.I8.Y.PROD.NS0020.4.000 2

Industrial production; intermediate goods STS.M.I8.Y.PROD.NS0040.4.000 2

Industrial production; consumer goods STS.M.I8.Y.PROD.NS0080.4.000 2

Industrial production; energy STS.M.I8.Y.PROD.NS0090.4.000 2

Industrial production; including construction STS.M.I8.Y.PROD.NS0010.4.000 2

Industrial production; excl. construction, energy STS.M.I8.Y.PROD.NS0021.4.000 2

Industrial production; durable consumer goods STS.M.I8.Y.PROD.NS0060.4.000 2

Industrial turnover, nominal; manufacturing STS.M.I8.Y.TOVT.2C0000.4.000 2

Retail trade turnover STS.M.I8.Y.TOVT.NS4701.4.000 2

UK pound sterling/Euro EXR.D.GBP.EUR.SP00.A 1

EONIA EON.D.EONIA TO.RATE 1

U.S. dollar/Euro EXR.D.USD.EUR.SP00.A 1

HICP; excluding energy and unprocessed food ICP.M.U2.Y.XEFUN0.3.INX 2

Euribor 1-year RTD.M.S0.N.C EUR1Y.E 1

Brent crude oil 1-month Forward RTD.M.S0.N.P OILBR.E 2

Consumer Confidence Indicator RTD.M.S0.S.Y CSCCI.F 2

Economic Sentiment Indicator RTD.M.S0.S.Y ESIND.F 2

U.S. Consumer Price Index CPIAUCSL (FED FRED) 2

U.S. all Employees, Total Nonfarm PAYEMS (FED FRED) 2

U.S. 10-Year Treasury Constant Maturity Rate DGS10 (FED FRED) 1

U.S. Advance Real Retail and Food Services Sales RRSFS (FED FRED) 2

U.S. 3-Month Treasury Bill TB3MS (FED FRED) 1

U.S. Unemployment Rate UNRATE (FED FRED) 1

U.S. ISM Manufacturing PMI NAPMPMI Index (Bloomberg) 2

1-year inflation forecast ECB projections 1

Note: Data transformations: 1=first difference; 2=growth rate.
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