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THE STARTING POINT

The conditional distribution of GDP growth contains fat tails and skewness (web)
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THE STARTING POINT

Growth-at-risk (GaR): large literature, pioneered by Giglio et al. (2016) and Adrian et al. (2019)

Defines GaR as the growth rate of output at the 5th percentile

Maps GaR to indicators of financial stress, e.g., credit, leverage, and funding
Commonly used predictor in the U.S.: National Financial Condition Index (NFCI)

Well motivated by economic theory. E.g.:
Structural models linking financial conditions to business cycles (famous examples Gertler and
Bernanke (1989), Kiyotaki and Moore (1997), Bernanke et al. (1999))

Classic accounts of financial crises emphasizing credit market sentiment (Minsky, 1977, 1986;
Kindleberger, 1978)

Thus, provides macro-prudential policies a well grounded framework for managing macro risks
(Greenspan (2004)) BUT...
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CONFLICT

Hasenzagl et al. (2020), henceforth HPRR, have recently convincingly argued that the NFCI (and similar
indexes):

Does only provide predictive power for the location of the conditional distribution of GDP growth
(and not any higher order moments)

Does not contain information beyond what's already in real indicators, such as the first common
factor (FMDF) extracted from the commonly used FRED-MD dataset

This is sad news for macro-prudential policies and risk management relying on theories linking GaR
predictions to financial conditions




WHAT WE DO

Motivated by this debate and its clear policy relevance, we:

Propose an alternative new-based indicator, labeled the Risky News Index (RNI), linking financial
conditions to growth risks

Evaluate the proposed indicator in terms of its ability to characterize (in-sample) and predict
(out-of-sample) the conditional distribution of U.S. GDP growth

Dissect the informational content of the derived index by linking it to shocks to expectations about
the current state of the economy and popular sentiment-driven views on the credit cycle




WHAT WE DO CONT'D

Find that:

RNI helps characterizing the GDP distribution in-sample and significantly affects the shape of the
distribution

RNI outperforms the NFCI when used for out-of-sample forecasting. Not at the one-quarter-ahead
horizon, but significant so at the more policy relevant one-year-ahead horizon

This is good news for macro-prudential policies and risk management relying on theories linking GaR
predictions to financial conditions.

Speaking to theories on endogenous information choice and credit-market sentiment we further
document that the news-based index carries information about beliefs rather than fundamentals.




WHAT WE FIND (IN A NUTSHELL)

Growth-at-risk indicators
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OUTLINE

Constructing the RNI

Building intuition

Modeling the conditional distribution of GDP growth
In- and out-of-sample results

Economic mechanism




CONSTRUCTING THE RNI

Use Dow Jones Newswire Archive together with a ML based Word Embedding model to estimate the
association between growth-at-risk and financial conditions

Why news:
By def. provides the general public with new information (information intermediaries)
Might have independent effects on expectation formation via information choice, information rigidities, or
more behavioral mechanisms

Why word embeddings:

Vector representation of words capturing linguistic regularities and patterns
Allow for arithmetic operations which can capture associative meaning (e.g. king - man + woman =~ queen)
ChatGPT, and all its new friends, build on this type of data representations

Words that share meaning are close in vector space

Words that share context are close in vector space




THE DATA

Unique corpus from Dow Jones Newswire Archive:

International business news, e.g., The Wall Street Journal
More than 25 million articles in English language

We use data from from January 1985 to April 2022
Perform customary pre-processing




ESTIMATING THE WORD EMBEDING MODEL

Estimation method: word2vec algorithm, a two-layered neural network (Mikolov et al. (2013) and
Mikolov et al. (2013))
Input:

Corpus of Dow Jones Newswire Archive.

Partitioned into monthly blocks of articles.

Output:
For each month t, a matrix of word embeddings.
For each word, a word vector representing the regularities and patterns of the language (in a particular
month).




THE GROWTH-AT-RISK AND FINANCIAL CONDITIONS ASSOCIATION

Defining concepts
Growth-at-risk: = (recession; + risk;) )
Financial conditions; = (credit; + leverage, + funding;)

OLS regression (each month)
RNI; = B, = argmin S(B3;)  S(f:) = ||Growth-at-risk; — Financial cond.; x B:||*, (2)
Intuition:

An increase in RNI; = /3; implies a stronger association between how the news media writes about
growth-at-risk and financial conditions

To the extent that this reflects changes in economic fundamentals, or if news media coverage has an
independent effect on economic expectations, we hypothesis that this change might be informative
for characterizing and forecasting skewness and fat tails in GDP growth
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THE RNI

Growth-at-risk indicators
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BUILDING INTUITION(?)
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BUILDING INTUITION(?)

1990

w.CAPItalization
s CPEOITWALCH ™ unerying

sheet surveillance

meaum |€VE rage ratios financing

risks Tisk triple %

flows Credit gebt == e
lending fundmg Jbaa | tolios

leveraged ™ moody
coverage liquidity

2006
collateralised
commensur_ate .
fundings subordination
revolver  collateral

o IeVErage & o

financing |
oan

“”dra‘;\’n fundlng borrowings
secure Cred|t debt securitization

prepayments
refinance

repayments revo IVI n g financings

repayment anhancement
repaying refinancings

1997
subordinate (!Hdemedness
Ieveraged ﬁnancings subordinated
revolver I eve rag @ structure
indenture

rating "o
financed

ciﬁﬁr“aﬁg CrEdit debt borrowing§
mo¥ fundingratings

manageable

revolving synordination
enhancement

2014

subordination  enhancement
manageable

borrowing ,  [EVOIVET  constrain

i debt headroom

leveraged C re d It | |q u | d |ty ity

ool [2XV/ erage gosivies
funding deeverage

metrics .
undrawn
oan  €VolVi ng deleveraging

commensurate

2000
enhancements |r_1debted_ness
structured fl‘n‘anCIng enhancement
receivables

| eve rag e ratings borrowings

facility covenants "3’ w profle Ievéféged
Smeoz:ymd fu n d I n g flexibility e
credit revolving

financed §; i servicin:
g
e, fiNANCINGS
securitization

2019

. sensitivities
metrics .commensurate

headroomliquidity captalsaton
borrowing debt_cred it <|:apitalization
maturities revolver

rof fu nglng refinanced
constrain | eve rag e deleveraging

constraint . enhancement
revolving geleverage
undrawn repayments

unrated




MODELING THE CONDITIONAL DISTRIBUTION OF GDP GROWTH

A parametric Skew-t distribution with time-varying location, scale, and shape parameters

Skew-t workhorse model in the GaR literature

Score-driven time-varying location, scale, and shape parameters shown to improve performance in
newer studies (Labonne (2022) and Delle Monache et al. (2023))

Ve = pe + Ve, Ve~ SRE(0, 01, ar, v), (3)

Letting v = log(o), o = arcthan(«), and u; € {j, v1, o1}, the time-varying parameters have both a
stationary and permanent component such that u; = 7, ¢ + vy ¢ with

Tut = Tut—1 + SuSut  Vugt = (buvu,t% + BuXe—1 + KuSu,ts (4)

X an exogenous predictor, e.g., the RNI or NFCI
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IN-SAMPLE CHARACTERISTICS
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IN-SAMPLE: MAIN POINTS

As in Delle Monache et al. (2023) (using a Skew-t(NFCI) model)

Economic expansions: positive skewness, and positive correlation between the mean and variance of
the distribution

In recessions: negative skewness, and negative correlation between the mean and variance of the
distribution

In relation to HPRR:

They find that financial conditions only explain the location of the distribution and that the
time-varying moments are very imprecisely estimated

We find significant time-variation and that the RNI contributes significantly to the shape (asymmetry),
but not the location of the distribution




OUT-OF-SAMPLE PERFORMANCE
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OUT-OF-SAMPLE PERFORMANCE

Table: The table reports the average forecast metrics of the Skew-t(RNI) model relative to the Skew-t(NFCI) model. We
use ratios for the RMSE and CRSP, and differences for the LS. Ratios smaller than 1, and positive values of the LS
differences indicate that Skew-t(RNI) model performs better than the Skew-t(NFCI) benchmark. The p-value for the
Giacomini and White (2006) test are in parentheses.

One-quarter-ahead One-year-ahead
LS CRPS RMSE LS CRPS RMSE
Full 0.06 (0.36) 1.02 (0.55) 1.01(0.76) -010 (0.44) 0.93 (0.41) 0.91(0.27)
Rec. 015 (0.77) 1.01(0.95) 1.01(0.69) -0.64 (013) 091(0.01) 0.94 (0.00)

GFC 018 (0.74) 111(0.93) 133(0.73) -110 (0.00) 0.68 (0.00) 0.52 (0.00)




OUT-OF-SAMPLE GAR

Not only statistical significant results, but also economically significant
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IS IT THE METHOD OR THE DATA?

We show in the paper

That count-based methods do worse than the word embedding methodology
That boolean search-based methods do worse than the word embedding methodology

But, these alternative NLP methods, and in particular the boolean search-based method, do at times
perform better than using the NFCI

Thus, seems to be something with the data, i.e,, the news!




ECONOMIC INTERPRETATION: WE DO NOT PREDICT SHOCKS, SO...

..the strong performance of the RNI must be related to something else. Given the usage of news data, a
natural hypothesis is that we capture fluctuations in beliefs and credit market sentiment (to a larger
degree than what's potentially captured by, e.g,, the NFCI)

Conduct two main experiments

Bulding on Enders et al. (2021) and Bordalo et al. (2018): Estimate SVAR to identify belief and
fundamental shocks using sign restrictions. Look at correlations

51’[ _ + — U{ (5)
&t + + U?
Build on Lopez-Salido et al. (2017) to identify credit market sentiment via credit market valuation
indicators

A,St :G’Zt,pw + Vi (63)
Auyr =15t + Y Xe—p, + Varr. (6b)




RNI SIGNIFICANTLY CORRELATED WITH BELIEF SHOCKS

SVAR imulse responses and variance decomposition (VDC) RNI and the implied (smoothed) belief shock
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RNI SIGNIFICANTLY CORRELATED WITH LAGGED VALUATION INDICATORS ~ BI

Sentiment regression estimates Implied sentiment time series
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CONCLUSION

GaR predictions are important policy tools and well grounded in economic theory linking financial
conditions to macro outcomes

HPRR convincingly question the value added of using financial conditions indicators, such as the
NFCI, for GaR predictions: Sad news for macro-prudential policies and risk management

We propose an alternative news-based indicator, the RNI, capturing time-varying changes in news
coverage of growth-at-risk and financial conditions
Using the RNI to characterize the conditional distribution of GDP growth in-sample suggests that financial
conditions significantly affect the shape of the distribution
Out-of-sample the RNI outperforms the NFCI at the policy relevant one-year-ahead horizon. Our results are
both statistically and economically significant: Good news for macro-prudential policies and risk
management

More structural experiments relate the RNI to theories on credit market sentiment, and suggest a
potential endogenous information choice channel where media coverage matter
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