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ABSTRACT 

This paper provides empirical evidence on the compositional effect of weather-
related disasters on consumer prices. We combine data on monthly granular 
inflation for 12 CPI product categories with data on extreme weather events for 
four French overseas territories sporadically hit by large weather-related disasters. 
We find that disasters lead to a maximum rise in consumer prices of 0.5 percent with 
substantial heterogeneity in the price response. An immediate strong surge in the 
prices of food, and notably of fresh products, is partially offset by a decline in the 
prices of manufactured products and services. The effects of weather-related 
disasters dissipate after four months and differ along the income distribution, 
notably raising inflation for low-income households by more. Price controls dampen 
the price response on impact, but lead to similar adjustments in the price level after 
six months. 
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NON-TECHNICAL SUMMARY 

How do weather-related disasters affect consumer prices? In times when central banks 
consider climate risks in their operational frameworks, this becomes a relevant monetary 
policy question. The existing empirical literature has focused mostly on the aggregate price 
effect. However, natural disasters are a complex mix of supply disruptions driving up prices 
in the short run, combined with a shock to the composition of aggregate demand, with 
differing effects in sign and magnitude across types of goods and services. Aggregate price 
effects of natural disasters will depend on the relative strength of these supply and demand 
effects over time.  
This paper documents how prices of granular CPI product categories respond to weather-
related natural disasters. We focus our empirical analysis on prices in four French overseas 
territories (DCOM, Départements et Collectivités d’Outre-Mer), which are regularly exposed to 
significant weather-related disasters and located in different places of the world. For each of 
these small territories, the French statistical office (Insee) produces harmonized price indices 
at a disaggregate product level and available at a monthly frequency between 1999 and 2018. 
We identify weather-related disasters by combining administrative and meteorological data 
sets. While administrative databases detect disasters with significant economic consequences, 
they may suffer from different reporting biases: for instance, the probability to declare the 
state of emergency is positively correlated with the insurance coverage in the community, 
and the intensity of natural disasters reported in news-driven and insurance-based data is 
correlated with GDP per capita. Conversely, an approach only relying on the intensity of 
meteorological data imperfectly takes into account the heterogeneity in regional 
vulnerabilities. Overall, these data limitations to measure economic consequences of natural 
disasters are likely to generate both attenuation biases and omitted variable biases. To reduce 
these biases, we rely on an instrumental variable approach where we use meteorological 
records of wind speed and rainfall to predict the occurrence of extreme weather events that 
imply significant economic damage as reported by administrative data. We then measure the 
impact of these disasters on the evolution of prices for up to six months after the shock, 
using a local projection method. We compute the price responses at the product and 
aggregate level.  
We find that weather-related disasters induce a temporary but statistically significant rise in 
headline consumer prices, with a peak at 0.5 percent two months after the disaster 
occurrence. The overall observed effect is driven by an immediate strong surge in the prices 
of fresh food products of 11 % after two months, which vanishes after four months. Prices 
of other food products also increase, but more moderately and in a more sustained manner 
(+0.3 %). By contrast, the prices of services and manufactured products decline moderately 
(and in a less statistically significant way), by about -0.2 %. The positive effects on food prices 
are likely to reflect negative supply shocks, as we observe a simultaneous decrease in 
agricultural employment. To the contrary, the negative effects on the prices of manufactured 
products and services are likely to reflect negative demand shocks.Our results point to small 
and temporary effects on headline inflation, mainly related to distortions of relative prices.  
These effects translate into distributional effects through the heterogeneity in household 
consumption structure. Overall, the weather-related disasters increase temporarily inflation 
inequality, with a difference of up to 0.2 pp between the bottom and upper quintiles of the 
household income distribution. The rise in inflation inequality is primarily due to the fact 
that the weight of food in the consumption basket is higher for low income households.We 
also analyse the effects of the introduction of price cap policies, namely the Bouclier Qualité-
Prix introduced in 2013. Price caps lower the impact response of price reactions to weather-
related disasters in the sample period. However, cumulated over six months, price reactions 
are not significantly affected by the introduction of price cap policies, implying that the 
adjustment in the price level is just spread over the horizon of six months.   
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Finally, this paper documents the importance of controlling for region-specific seasonality 
for the unbiased estimation of inflationary effects, which affects both the occurrence of 
disasters and price variations. This matters in particular, but not only, for fresh-food prices. 
 
Figure: Decomposition of the reaction of total inflation to a weather-related disaster 

 
Note: Decomposition of the cumulative impulse response of headline CPI to a natural disaster in the baseline 
specification. The contribution of each component is computed as the cumulative response of the CPI of this 
component times its average weight in the consumer baskets of the four DCOMs between 1999 and 2018. 
Treatment effects are expressed in percent. 

Décomposition de la réponse de 
l’inflation aux catastrophes 

météorologiques  

RÉSUMÉ 

Cet article fournit une quantification de l'effet de composition des catastrophes 
météorologiques sur les prix à la consommation. Nous combinons des données 
mensuelles sectorielles d’inflation pour 12 catégories de produits de l'IPC avec des 
données sur les événements météorologiques extrêmes pour quatre territoires français 
d'outre-mer sporadiquement touchés par des catastrophes météorologiques. Nous 
montrons que les catastrophes entraînent une hausse maximale des prix à la 
consommation de 0,5 %, avec une hétérogénéité significative dans la réaction des prix. 
Une forte hausse des prix des produits alimentaires, et notamment des produits frais, 
est partiellement compensée par une baisse des prix des produits manufacturés et des 
services. Les effets des catastrophes météorologiques se dissipent après quatre mois 
et diffèrent selon la distribution des revenus, augmentant notamment davantage 
l'inflation pour les ménages à faible revenu. Les contrôles de prix atténuent la réaction 
des prix à l'impact, mais conduisent à des ajustements similaires du niveau des prix 
après six mois. 
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1. Introduction 

How do natural disasters affect consumer prices? In times when central banks consider climate risks 

in their operational frameworks, this becomes a relevant monetary policy question (e.g. Schnabel, 

2021). The existing empirical literature has focused mostly on the aggregate price effect. However, 

natural disasters are a complex combination of supply disruptions driving up prices in the short run, 

combined with a shock to the composition of aggregate demand, with differing effects in sign and 

magnitude across types of goods and services. Aggregate price effects of natural disasters will 

depend on the relative strength of these supply and demand effects over time. This paper documents 

how prices of granular CPI product categories respond to weather-related natural disasters. The full 

decomposition across product categories helps  to sharpen our understanding of the overall inflation 

response to extreme weather events, which are projected to become more frequent because of 

climate change.  

We focus our empirical analysis on prices in four French overseas territories, namely Guadeloupe, 

Martinique, Guyane and La Réunion, which we refer to as DCOM (Départements et Collectivités 

d’Outre-Mer). These data come with two benefits. First, these territories are regularly exposed to 

significant weather-related disasters and they are located in different places of the world, which 

allows studying shocks that are de-synchronized across territories. To measure weather-related 

disasters, our analysis rely on several data sets: two administrative data sets reporting natural 

disasters at the local level and three sources collecting meteorological records (wind-speed, rainfalls 

and extreme weather events), Second, for each of these four relatively small territories, we also use 

highly harmonized price indices produced by the French statistical office (Insee), at a disaggregate 

product level and available at a monthly frequency over the period 1999-2018. Since these 

territories are rather small and isolated (three of them are small islands), we can identify precisely 

the effects of extreme weather events on prices by matching information on natural disasters and 

product-level price indices for these four territories.  

We identify natural disasters induced by extreme weather events by combining both administrative 

and meteorological data sets in our empirical approach. The ideal measure of natural disasters 

would report the direct economic damages resulting from a natural disaster due to asset damage and 

business interruptions. However, in practice, the existing literature usually relies on two sources of 

data to approximate this ideal measure. One approach is to use administrative databases that detect 

an event based on ad hoc criteria. Administrative databases have the advantage of detecting 

disasters with significant economic damage with a relatively high accuracy. However, they are also 
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known to be subject to various reporting biases (Felbermayer and Gröschl  2014, Grislain-Letremy 

2018), which are likely to generate both attenuation biases and omitted variable biases. Another 

approach uses meteorological and geophysical data and approximates the severity of the disaster 

event by the intensity expressed in the quantity of precipitation, wind speed or Richter scale of 

earthquakes. Unfortunately, this approach only imperfectly predicts hazardous incidents, as events 

of similar physical amplitude are associated with different levels of destruction depending on 

regional vulnerabilities.2 To overcome these empirical issues, we follow a two-step procedure. First, 

we combine the two types of data sources for French DCOMs: we use the emergency events 

database (EM-DAT) measuring natural disasters in several countries and regions in the world and 

a French administrative data set collecting local information on natural disasters (Gestion Assistée 

des Procédures Administratives relatives aux Risques, or GASPAR). In a second step, we use 

meteorological records as reported by weather stations, as collected by remote sensing systems 

based on satellites, and extreme weather events as reported by the French national weather 

service (Météo-France). We  rely on an instrumental variable approach where we use this 

meteorological information as an instrument for the occurrence of events reported by administrative 

data. Doing so, we select economic disasters that we can directly connect to extreme 

meteorological events. To assess the inflation effects of natural disasters, we then relate the 

economic disasters as predicted by the first-step equation to the evolution of prices for different 

time horizons after the shock using a local projection method à la Jordà (2005). We are thus 

able to derive the price response both at the product level for different product categories and 

at the aggregate level following a given natural disaster shock. 

Our main results are the following. First, we find that weather-related disasters induce a temporary 

but statistically significant rise in headline consumer prices, with a peak at 0.5 percent two months 

after the disaster occurrence. The overall observed effect is driven by an immediate strong surge in 

the prices of fresh food products of 11 % after two months, which vanishes after four months. Prices 

of other food products also increase, but more moderately and in a more sustained manner (+0.3 %). 

This positive inflation effect coincides with a negative impact of natural disasters on agricultural 

employment, pointing to a negative supply shock with a displacement of labour supply from 

agricultural sector to other low-skilled occupations (as also found by Kirchberger, 2017).3 Our 

                                                           
2 The extent of economic damages is affected by geological features such as the shape of the continental shelf or coast (Bertinelli 

and Strobl, 2013) or land use in the affected area. Damage from an incident of similar geophysical strengths can be dampened 

through adaptation measures, which themselves are a function of a number of determinants such as the ex-ante exposure to 

risks (Schumacher and Strobl 2011), the quality of institutions (Kahn 2005), and economic development (Felbermayer and 

Gröschl 2014). 
3 We do not find other evidence of effects on employment for other sectors, except for a negative effect in the construction sector.  
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findings on food products are consistent with the response of retail prices following typhoons in 

China. Bao, Sun and Li (2022) document that fresh products are driving the overall response in 

food prices, in particular vegetables. 

By contrast, the prices of services and manufactured products decline moderately (and in a less 

statistically significant way), by about -0.2 %. Overall, our results point to small and temporary 

effects on headline inflation, mainly related to distortions of relative prices. Finally, we show that 

results obtained using a damage function approach relying only on meteorological data are in line 

with the ones we can obtain using an IV approach. 

We also find distributional effects from natural disasters across income groups. To measure these 

distributional effects, we first measure household-specific consumption structure for different 

income groups relying on household survey data and then using these weights by income group, 

we aggregate the product-level price responses to natural disasters to obtain heterogeneous price 

responses by income group (Hobijn and Lagakos 2005, Hobijn et al 2009). Since the effect on fresh 

food prices is positive and much stronger than any other product category, the effect on total 

inflation strongly depends on the share of fresh food in the consumption basket. We find that the 

upward effect on headline prices after two months is of 0.6 percent in the bottom quintile of the 

income distribution, i.e. 0.1 pp above the average effect. The upper quintile, in contrast, experiences 

a rise in consumer prices of 0.4 percent, i.e. 0.1 pp below the average effect. Overall, the natural 

disasters have a positive effect on inflation inequality across income groups, but this impact is only 

transitory. 

We also document that public policies limiting price gouging have an effect on the shape of the 

price response: after the implementation of a price cap on a set of first necessity goods in 2013 

(Bouclier Qualité-Prix, BQP), the increase of fresh products prices following a natural disaster was 

much smaller in magnitude. The stronger reaction of prices before the BQP points towards the 

existence of price gouging in the absence of regulation. However, consistently with a large literature 

we find that price gouging is unlikely to explain all of the observed effect. Indeed, after six months, 

the cumulated price response before and after the BQP are close (as price increases after the BQP 

are more persistent), suggesting that even in the presence of regulation, retailers increase their prices 

after a natural disaster but in a more staggered way in presence of price cap policies.4 

Our main contribution to the existing literature is twofold. 

                                                           
4 See also the large literature on price gouging during crises, which generally finds limited effects (Cabral and Xu, 2021, Beatty et al., 

2021, Gagnon and Lopez-Salido, 2020; Neilson, 2009; Culpepper and Block, 2008). 
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First, the rather small aggregate effects of weather-related natural disasters on headline inflation can 

be the result of quite heterogeneous price responses across products. Parker (2018) and Kabundi et 

al. (2023) have probably provided the most comprehensive analysis on the effect of natural disasters 

on inflation. In both papers, the authors use data from the international disaster database EM-DAT 

and relate these events to CPI inflation covering about 200 countries. These two studies find strong 

heterogeneity in the impact of disasters on inflation across disaster types and the country-level of 

development. They also both emphasize the specific effect of natural disasters on food product 

inflation. Our contribution is a focus on small territories frequently exposed to extreme weather 

events and for which we can estimate precisely the price response to natural disasters for all product 

categories of CPI inflation. Focusing on smaller territories as well, Heinen et al. (2018) estimate the 

impact of hurricanes and floods on prices on Caribbean islands. They inspect total headline CPI and 

three sub-categories, namely food, housing and utilities, and all other items. Their baseline result is 

an inflationary effect of disasters, lasting for one month in response to floods and two months in 

response to storms. In line with our findings, food prices is the sub-component that reacts most 

strongly to disasters. However, no offsetting effects are observed in product sub-categories, possibly 

due to the still high level of aggregation of the category ‘other goods’. Our contribution is to provide 

a fully exhaustive and detailed analysis of compositional effects (as our data contain information 

on both indices and weights of different components of headline CPI), at a more granular level (as 

our data cover 12 types of goods and services). A highly balanced panel allows us to interpret our 

findings as compositional effects of headline inflation, and the availability of weights helps us to 

decompose product by product the effect on headline CPI. Finally, integrating specific sectoral 

economic dynamics enables us to provide plausible narratives for shifts in sectoral supply and 

demand, which is not frequently discussed in the existing literature. 

Our second contribution to the existing literature is more methodological on the way we identify 

weather-related disasters. Most of the existing literature measuring the price effects of weather 

related disasters relies on either administrative data or on meteorological records. Both sources have 

pros and cons. When relying on administrative data sets like EM-DAT or the French administrative 

data set GASPAR, the treatment of natural disasters as exogenous is problematic, as these data 

sources are subject to reporting biases (Felbermayer and Gröschl  2014). Another approach consists 

of using meteorological and geophysical data only. Heinen et al. (2018) build a damage function, 

which is a complex non-linear combination of meteorological records to estimate the economic 

damages caused by extreme weather events and then related this damage function to prices. 

However, this method is more prone to specification errors since it depends on thresholds above 
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which wind and rain generate physical damages (sometimes based on laboratory simulations or 

calibrated on specific economies) and more generally, on the assumption that the economic 

damages generated by extreme meteorological records are not linear in wind speed and rainfalls 

(Emanuel, 2011). However, in a context in which countries adapt to the consequences of climate 

change, the relationship between meteorological records and economic damages might not only 

differ across economies, but also evolve over time. Since we rely on both types of data, we propose 

in this paper a new methodological approach where we instrument the occurrence of administrative 

events using meteorological records, in particular taking into account non-linear effects of 

meteorological records in the first stage. It allows us to identify natural disasters due to extreme 

events that do not suffer the reporting bias. We further compare the results obtained with the 

different methodologies and find that using administrative data only in a simple OLS framework 

tends to underestimate the price effects of extreme weather events. Using a damage function with 

meteorological records leads to consistent results but requires assuming specific thresholds 

regarding the relationship between the physical intensity of economic destructions and 

meteorological data (Auffhammer 2018, Kolstad and Moore 2020).  

Finally, we also document new results regarding the treatment of seasonal effects when estimating 

the effect of weather-related disasters on prices. Most empirical contributions evaluating the impact 

of natural disasters on inflation control for average time-specific fixed effect but do not take into 

account for the fact that the seasonality of extreme weather events can vary across territories, and 

can be correlated with the inflation seasonality. This is in particular a concern for products locally 

produced. In our baseline methodology, we include month-year fixed effects (controlling for 

common DCOMs shocks) but also monthly dummies, which are specific to each DCOM. We 

therefore capture the “surprise” component of extreme wind and rainfall compared to usual seasonal 

patterns, which is likely to be particularly important in a context in which the frequency and timing 

of extreme weather events is evolving due to climate change. We show that the treatment of 

seasonality can affect significantly the estimated response of prices to natural disasters and we argue 

that a region-specific treatment of seasonality is crucial to identify precisely the price response. 

The paper also relates to the literature studying the consequences of natural disasters for inflation 

dynamics. Cavallo et al. (2014) and Doyle and Noy (2015) analyze the reaction of prices to large 

earthquakes in the form of event studies. Parker (2018) and Kabundi et al. (2023) use a variety of 

natural disasters, ranging from geophysical events to extreme weather events, distinguishing the 

intensive margin of disaster-types on prices. A few papers study only weather-related disasters, as 

we do. One specific strand of papers focuses on temperature variations (Faccia et al. 2021, Ciccarelli 
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et al. 2023, Kotz et al. 2023). Finally, our findings closely relate to papers focusing on inflation 

dynamics of fresh food items in response to wind storms in China (Bao, Sun and Li 2022) and the 

study by Heinen et al. (2018) discussed in detail above. 

The paper is structured as follows. Section 2 describes the data and the estimation strategy. Section 3 

describes the estimation results. Section 4 describes distributional effects. Section 5 presents 

robustness checks. Section 6 concludes. 

2. Data on inflation and weather-related disasters in 

French overseas territories 

In this section, we describe how we combine detailed information on natural disasters and prices 

for French overseas territories, for the period January 1999 to April 2018. 

2.1 Product-level inflation data 

We use the Consumer Price Index produced at a monthly frequency by Insee for each of the four 

French DCOMs. In France, there is no regional price index available. French overseas territories 

are the only subnational regions for which price indices are specifically calculated using price 

quotes collected in each overseas territory. These consumer price indices have been computed since 

1967 in Guadeloupe, Martinique and La Réunion, and since 1969 in Guyane. The methodology 

used to compute them is similar to that of the metropolitan CPI since 1993 and is part of the CPI 

for France since 1998. Price indices are published at a monthly frequency at a granular level for 12 

CPI components, along with their annual weight in the consumption basket. Table A.1 in the 

Appendix displays the summary statistics of price indices used. 

There are some specificities of consumer prices in DCOMs, where prices are set in a distinctive 

manner compared to the metropolitan territory. First, price levels are generally higher in DCOMs, 

notably because of food prices, and the price gap remained broadly constant between 1985 and 

2010 (Berthier et al. 2010). Second, as documented in Table A.2 in Appendix, even though 

inflation in DCOMs is significantly correlated with inflation in the metropolitan area5, this 

                                                           
5 Several factors can explain this positive correlation. First, the consumption structure of DCOMs converged progressively to 

that of the metropolis (with a decrease in food consumption and an increase in services consumption), partly reflecting a catch-

up policy linked to the départementalisation of these four territories (i.e. their transformation into French départements starting 

from 1946). Second, price-setting mechanisms are to a large extent jointly determined between DCOMs and the metropolis: 

the minimum wage in DCOMs is aligned with that of the metropolis since 1996, public compensations are identical (albeit 

with a premium compensating for the distance to the metropolis), and so are quality norms and rent setting mechanisms. 
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correlation is lower for food inflation (Hugounenq and Chauvin 2006), and especially for fresh 

products.  

Second, the heterogeneous correlation of CPIs between metropolitan France and the DCOMs 

is likely to reflect heterogeneous trade prevalence across types of goods and services. Indeed, 

according to Hugounenq and Chauvin (2006) about 45 percent of DCOMs’ final household 

consumption was imported in 1999 (of which 60 percent came from the metropolis). The share 

of imported goods was as high as 70 percent for manufactured products and 90 percent for 

durables and fuels. In stark contrast, the food sector depends much more on local production. 

In 1995, between 55 and 63 percent of food needs were covered by local products. In general, 

coverage ratios are higher for fresh products than for all food products (combining fresh and 

processed food), reflecting a higher prevalence of imports for processed food.6  

Third, DCOMs benefit from specific fiscal schemes to compensate for their distance with the 

metropolis: VAT is lower and a specific tax on imported products (octroi de mer), protects local 

production against external competition. Tobacco and petroleum products are also taxed 

differentially in the DCOMs and in the metropolis: no VAT is imposed on petroleum products, 

and taxes on tobacco are decided by local authorities. Furthermore, prices of petroleum products 

are set by local authorities.  

2.2 Weather-related disasters data 

This section presents the data sources on natural disasters and extreme weather events.  

2.2.1 Administrative databases for natural disasters 

In this paper, we use two different data sets collecting administrative information on economic 

losses due to natural events. 

First, we use a French administrative dataset collecting information about the assisted management 

of administrative procedures related to risks (Gestion Assistée des Procédures Administratives 

relatives aux Risques, or GASPAR), assembled by the French Ministry of Ecological Transition. 

This dataset lists all natural disasters by municipality since 1990. In this data set, a disaster refers to 

the declaration by the French government of a state of “natural disaster”, after the consultation of 

an inter-ministerial commission. Importantly, the declaration of state of natural disaster conditions 

the eligibility of households to an insurance compensation. The GASPAR dataset contains various 

                                                           
6 Table A.3 in Appendix A reports coverage ratios based on data from the Observatoire des économies agricoles ultramarines. 
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information, such as the starting date and the ending date of the event, the code of the municipality, 

the localization, and the label of the risk. In this setting, we identify as natural disasters events that 

include labels floods, tropical storms or cyclones.7 By aggregation of daily information, we build a 

monthly indicator variable per oversea territory. In the empirical analysis, we consider the month 

of the natural disaster corresponding to the beginning date of the disaster. 

We complement this data with information coming from the international disaster database EM-

DAT, a database produced by the Center for Research on the Epidemiology of Disasters (CRED) 

with a global coverage. The events recorded in the database are aggregated from several sources, 

namely insurance companies, UN agencies, NGOs, research institutes and press agencies. Events 

recorded in EM-DAT must respect at least one of three criteria: (i) 10 or more people killed, (ii) 

100 or more people affected/injured/homeless, (iii) declaration by the country of a state of 

emergency and/or an appeal for international assistance. Only disasters of type ‘storm’ and ‘flood’ 

are considered here, from which we obtain monthly indicator variable per oversea territory if there 

was at least one natural disaster reported during a month.  

Combining these two data sets, we have full information on natural disasters hitting one of the four 

French oversea territories DCOM as reported by administrative authorities. Table A.7 in the 

Appendix documents that most of the events in EM-DAT are also reported by in GASPAR, but 

a smaller proportion of GASPAR events are reported in EM-DATA. This latter observation is 

due to the fact that GASPAR reports a significantly higher total number of events, which are as 

a result associated with lower intensity of economic losses. 

Both data sources have well-documented reporting biases. A heterogeneous insurance pattern 

across French oversea territories likely leads to misreporting in the GASPAR database due to a 

charity hazard. Grislain-Letrémy (2018) shows that the probability that local authorities declare the 

state of emergency depends on the insurance coverage of households in their community. If this 

coverage is large, authorities have an incentive to declare an emergency, a pre-requisite in French 

law for insurance payouts. If the coverage is low, however, local communities might be better off 

by calling for direct financial assistance from the French government. This imposes a misreporting 

bias into the GASPAR database. For EM-DAT, Felbermayr and Gröschl (2014) find a different 

bias. They conclude that news-driven and insurance-based data sets generally pose the problem of 

                                                           
7 These types of events include tropical phenomena, storms, cyclones, damages due to waves or tidal waves, floods. A natural 

disaster can combine several events of this type at the same time. The events we focus on notably excludes volcanic eruptions, 

damages due to lava, landslides, earthquakes, snow storms and avalanches, which are also reported in GASPAR. 
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selection bias and a correlation of intensity measures with error terms in growth regressions. Such 

a selection bias would also most likely affect our results on inflation responses. 

To overcome these potential biases, we complement our data sets on natural disasters with data on 

meteorological records. This will allow using an IV approach where natural disaster events are 

instrumented by extreme weather events (see the empirical specification below).  

2.2.2 Meteorological records 

We use three types of meteorological information: meteorological records as (i) reported by 

weather stations, or (ii) collected by remote sensing systems based on satellites, and (iii) 

extreme weather events as reported by the French national weather service (Météo-France). 

Meteorological records from weather stations are obtained from the Global Surface Summary of 

the Day (GSOD), a database derived from the Integrated Surface Hourly dataset. This source 

provides data for over 9,000 stations around the world beginning in 1929, of which two to three 

match to each of the regions in our analysis (see Figure A.2 in the Appendix). Each weather station 

provides data on precipitation in 0.01 inches in cumulative terms per day and the maximum wind 

speed measured for one minute during the day in tenths of knots.  

We combine these data with meteorological records obtained via remote sensing. Wind speed is 

taken from the NOAA’s Cross-Calibrated Multi-Platform (CCMP) wind vector analysis that 

allows computing wind speed over the ocean surface in meters per second. Each vector summarizes 

the average wind speed in a cell of 0.25 degrees of latitude longitude coordinates within a 6 hours 

interval. Figure 1a provides an illustration of the data for the case of cyclone “Gamède” passing La 

Réunion in February 2007. Precipitation data is taken from the NOAA’s Climate Prediction Center 

(CPC) database, which provides daily cumulative precipitation in millimeters per square meter at a 

resolution of 0.5 degrees of latitude longitude coordinates. Figure 1b illustrates an episode of 

extreme precipitation on Guadeloupe in November 1999 (see also Figures A.3 and A.4 in the 

Appendix). The data within each cell/day-observation or station/day-observation are aggregated to 

a region-month observation 𝑥𝑖𝑡 using the maximum daily precipitation and wind speed observation, 

or 𝑥𝑖𝑡 = max[𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑁], where N denotes the last day or the last 6 hour interval of month t 

in region i. 
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Figure 1. Data from remote sensing 

 

 

 

 

 

a) Wind speed, La Réunion b) Precipitation, Guadeloupe 

  

c) Wind speed La Réunion, Feb-2007 d) Precipitation Guadeloupe, Nov-1999 

  

Note: Panel a) Wind speed via remote sensing from the NCAR Cross-Calibrated Multi-Platform (CCMP), measured on a 

0.25-degree grid in meters per second on a range from 0 to 30. The panel shows the maximum average wind speed in a 6h 

interval on La Réunion in the sample, which amounts to 27.76 m/s on 2007-Feb-25 (12AM) when cyclone “Gamède” passed 

the island. Panel b) Precipitation via remote sensing is taken from the NOAA Climate Prediction Center (CPC), measured 

on a 0.5-degree grid in millimeters per day. The panel shows the maximum daily precipitation on Guadeloupe in the sample, 

which amounts to 252.59 mm on 19.11.1999. Panel c) Wind speed records from remote sensing are plotted alongside 

maximum for 1 minute sustained wind speed from weather stations as documented in the Global Surface Summary of the 

Day (GSOD) database in .1 knots. Panel d) Precipitation records from remote sensing are plotted alongside precipitation 

from weather stations as documented in GSOD in .01 inches. 

Compared to weather stations data, remote sensing data has the advantage of providing an almost 

full coverage with relatively long historical data. However, the remote sensing data is also less 

reliable for extreme events, e.g. high wind speed (>15m/s). Table A.9 in the Appendix reports 

summary statistics calculated using the two different sources: overall, remote sensing data report 

lower precipitation levels than weather stations, and exhibit a lower variability. The opposite is true 

for wind speed data: remote sensing data reports higher wind speed and higher variability compared 

to weather stations. However, despite the different scales of remote sensing and weather stations 

data, a direct comparison of records obtained through the wind speed event on La Réunion in 

February 2007 (Figure 1c) and for rainfall in Guadeloupe during November 1999 (Fig. 1d) shows 
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that both measures detect the same day as an extreme event. Both types of records indicate that La 

Réunion is the region with the highest average measure of wind speed, and that Guyane is the region 

with the highest average measure of rainfall. 

Lastly, we combine this continuous weather data with a dummy variable for all extreme weather 

events identified by the French national weather service (“Météo France”), which lists 32 extreme 

meteorological events. 31 percent of events are located in Martinique, 25 percent in 

Guadeloupe, 25 percent in La Réunion and 19 percent in Guyane (see Table A.10 in the 

Appendix). 

Figure 2. Administrative shocks and joint distribution of precipitation and wind speed 

 

Note: Events from EM-DAT, GASPAR and Météo France are illustrated as discrete events and plotted against the 

distributions of physical intensity of wind speed in meters/second from CCMP (x-axis) and rainfall in cumulative 

millimeters per day from CPC (y-axis). Dotted lines represent the median value of wind speed and precipitation across all 

four regions. 

Figure 2 illustrates the correlation between administrative disaster data and physical intensity 

of rainfall and wind. Specifically, it displays the occurrences of administrative events against 

the joint distribution of maximum monthly precipitation and wind speed, for data from remote 

sensing. Comparing discrete events with physical intensity of wind and precipitation, it appears 

that a large number of events are located in the upper parts of the distribution. More specifically, 

EM-DAT and Météo France events are almost systematically located above the median of either 

wind or precipitation records, and most of them are in the top quartile. To the contrary, 
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GASPAR events are mainly located in the center of the distribution. This reveals one of the 

main difficulties for empirical economic analysis of extreme weather events, which is rooted in 

the imperfect correlation between physical intensity of a meteorological event and economic 

damages. 8 

This suggests that events in the EM-DAT data set are related to natural disasters with significant 

physical intensity, while this is not necessarily the case for many events from the GASPAR 

data set. 

3. Empirical strategy 

In this section, we describe our baseline empirical methodology to relate price dynamics to 

weather-related disasters due to extreme events and incurring significant economic damages. 

We proceed in two steps. First, we relate economic disasters as reported by administrative data 

to meteorological data, which helps to select economic disasters that we can directly connect to 

extreme meteorological events. In a second step, we relate prices to these events using a local 

projection method to estimate the effect of natural disasters on inflation dynamics.  

3.1 First-stage regression 

When we relate inflation to weather-related disasters as measured from administrative datasets, 

our estimates could eventually suffer from two types of biases. First, an attenuation bias can 

arise: for instance if some natural disasters are reported while there is no substantial economic 

damage, or no underlying extreme meteorological event. Similarly, an omitted variable bias is 

also possible if reporting biases are systematic. Furthermore, the use of dummy variables alone 

does not allow a direct interpretation of the effects with respect to the intensity of the natural 

disasters. In our baseline empirical approach, we therefore instrument our weather-related 

disaster events using meteorological data as exogenous shocks. The implicit assumption is that 

the intensity of rainfalls or wind speed is correlated with economic damages incurred by 

meteorological events, but these weather-related extreme events affect prices only through the 

economic damages they create.  

                                                           
8 This discussion also helps to distinguish between weather and climate. Following the literature, we would refer to climate as 

moments of the distribution underlying longer periods of realizations of weather data. Our focus is on extreme weather 

realizations in the tails of the distribution of precipitation and wind speed data recovered via remote sensing techniques, and 

not in effects of changes in the moment of this distribution, see e.g. Dell et al. (2012) for the latter. 
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In a first step, we regress our binary variable of administrative natural disasters 𝜔𝑖,𝑡 on 

meteorological data 𝑋𝑖,𝑡 for DCOM i at date t (year-month) using the following specification: 

𝜔𝑖,𝑡 = 𝛼 + 𝛽𝑋𝑖,𝑡 + 𝛿𝑡 + 𝜇𝑚 + 𝛾𝑖 + 𝜇𝑚 × 𝛾𝑖 + 휀𝑖,𝑡 (1) 

where 𝛾𝑖 is a DCOM fixed effect, 𝛿𝑡 is a time (year-month) fixed effect, 𝜇𝑚 is a calendar month 

fixed effect. The motive for interacting regional fixed effects with a monthly dummy is that 

seasonality of weather shocks can differ across DCOMs. 

Table 1. First stage: Regressing administrative disasters on meteorological data 

 Remote sensing data Weather stations data 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Wind 0.026*** 0.009 -0.047 -0.014 0.011 0.025 0.198 0.031 

 (3.53) (0.30) (0.41) (0.43) (0.69) (0.38) (0.65) (0.42) 

Rain 0.002*** 0.002* 0.002* 0.002** 0.001*** 0.000 0.001 0.001** 

 (4.28) (1.90) (1.74) (2.28) (4.32) (1.06) (1.30) (2.07) 

Wind2  0.001 0.004 0.002*  -0.002 -0.062 0.000 

  (0.51) (0.57) (1.66)  (0.21) (0.61) (0.04) 

Rain2  0.000 -0.000 0.000  0.000 -0.000 0.000 

  (0.26) (0.65) (0.45)  (1.16) (0.58) (1.07) 

Wind3   -0.000    0.006  

   (0.49)    (0.61)  

Rain3   0.000    0.000  

   (0.80)    (0.90)  

Météo France event 0.426*** 0.420*** 0.425***  0.485*** 0.485*** 0.499***  

 (5.25) (5.02) (4.99)  (6.18) (6.16) (6.14)  

R2 0.35 0.35 0.35 0.29 0.33 0.33 0.32 0.24 

N 928 928 928 928 928 928 928 928 

F-Stat 39.68 23.35 18.96 21.19 29.68 17.55 9.85 14.76 

Note: Estimation results for first-stage model (2) with dependent variable all natural disasters reported in EM-DAT and Gaspar as 

binary variable. All wind speed variables are expressed in m/s and all precipitation variables are expressed in mm. Wind in columns 

1-4 corresponds to the maximum wind speed from the CCMP database per region and month. Rain in columns 1-4 is the maximum 

of daily precipitation in a region as reported by the Climate Prediction Center (CPC). Wind in columns 5-8 corresponds to the 

monthly maximum of sustained wind speed per region and month from GSOD. Rain in columns 5-8 is the maximum of daily 

precipitation amount per month and region taken from GSOD. MF is a dummy variable for a noticeable event reported by the 

French national meteorological service Météo-France. T-stats are reported in parentheses. Significant at ***0.01, **0.05, *0.10. 

 

Table 1 reports the results of first stage regressions using as exogenous variables meteorological 

data collected via remote sensing (columns 1 to 4) or data collected via weather stations 

(columns 5 to 8). In the different regressions, we consider linear (columns 1 and 5), square 

(columns 2 and 6) and cubic (columns 3 and 7) specifications of wind speed and precipitation. 

Non-linear terms for wind speed and precipitation are considered since there is evidence that 
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economic damage from wind speed is best captured by a cubic relationship (Emanuel 2011). 

Note that non-linearity is explicitly taken into account in all our specifications since we include 

Météo-France events as dummy variables in equation (1). In order to assess the impact of this 

dummy on the coefficient of remote sensing and weather station, we also present the square 

specification without including the Météo-France events (columns 4 and 8). 

Some novel results emerge from this table. First, all specifications show a very strong first stage 

relationship, with F-statistics typically above 20 for remote sensing data and above 10 for data 

from weather stations. Second, overall, remote sensing data appear to have a higher predictive 

power (with F-statistics and R-squared systematically higher than for weather stations). This is 

a surprising result, as data from weather stations are known to be more precise for high wind 

speed and precipitation levels. However, the better coverage in terms of geography of remote 

sensing data and the uninterrupted availability at daily frequency make more than up for this. 

When it comes to the prediction of an extreme weather event, the data quality is sufficient, as 

confirmed by Figure 1c and Figure 1d. Third, in all specifications, dummies for Météo-France 

events predict strongly and significantly the probability of an economically significant event. 

Removing dummies for Météo-France, as we do in columns (4) and (8), entails slightly more 

significant coefficients for non-linear terms (for instance, the square term of wind speed for 

remote sensing data becomes significant at the 10 % level), but a lower adjusted R². Therefore, 

modeling the non-linearity between meteorological data and economically significant events 

through the inclusion of Météo-France dummies is favored over the inclusion of non-linear 

meteorological data.9 

Based on these results, our preferred specification is the one of column (1) from which we 

compute fitted values �̂�𝑖,𝑡. Since the dependent variable is an indicator variable associated with 

weather-related disaster events with large economic damages, we interpret �̂�𝑖,𝑡 as the predicted 

probability of an economically significant natural disaster as a function of meteorological 

data.10 A one-standard deviation increase in wind speed (for an average standard deviation 

across DCOMs of 1.7 meters per second) increases by 4.4 pp the probability of observing a 

natural disaster according to administrative datasets. Conversely, a one-standard deviation 

increase in precipitation level (for an average standard deviation across DCOMs of 95.2 mm) 

                                                           
9 However, for applications in which the Météo-France data is unavailable, column (4) still highlights that the inclusion of non-

linear terms is recommended. 
10 As we are in a linear setting, some predicted probabilities �̂�𝑖,𝑡,𝑚 lie below zero and above 1, as illustrated by Figure B.1 in 

Appendix B. 
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increases by 19.0 pp the probability of observing a natural disaster according to administrative 

datasets. As a matter of comparison, the average predicted probability of a shock conditional 

on observing no shock is 3 %, while it is equal to 57 % conditional on observing a shock (the 

figures are the same if we condition only on GASPAR shocks, but they are respectively 6 % 

and 86 % if we condition on the occurrence of an EM-DAT shock).  

Figure B.1 in Appendix B shows the distribution of predicted probability, and Figures B.2 to 

B.4 decompose the latter conditionally on actual administrative natural disasters, based on the 

specification of column (1). While the distribution of predictive probabilities is strongly skewed 

to the right, we observe that, the distribution conditional on an observed administrative shock 

is shifted to the right compared to the distribution when there is no administrative shock. 

In the rest of the paper, we present results based on the specification of column (1), and compare 

it with alternative specifications (notably using weather stations data and different choices of 

time fixed effects).  

3.2 Second-stage regression 

Our estimation for the second stage relies on a local projection method (Jordà, 2005). We relate 

the log of the price index evolution between date t-1 where t corresponds to the date (year-

month), and date t+h where h=0,...,6 months to the estimated probability of a natural disaster 

�̂�𝑖,𝑡 recovered from equation (1). The index 𝑖 is for the different DCOMs, 𝑖 = 1, … ,4. Our 

baseline equation is the following: 

log (
𝑃𝑖,𝑡+ℎ

𝑃𝑖,𝑡−1
) = 𝜏ℎ + 𝜃ℎ�̂�𝑖,𝑡 + 𝛾𝑖,ℎ + 𝛿𝑡,ℎ + 𝜇𝑚,ℎ + 𝜇𝑚,ℎ × 𝛾𝑖,ℎ + 휀𝑖,𝑡,ℎ (2) 

where �̂�𝑖,𝑡 is the predicted probability of a natural disaster at date t in DCOM i according to 

administrative datasets. Time (year-month) fixed effects are denoted by 𝛿𝑡,ℎ, while 𝜇𝑚,ℎ denote 

calendar month fixed effects. DCOM fixed effects are denoted by 𝛾𝑖,ℎ, while 휀𝑖,𝑡,ℎ is an i.i.d 

residual. This equation is estimated separately for each horizon h, and the parameters of interest 

are 𝜃ℎ, which capture the cumulative effect on prices of a natural disaster for each horizon h. 

𝜇𝑚,ℎ × 𝛾𝑖,ℎ is an interaction term to capture DCOM-specific monthly seasonal variations.  

In our main specification, we estimate equations (1) and (2) using a 2SLS estimator. We also 

compare the 2SLS estimates with OLS specifications in which we directly regress prices 

variations on 𝜔𝑖,𝑡, i.e. the dummy variable capturing the occurrence of an administrative shock. 
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Given the descriptive statistics presented on natural disasters, we expect the estimated price 

reactions to be stronger under the instrumental variable estimation than under the OLS 

estimation. The 2SLS estimate gives the variation of price reaction to the continuous linear 

predicted probability of an administrative shock that ranges from 0 to 1. Put differently, it gives 

estimates of prices reactions for administrative shocks that are triggered by extreme 

meteorological events, but not for those that are unrelated to the latter.  

Our parameter of interest 𝜃ℎ should be interpreted as the effect on inflation of an increase in 

the probability of observing the average discrete administrative shock triggered by an increase 

in an extreme meteorological event. However, since our approach relies on a continuous 

instrumental variable in the first stage, it also captures the intensive margin of a weather-related 

disaster. Even though the treatment is binary, the probability of observing the average treatment 

is increasing in the continuous meteorological records, and thus embeds some intensity effects 

(see also Section 5 for a more complete discussion).  

Another important question related to this estimation strategy is how it compares with other 

methodologies used in the literature, and notably to the damage function approach. One 

potential concern about our IV approach is indeed that it might substitute biases of 

administrative data with measurement biases due to meteorological data. Besides, since their 

effects on economic activity are highly non-linear, the accuracy of the results depends on how 

well non-linearities are captured by our available measures of wind speed, rainfall and the 

extreme event dummy variable reported by Météo France. In order to compare our IV approach 

with an alternative existing empirical strategy, we have also run an OLS regression where the 

exogenous variable is a standard damage function, as described in Heinen et al. (2018) (see 

section 4.2 for details). 

4. Main results 

In this section, we present results of our baseline estimation strategy, both for the OLS and IV 

results, and compare them to alternative specifications. 

4.1 Baseline specification 

In Figure 3, we present the main results from our baseline estimations (OLS and IV settings) 

for headline CPI. Based on the IV estimation, our first main finding is that total CPI is on 

average affected by weather-related disasters. It first increases moderately and temporarily by 
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about 0.5 percent after two months. The effect rapidly narrows down to zero. The OLS estimate 

exhibits broadly the same pattern, but with much smaller coefficients (reaching a maximum of 

0.06 percent after two months). These estimates for total CPI are in the range of those found in 

the existing literature. Heinen et al. (2018) find that an average hurricane or flood causes a 

temporary rise of CPI by about 0.1pp. Parker (2018) finds that a natural disaster among the top 

quantile leads to an increase of total CPI by about 0.6 pp after a year, and 0.9 pp after two 

years11. 

Figure 3: Main results – Headline CPI  

OLS 

 

IV 

 

Note: The figures plot the cumulated impulse response function for headline CPI, in our baseline OLS and IV specification. 

Treatment effects are expressed in percent. 95 percent confidence intervals with robust standard errors in shaded areas.  

Our second main result is that composition effects drive the impact on aggregate inflation, 

which vary over time. Figure 4 displays the estimated coefficients for the six main components 

of headline CPI, comparing our baseline 2SLS estimate with OLS estimates. 12 On the one hand, 

inflation of fresh products increases strongly and rapidly, up to 11 percent after two months. 

This effect is particularly strong, as it typically represents about 2.2 standard deviations of fresh 

food CPI on average across the four overseas territories. This positive effect then decays 

progressively, until reaching zero after six months. Weather-related disasters have also a 

positive effect on prices of other food items, but the magnitude of the effect is much smaller 

(+0.3 percent). On the other hand, prices of services and manufactured products decrease 

moderately by 0.2 percent. These effects are marginally significant (at the 10 % level), slightly 

                                                           
11 Both papers find that positive effects are stronger for food, and that the effects are generally negative for other components 

(such as housing). However, contrarily to our estimates, the effects cannot be decomposed as data on consumption weights are 

not available (Heinen et al., 2018) and data coverage is not homogenous across countries (Parker, 2018). Parker (2018) also 

finds that upward effects are more persistent for droughts and to a lesser extent for floods, but not for storms.  
12 The full set of estimated coefficients in the baseline 2SLS, both for headline CPI and its 12 subcomponents, is presented in 

Table B.1 in Appendix. Figure B.5 and Table B.2 in Appendix present the cumulated price response for OLS with confidence 

intervals. Finally, while we do not present results regarding pre-trends in our baseline results, we find them to be of small 

magnitude and largely insignificant see Figure B.8 in Appendix for the baseline results of fresh products with pre-trends up to 

3 months). 
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more persistent than those observed for fresh food products, and broad-based across their 

subcomponents. Finally, prices of energy or tobacco do not react significantly to the natural 

disaster shocks, which is expected since they are strongly administered. In all specifications, 

2SLS estimation yields higher estimates than the OLS estimation. In the case of fresh products, 

the maximum effects estimated in the OLS are positive and significant, but about 3.5 times 

smaller than those estimated in the 2SLS setting. This confirms that using only administrative 

shocks tends to underestimate the effects of disasters on inflation since many of these natural 

disasters (in particular as reported by the GASPAR dataset) do not correspond to extreme 

meteorological events and are therefore likely to be related to lower real economic damages. 

Figure 4: Main results – CPI components - IV 

Fresh products 

 

Other food excl. tobacco 

 
Tobacco 

 

Manufactured products 

 
Services 

 

Energy 

 
Note: The figures plot the cumulated impulse response function for headline CPI and its different subcomponents, in our 

baseline IV specification (solid blue) and for the OLS specification (dotted blue). 95 percent confidence intervals for the 2SLS 

specification with robust standard errors in shaded areas. Treatment effects are expressed in percent. 
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Turning to the interpretation of these results, the positive effects on the prices of food are likely 

to be driven by supply-side factors, while the negative effects on other CPI items are likely to 

be driven by demand factors. To shed light on these mechanisms, we estimate reactions of 

sector-level employment in overseas territories to natural disasters, results are reported in 

Table B.3 in Appendix.13 Our main finding is a sustained decrease in agricultural employment 

following a natural disaster (reaching a maximum effect of - 3 % after two months, but remaining 

around -1 to -2 % after 6 months). This suggests that the price increase in food results from a 

negative supply shock related to the destruction of crops in fields. In parallel, we also observe an 

increase in the level of employment in other low-skilled jobs increases, such as in interim (reaching 

a maximum of 16 % after 4 months, but remaining above 5 % over the projection horizon), and in 

car repair (+1 % after 5 to 6 months), suggesting some worker reallocation effects from agricultural 

sector to these sectors. This finding is in line with previous studies documenting a drop in 

agricultural labor supply after natural disasters (Kirchberger, 2017). This also suggests a stronger 

negative supply effect for fresh food products, which are more likely to be produced locally than 

for other food products which are often imported. The supply of other items is likely to be less 

responsive to weather-related disasters, since these products are largely imported (manufactured 

products, tobacco and energy14) or produced through the public sector (services). Unsurprisingly, 

employment in these sectors does not react to natural disasters.15 There is one exception, which is 

a significant drop of employment in the construction sector for three months, reaching up to -1.4 pp 

before fading out. However, it is difficult to map this sectoral drop in employment with inflation 

data by product type, as costs related to owner occupied housing are systematically excluded from 

HICP inflation in the euro area. Some home related expenses fall under the two categories “Other 

manufactured products” and “Other services” (Table A.4), both product categories with falling 

inflation rates in response to weather-related disasters. This is consistent with potentially lower 

activity in the construction sector due to weather-related business interruptions. The combination 

of these factors with a downward price reaction points towards the predominance of negative 

                                                           
13 We describe available measures of sectoral employment in overseas territories in Appendix, Table B.3. These results should 

be considered as more exploratory than those on consumer prices, as they are based on quarterly data and are available for a 

shorter period of time. 
14 Regarding energy, the prediction is however, that supply and demand effects are less relevant than for other components of 

the CPI. First, in France, oil prices quickly follow the international prices of crude oil (Gautier et al. 2023), making unlikely 

that local supply or demand effects affect the general price dynamics. On the other hand, in the specific case of DCOMs, oil 

prices are set administratively, which might mute the effects of any existing supply or demand effect. The negative effect of 

natural disasters on energy prices is therefore hard to interpret. 
15 Relatedly, we did not find any effect of natural disasters on the value or volume of imported goods. 
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demand effects.16 This result is in line with recent contributions showing that natural disasters 

decrease demand, notably through higher risk aversion (Cantelmo et al. 2023, Cassar et al. 2017).  

Figure 5: Decomposition of the reaction of total inflation in the baseline specification 

 

Note: Decomposition of the cumulative impulse response of headline CPI to a natural disaster in the baseline IV local 

projection. The contribution of each component is computed as the cumulative response of the CPI of this component times its 

average weight in the consumer baskets of the four DCOMs between 1999 and 2018. Treatment effects are expressed in percent. 

Figure 5 decomposes the effect on total inflation based on the observed effect for the five main 

components (namely fresh food, other food including tobacco, services, manufactured products 

and energy) using the results of the IV estimation. Each contribution is computed as the 

observed pass-through multiplied by the average weight of the component over 1999-2018. The 

“residual” contribution corresponds to the difference between the estimated reaction of headline 

inflation and the sum of estimated contributions of the five components. The response of 

inflation to weather-related disasters is heterogeneous across CPI components both in terms of 

timing and amplitude, with a quick and positive response of food inflation (especially fresh 

food), and a negative contribution of inflation in services and manufactured products. 

                                                           
16 In the case of services, comparing the variation of economic activity in the tourism sector with prices of accommodations 

and restaurants would be particularly useful. However, while we observe employment and activity in the 

accommodations/restaurants sector, we do not observe the CPI of accommodations and restaurants (which is part of the “other 

services” aggregate). Interestingly, we observe no employment variation in the tourism sector, but find an immediate increase 

of about 10 % in the number of overnight hotel stays, which progressively vanishes. This points to a positive demand shock, 

which could be driven by relatives coming to help their family in the aftermath of the disaster (in a context where a majority 

of tourism flows in DCOMs are due to affinity motives). Another explanation could be that hotels were used as temporary 

accommodation for households who lost their homes. 
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4.2 Comparison with results from damage functions 

In this section, we compare our baseline results to two different sets of estimates obtained with 

damage functions. In a first step, we construct damage functions from remote sensing data in 

close analogy to Heinen et al. (2018). Damage functions represent a mapping from weather or 

climate into economic outcomes in the sense of a ‘dose response function’ (Auffhammer 2018). 

For the wind destruction index, we follow Strobl (2012), who builds a hurricane destruction 

index. We adjust his approach for the use of remote sensing data of wind in order to obtain a 

time-series of wind damage for each region. Specifically, for gridded cell j of weather data in 

one of our four regions i and within a day d, we compute the monthly wind-destruction as 

𝐻𝑖𝑡 = max [∑ 𝜉𝑖𝑗

𝐽

𝑗=1

 ∑(𝑊𝑖𝑗𝑑
𝑚𝑎𝑥)

3
𝐷

𝑑=1

× 𝟙
{𝑊𝑖𝑗𝑑

𝑚𝑎𝑥>𝑊𝑖
∗}

]

𝑑∈𝑡

, 
(2) 

where 𝜉𝑖𝑗 are exposure weights for grid cell j in region i, which aggregate to one at the regional 

level, 𝑊𝑖𝑗𝑑
𝑚𝑎𝑥 is the maximum sustained wind speed for one minute in an intraday window d of 

six hours from CCMP, and 𝟙{𝑊>𝑊𝑖
∗} is an indicator variable that takes the value of one if the 

recorded wind speed exceeds a threshold value 𝑊𝑖
∗. Maximum sustained wind speed enters the 

damage function in cubic form, as it is found that the local destructive power of wind is roughly 

in cubic form related to wind speed (Emanuel 2011). 

Exposure weights 𝜉𝑖𝑗 are constructed from satellite nighttime light data. Nighttime light has a 

high predictive power for economic activity and can usefully complement official statistical 

data (Henderson et al. 2012). Pérez-Sindín et al. (2021) show that nighttime light is a good 

proxy for regional GDP patterns in Colombia independent from the level of urbanization, which 

ranges in their study from rural areas with less than 5,000 habitants to cities of more than 

500,000 habitants. Chen & Nordhaus (2019) show that satellite nighttime light data is better at 

predicting cross-sectional GDP than time-series evolution of GDP, which makes it particularly 

suited for the construction of weights in our application, as we are only interested in detecting 

areas of relatively higher economic activity. 

Regarding possible economic destruction due to excessive rainfalls, we also follow Heinen et 

al. (2018) and define region specific flood destruction as  
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𝐹𝑖𝑡 = max [∑ 𝜉
𝑖𝑗

𝐽

𝑗=1

 ×  𝑟𝑖𝑗𝑑𝑡 × 𝟙{𝑟𝑖𝑗𝑑𝑡>𝑟𝑖
∗}]

𝑑∈𝑡

, (3) 

where 𝑟𝑖𝑗𝑑𝑡 is the cumulative sum of rainfall in millimeters over a three-day window in region 

i, weather cell j, on day d, in month t. The exposure weights 𝜉𝑖𝑗 follow the same logic as above 

and are also constructed from satellite nighttime light data (see Appendix C for details on the 

calibration of region-specific threshold values 𝑟𝑖
∗). 

In Figure 6, we compare our baseline estimates for total CPI and fresh products CPI to estimates 

using damage functions. Since the units of the damage function are not directly comparable to 

those of the explanatory variable in the second stage of our baseline 2SLS (which is a predicted 

probability), we present predicted price responses for two distinct variations of damage 

functions. The first one corresponds to the slope of the regression of the predicted probability 

on the damage functions, i.e. the variation of damage functions associated to a predicted 

probability going from 0 to 1. In that case, the inflation response is directly comparable to our 

baseline 2SLS. The second case does not use the predicted probability, and corresponds simply 

to the difference between the top percentile of damage function and the first percentile, i.e. the 

price response when damage functions shift from their 1 % lowest value to their 1 % top value. 

In both cases, the plotted predicted price response is the cumulative predicted price responses 

for each damage function. 

Figure 6: Damage functions for total and for fresh products  

Total 

 

Fresh products 

 

Note: The figures plot the cumulated impulse response function for damage functions evaluated using the predicted probability 

of shock (dotted blue) or at the top percentile of damage function (sold blue), compared to our baseline 2SLS (black line). 

Shaded areas represent 95 percent confidence intervals with robust standard errors for damage functions evaluated at the top 

percentile of shocks. Treatment effects are expressed in percent. 
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The results using this specification are very coherent with those of our baseline 2SLS 

methodology. Both estimated reactions appear to be close, and the price reaction using the 

damage function appears slightly smaller than the one obtained in our baseline specification. In 

particular, the price reaction in our baseline 2SLS is higher than the price reaction of damage 

function estimated at its top percentile: this suggests that our estimation is unlikely to 

underestimate price reactions compared to damage functions. In Figures B.6 and B.7 in 

Appendix, we report results of separated regressions for wind damage function and rain damage 

function, both evaluated at the top percentile. Results appear to be mainly driven by wind 

damage function, with only limited effects for rain damage function, a result that is similar to 

those obtained by Heinen et al. (2018). 

4.3 Controlling for regional seasonality 

Weather-related extreme events are quite seasonal in overseas territories. We discuss here how 

the treatment of this seasonality can affect our results. 

Seasonality in weather extreme events but also in inflation differs a lot across the territories 

since La Réunion, is located in the southern hemisphere whereas Guadeloupe, Martinique and 

Guyane are located in the northern hemisphere. Table A.8 in the Appendix highlights that 

weather-related disasters in La Réunion are predominantly concentrated during the first half of 

the year, while extreme weather events in the remaining DCOMs are concentrated in the second 

half of the year. Besides, while Guadeloupe, La Réunion and Martinique have comparable 

number of administrative shocks (both in GASPAR and in EM-DAT), Guyane has a much 

smaller number of shocks (all based on GASPAR data), which are mainly concentrated in the 

month of May (Tables A.7 and A.8). 

Similarly, seasonal patterns in inflation differ across overseas territories. Figure A.1 in 

Appendix plots the average monthly variations for the main components of CPI across DCOMs. 

Seasonal variations in La Réunion appear to be distinct from those of other DCOMs, both in 

terms of timing and in terms of magnitude. The difference of timing can largely be explained 

by the fact that La Réunion is the only DCOM of our sample located in the southern hemisphere. 

The differences in the magnitude of seasonal variations between La Réunion and other DCOMs 

are particularly salient for fresh food and services, the latter likely driven by seasonality in the 

tourism sector.  

Taking this seasonality into account is important since the economic impact of natural disasters 

might depend on whether their occurrence was expected or not. Strong wind and rainfalls 
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occurring in a season known to be traditionally hit by extreme weather events might be less 

harmful to economic activity than if they occur in a season generally spared by such events. 

Additionally, during the season when natural disasters are more frequent, economic damages 

due to a specific event might depend on the deviation between this event and the average events 

occurring during this season.  

Table 2 – Alternative specifications for the 2SLS strategy 

  T=0 T=1 T=2 T=3 T=4 T=5 T=6 

(A) Baseline             
Headline 0,01 0,17 0,48** 0,08 -0,26 -0,27 0,03 

Fresh products 1,89 9,48*** 10,60*** 3,96 -2,11 -1,72 2,03 

Other food excl. tobacco 0,29*** 0,13 0,31*** 0,24* 0,03 0,31** 0,16 

Manufactured products -0,13 -0,27 -0,02 0,11 -0,22 -0,31 -0,15 

Services -0,03 -0,19 -0,12 -0,32* -0,20 -0,25 0,06 

Energy -0,48 -0,20 0,35 -0,04 -0,25 -1,10 -1,17 

Tobacco -0,04 -0,38 -0,35 0,00 -0,60 -0,32 -0,38 

(B) No seasonal effect             

Headline 0,00 0,19 0,48** 0,26 0,17 0,16 0,22 

Fresh products 7,66*** 18,34*** 20,86*** 13,32*** 3,56 -1,51 -2,46 

Other food excl. tobacco 0,17** 0,07 0,19* 0,13 0,04 0,32** 0,25 

Manufactured products -0,59*** -1,11*** -1,26*** -1,13*** -1,00*** -0,72*** -0,69** 

Services -0,21 -0,24 0,13 0,51** 1,21*** 1,36*** 1,53*** 

Energy -0,69 -0,99** -1,00* -1,65*** -1,84*** -2,15*** -1,98*** 

Tobacco -0,10 -0,45 -0,72 -0,65 -1,01 -0,13 0,44 

(C) No month-year FE             

Headline -0,01 0,18 0,52** 0,25 -0,04 0,01 0,22 

Fresh products 1,37 8,99*** 11,40*** 4,60 -0,23 0,18 2,62 

Other food excl. tobacco 0,07 0,06 0,18 0,07 -0,16 0,22 0,07 

Manufactured products -0,04 -0,26 -0,06 0,17 -0,14 -0,23 -0,04 

Services -0,16 -0,37** -0,20 -0,27 -0,26 -0,31 -0,10 

Energy 0,04 0,82 1,50 1,54 2,18* 2,17 2,07* 

Tobacco 0,41 -0,19 0,03 0,38 -0,31 -0,54 -0,93 

Note: The table shows alternative specifications of local projections of consumer prices in a 2SLS setting. Panel (A) shows 

results for our baseline specification, panel (B) shows results for a 2SLS specification controlling for year-month fixed effects, 

but not for DCOM-specific month fixed effect and panel (C) shows results for a 2SLS specification controlling for DCOM-

specific month fixed effect, but not for year-month fixed effect. 

*p < 0.10; **p < 0.05; *** p < 0.01. 

 

In our baseline regression, we have included month fixed effects interacted with regional fixed 

effects to capture these seasonal effects specific to each overseas territories. In this section, we 

compare our baseline 2SLS specification with alternative 2SLS specifications controlling 

differently for seasonal patterns. Table 2 reports the results. Panel (A) reports our baseline 

estimates. Panel (B) reports results from a specification excluding monthly DCOM-specific 

fixed effects (but including month-year fixed effects common to all DCOMs). Panel (C) reports 

results from a specification excluding month-year fixed effects (but including monthly DCOM-

specific fixed effects and year fixed effects common to all DCOMs). While the effects for 

headline CPI remain very comparable across specifications (with a maximum estimated effect 
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of 0.5 percent after two months), the product-level price reactions differ substantially. In 

particular, not controlling for DCOM specific monthly-seasonality yields much stronger effects 

for fresh food products (which go up to 21 % after two months). This stronger effect for fresh 

food products is driven by the distinct seasonality of la Réunion, which is the only DCOM 

located in the southern hemisphere, and for which the magnitude of seasonal variations of fresh 

food prices is higher than in other areas. These stronger effects for fresh food products are offset 

by stronger negative effects for manufactured products (down to a minimum of -1.3 % after 

two months), and on energy (down to -2,1 % after 5 months). Additionally, the prices of services 

increase more substantially in the end of the horizon (up to 1.5 % after 6 months).17 Controlling 

for seasonal effects (but not for time fixed effects), yields results closer to our baseline 

specification (with a maximum reaction of fresh food products of 11 %, and a more significantly 

negative reaction of services prices after two months). However, it implies a positive reaction 

of energy prices, which is hard to reconcile with the fact that energy products are imported. 

Overall, these results imply that controlling for region-specific seasonal patterns is quite 

important to identify precisely the effect of weather-related extreme events on prices. 

5. Distributional effects of natural disasters 

5.1 Which households are hurt the most by natural disasters? 

In this section, we investigate whether the effects of natural disasters on consumer prices vary 

across different types of households. Indeed, given that the main positive effects on inflation 

are channeled through fresh food products, and to the extent that the weight of food is generally 

higher for households with a lower income, we expect that the effects on total inflation is higher 

for the latter. To test this hypothesis, we use data from a survey produced by Insee for the year 

2017 (Budget des familles). This survey gives a decomposition of the consumption basket of 

households, both across overseas territories and across quintiles of household.18 We combine 

these data with our estimated impulse-response functions, in order to derive an estimated 

impulse-response function of total CPI for each quintile (see Appendix D for the detailed 

methodology). 

                                                           
17 This specific effect appears to be entirely driven by the disasters and price seasonality of Guyane, in which 60 % of shocks 

occur in the month of May.  
18 Table D.1 in Appendix reports the share of food in the consumption basket for each of the four DCOMs we focus on, and 

confirms that the share of food decreases strongly when income rises. 
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In Figure 7, we plot our estimated impulse response function of total CPI for each quintile, 

compared to the reconstitution of the impulse response function under average weights of fresh 

products between 1999 and 2018. Our results suggest that the maximum reaction of CPI in the 

first two quintiles is higher than the maximum reaction of CPI by about 0.1 percent for 

households, reaching about 0.6 percent after two months, against 0.5 percent in the effect 

estimated based on average weights. On the contrary, the reaction is more muted for households 

in the top of income distribution, notably those in the last quintile (maximum of 0.4 percent). 

Figure 7 – Baseline and alternative effects on CPI inflation by income quintile 

 

Note: Baseline 2SLS estimate for headline CPI in solid black, with its 95 % confidence interval in shaded area. The black 

dotted line is the reconstitution of the effect on headline CPI using a linear combination of estimated effects on fresh products 

and total excluding fresh products using average weights between 1999 and 2018. The blue and red lines are the reconstitutions 

using estimated weights of fresh products for the top and bottom quintiles of income. Treatment effects are expressed in percent.  

5.2 Do price controls help? 

The extent of administered prices and local price control policies can affect the effect of natural 

disasters on prices. As argued above, one of the potential reasons behind the insignificant 

reaction of energy prices, beyond the fact that they are largely driven by international prices of 

crude oil, is that they are partly controlled by local authorities. However, more interestingly in 

our context, the extent of price regulation regarding food prices has also evolved over time. In 

November 2012, following protests against the cost of living in several DCOMs, a price cap 

called Bouclier Qualité Prix (BQP) was implemented for a selected basket of elementary 

consumer products. The BQP, which was eventually implemented in March 2013, states that 

the total price for this basket of selected products cannot be higher than a fixed ceiling. The 

selection of products and the overall price cap are renegotiated annually, and can differ across 

DCOMs. For example, in 2018, the BQP in La Réunion contained 109 products for an overall 
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price cap of 288 euros. 78 of these 109 products were food products, and among them, 48 were 

locally produced. The BQP can therefore be interpreted as a form of regulation preventing price 

gouging.  

Figure 8: Reaction of the fresh products CPI before and after the implementation of the BQP 

 

Note: Impulse response functions of fresh food products for shocks occurring before the implementation of the BQP (until 

December 2012) and after the implementation of the BQP (since January 2013 onwards). 95 percent confidence intervals with 

robust standard errors in shaded areas. Treatment effects are expressed in percent. 

In Figure 8, we document cumulative impulse response functions for the prices of fresh 

products before and after the implementation of the BQP. In this case, we consider that pre-

BQP period is until December 2012, and that post-BQP period starts in January 2013.19 Before 

the implementation of the BQP, the price reaction of food products was immediate and strong, 

reaching 12 percent after 2 months, and then decreased until reaching zero after four months. 

After the implementation of the BQP, the price reaction of fresh food products was much more 

sluggish, reaching 4 percent after one month and remaining between 0 and 5 percent over the 

whole projection horizon. As a result, the price reaction after the implementation of the BQP is 

significantly lower in the first few months, but significantly higher in the following months. 

Eventually, after 6 months, the cumulative price responses before and after the BQP are close 

(24 percent in the former case, and 20 percent in the latter), suggesting that the overall effect is 

similar in the long run, but the adjustment is smoother and more persistent with BQP than 

without this policy. Overall, these effects therefore suggest that some amount of price gouging 

is likely to drive the price reaction in our baseline specification (as the maximum price variation 

is higher without regulation), but that it is unlikely to drive all of the price reaction. In the longer 

                                                           
19 This evaluation is imperfect since it only compares two periods, during which several confounding could occur. However, 

the predictive power of the first stage is strong in both cases (F-statistic of 32.8 before the BQP and 13.0 after the BQP), and 

the number of shocks occurring annually in the DCOMs during the two periods is very close (about 0.9 on average every year). 
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run, the cumulative price variations are identical with or without regulation, suggesting that 

retailers are constrained to increase their prices. 

6. Robustness analysis 

6.1 Quantifying the intensive margin in an IV setup 

In this section, we present an approach to capture intensity effects in an IV setup. To do so, we 

implement the following strategy: we estimate the price response to a set of discrete shocks, 

where the shock is equal to one if the estimated probability based on equation (1) is above a 

certain threshold, and zero otherwise. We estimate these equations for a set of 928 evenly-

spaced thresholds going from the minimum to the maximum values of estimated probabilities, 

and plot the estimated coefficient at horizon h=2 for each regression against the threshold 

probabilities. We compare these results with the one obtained in our baseline specification, and 

highlight the result based on an optimal discrete threshold according to a ROC criterion (i.e. a 

discrete shock based on a threshold probability that maximizes the share of true positives and 

minimizes the share of false positive).20 Figure 9 plots the results for fresh food products. 

Figure 9: Price reactions of fresh products for a set of discrete shocks based on varying 

thresholds of estimated probabilities 

 

 Note: Maximum estimated effect of OLS regressions for fresh product prices with shocks based on discretized probabilities 

estimated from first-stage regression (1), with threshold varying from 0 to 1. Confidence intervals at the 95 % level in grey. 

The red dot represents the estimate based on a threshold derived from a ROC curve. The red line corresponds to our baseline 

estimated effect. 

                                                           
20 See Appendix E for a description of how we derive this optimal discrete shock and its properties. 
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Several conclusions can be derived from this figure. First, the maximum estimated effect based 

on discrete shocks derived from estimated shock probabilities are increasing in the threshold. 

The effect goes from about 0 when the threshold is equal to 0 (meaning that virtually all 

observations are defined as a “shock”) to about 35 % when the threshold is equal to 1 (meaning 

that only observations with the highest shock probability are treated as shock). Second, the 

estimated effect based on an optimal threshold derived from a ROC curve is of only 4 %. This 

comes from the fact that, while the predicted shock correctly identifies the majority of actually 

observed administrative shocks, a majority of predicted shocks actually do not correspond to 

an extreme weather event. Third, our baseline estimate is about 2.5 times the value of the 

estimate under the optimal threshold, and it is located in the upper part of the distribution 

(Figure E.2, Appendix). Indeed, even though it is largely below the maximum estimated value 

(35 %), the number of estimations for which we observe an effect higher than our baseline is 

actually small (5.6 %). Finally, we find that when the threshold of the predicted probability is 

set a little above 50%, the impact of natural disasters on prices of fresh food products varies 

around the value estimated in our baseline regression (about 10%). 

6.2 Placebo regressions 

In this section, we present results of different placebo regressions where we have randomized 

weather-related disaster shocks in both equations of our two-step model. We have run three 

distinct exercises.  

In a first exercise, we have randomized the instrumental variables. Namely, we simulate 

rainfalls and wind data from Gumbel laws of distribution (whose parameters are derived from 

the empirical distribution of rainfall and wind records across DCOMs) since the Gumbel law is 

well suited to replicate the distributions of extreme events. We also simulate Météo-France 

shocks from a uniform distribution, drawing as many shocks as the actual number of observed 

Météo-France shocks in our data, but without allocating them to DCOMs proportionally to their 

observed frequency of shocks. We run 100 2SLS estimations, each based on a distinct set of 

simulated data for instruments and using the actual observations for the treatment variable. 

In a second exercise, we keep the actual values of the instrumental variables, but we randomize 

the treatment, drawing randomly 69 shocks from a uniform distribution. As in the previous 

exercise, we do not allocate them to DCOMs proportionally to their observed frequency of 

shocks. We run 100 2SLS estimations, each based on a distinct set of simulated data for the 
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treatment, but keeping the actual observations of the instrumental variables (see Appendix F 

for further methodological details). 

In a third exercise, we keep the actual values of the instrumental and treatment variables, and 

we compute the correct predicted probability of treatment in the first stage, but we randomly 

allocate this predicted probability across DCOMs and over time between the first and second 

stage. We run 100 OLS estimations of the second stage, each based on a distinct set of 

randomization of the predicted probability. 

Figure 10: Distribution of T-stats of placebo regressions    

a) Randomization of 

instrumental variables 

b) Randomization of 

treatment variable 

c) Randomization of 

predicted probabilities 

a-  

   

 

Note: The figures plot the distributions of T-stats of placebo tests. In Figure 10a, the randomized variables are the instrumental 

variables. In Figure 10b, the randomized variable is the treatment variable. In Figure 10c, the predicted probability is randomly 

allocated across DCOMs between the first and the second stage.  The red vertical lines correspond to the t-stat of the baseline 

estimation. 

Figure 10 plots the distributions of T-statistics for local projections of fresh food prices at 

horizon h=2, as well as the T-statistics from our baseline estimate (red vertical line). While the 

T-stat of the baseline estimate is equal to 3.4, 95 % of those in the placebo estimates with 

randomization of instrumental variables are below 1.3 (Panel a), 95 % of those in the placebo 

estimates with randomization of treatment are below 1.7 (Panel b), and 95 % of those in the 

placebo estimates with randomization of predicted probabilities are below 1.8 (Panel c). 

6.3 Robustness to alternative specifications 

In this section, we present several robustness exercises for headline CPI and the CPI of fresh 

products. Our robustness tests show that our main results hold and are robust to the chosen 

specification or to the definition of the shock, even if the exact magnitude of the effect can vary. 

The results are summarized in Table 3. Table B.4 in the Appendix presents results for the other 

components.  

First, La Réunion might play a specific role because the volatility of fresh food inflation is much 

higher there than in the other DCOMs, and also because extreme weather events are also in La 
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Réunion more frequent than in the other DCOMs. When we estimate our baseline 2SLS without 

La Réunion (“2SLS – Baseline – no Réunion”), the effect on headline CPI is still positive but 

insignificant, with a maximum of 0.2 percent after two months. The effect on prices of fresh 

products is much smaller than in the baseline (2.9 percent), but significant at the 5 % level. 

Importantly, the identification power in the 2SLS setting is comparable to the baseline (the F-

statistic of the first stage is of 21.6), which suggests that the lower estimated effect is not due 

to a lower quality of the model. This exercise suggests that most of the inflation effect of 

weather-related disasters comes from La Réunion where extreme weather events are more 

frequent than in other DCOMs. 

Table 3 – Robustness analysis  

  T=0 T=1 T=2 T=3 T=4 T=5 T=6 

(A) Total             
2SLS - Baseline 0,01 0,17 0,48** 0,08 -0,26 -0,27 0,03 

2SLS – Baseline – not including la Réunion 0,10 0,18 0,13 -0,09 -0,21 -0,29 -0,17 

2SLS – Baseline, 3 lags shock 0,00 0,21 0,52** 0,15 -0,11 -0,12 0,18 

2SLS – 3 lags CPI -0,02 0,09 0,35* -0,06 -0,41** -0,39** -0,10 

2SLS – Baseline excl. shock < 6months  0,02 0,24 0,63** 0,10 -0,34 -0,35 0,04 

2SLS – 6 lags forward -0,07 0,13 0,42* 0,04 -0,34 -0,34* -0,09 

2SLS – Baseline, Weather station data -0,10 0,02 0,30 -0,01 -0,26 -0,33* 0,00 

(B) Fresh products             

2SLS - Baseline 1,89 9,48*** 10,60*** 3,96 -2,11 -1,72 2,03 

2SLS – Baseline – not including la Réunion  0,74 2,85** 2,53 0,38 -1,55 -1,08 0,35 

2SLS – Baseline, 3 lags shock 2,16 8,93*** 9,90*** 3,39 -1,95 -1,17 2,60 

2SLS – 3 lags CPI 2,37 9,78*** 10,14*** 2,82 -3,12 -2,70 1,14 

2SLS – Baseline excl. shock < 6months 2,57 12,48*** 13,91*** 5,20 -2,70 -2,18 2,78 

2SLS – 6 lags forward 2,17 9,87*** 11,31*** 4,08 -2,86 -2,13 2,02 

2SLS – Baseline, Weather station data 0,66 7,13*** 9,19*** 4,11 -0,77 -1,13 2,23 

Note: The table shows alternative specifications of local projections of consumer prices. Panel (A) shows results for total CPI, panel (B) shows 

results for the CPI of fresh products. “2SLS baseline” is our baseline 2SLS specification. “2SLS – Baseline – no Réunion” is the baseline 

specification excluding La Réunion. “2SLS – Baseline; 3 lags shock” controls for up to 3 lags of the shock (instrumented by relevant lags of 

the instrumental variables). “2SLS – 6 lags forward” controls for up to 6 forward lags of the shock. “2SLS – 3 lags CPI” controls for 3 lags of 

monthly variations of CPI. “Baseline excl. shock < 6 months” is the baseline specification, excluding shocks which occur less than 6 months 

after a previous shock. “2SLS – Baseline, Weather station data” is the baseline specification, but with instruments taken from weather station 

data rather remote sensing data.  

*p < 0.10; **p < 0.05; *** p < 0.01. 

Second, we present alternative specifications in which we control differently for lags of the 

shocks and of the dependent variable. In a first specification, we control for up to three lags of 

the shock (“2SLS – Baseline, 3 lags shock”), instrumenting them with their respective lags of 

meteorological data. The estimated effect for fresh products is very close to our baseline 

specification, with a maximum effect of 10 percent after 2 months. In another exercise (“2SLS 

– 3 lags CPI”), we implement a lag-augmented local projection, as advised by Montiel-Olea 

and Plagborg-Møller (2021), by controlling for up to three lags of CPI. Here again, the results 

remain very close to our baseline estimate.  
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Third, we run specifications taking into account the fact that shocks might occur at close 

intervals. In such a setting, our specification (which entails two-way fixed effects and prolonged 

treatment effects) might wrongly identify heterogeneous effects over time (as documented by 

De Chaisemartin and d’Haultfoeuille, 2020). In a robustness exercise, we first run a 

specification in which we do not define as a shock any event that is occurring less than 6 months 

after a preceding shock (“2SLS – Baseline excl. shock < 6months”). Doing so, we find effects 

for fresh products that are of similar magnitude as in the baseline specification, but slightly 

higher (12.5 percent after two months). Alternatively, in order to further rule out the risk that 

our results are potentially driven by compound effects, we control for up to 6 forwards of the 

shock. Here again, the results are robust, and if anything slightly stronger than in the baseline 

specification (effect of 11 % after two months). 

In a final exercise (“2SLS – Baseline, Weather station data”), we present results using 

meteorological observations from weather stations in the first step. The maximum estimated 

effect on fresh products (7 percent) is very close to the baseline effect, yet slightly smaller, 

which confirms the lower identification power of data coming from weather stations. 

6.4 Varying the share of fresh food 

The overall positive effect of natural disasters on inflation is mainly driven by the large effect on 

prices of fresh food products, which represent a small fraction of the CPI basket of goods (4 percent 

on average between 1999 and 2018). The share of fresh food products has continuously 

decreased over our sample period from 5.9 percent in 1999 to 1.6 percent in 2018 (Table A.5 

in Appendix). In this robustness exercise, we estimate the overall effect on inflation of natural 

disasters when we vary the share of fresh products.  

In Figure 11, we show counterfactual effects on headline inflation, assuming different weights 

for fresh products. The dark solid line represents the effect estimated in the baseline 

specification for total CPI, as estimated in Figure 3. The dark dashed line represents a 

reconstitution of the effect on total CPI, computed as a linear combination of effects estimated 

on fresh products and total excluding fresh products, using their average weight over the 

estimating sample. This reconstitution is close to the estimated effects, though not exactly 

identical: this reflects the fact that the estimated shocks are not uniformly distributed over the 

estimating sample. The blue line represents an aggregated effect on total CPI, still using a linear 

combination of effects estimated on fresh products and total excluding fresh products, but using 

their end-of-sample weight in 2018. In this case, the estimated effect on total CPI is lower than 
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in the baseline specification, with a maximum response of 0.2 percent after two months. Finally, 

the red line represents the same aggregation of effects, but using the weights of fresh products 

and total excluding fresh products as measured at the beginning-of-sample in 1999: in this case, 

the effect is much stronger than in the baseline, reaching up to 0.7 percent after two months.  

Figure 11 – Baseline and alternative effects on CPI inflation 

 

Note: Comparison of the baseline IV estimation of total CPI (solid black line) with a reconstitution of the effect using a linear 

combination of estimated effects on fresh products and total excluding fresh products with average weights between 1999 and 

2018 (solid dotted line), weights as of 1999 (red line) and weights as of 2018 (blue line). Treatment effects are expressed in 

percent. 

7. Conclusion 

This paper estimates the sectoral effects on prices of weather-related natural disasters in the 

four French overseas territories (DCOMs) between 1999 and 2018. It thereby contributes to a 

better understanding of the inflationary impact of physical risks that are likely to increase in the 

future because of climate change. We find a small positive and transitory effect on total 

consumer prices after two months (+0.5 percent). The granularity of the data, which is split into 

12 product categories with available weights according to the respective expenditure shares, 

allows for a full decomposition of the total effect. The response of inflation to weather-related 

disasters is heterogeneous across CPI components both in terms of timing and amplitude, with 

a quick and positive response of food inflation (especially fresh food), which is partly offset by 

a negative contribution of inflation in services and manufactured products. We provide 

complementary evidence on real activity. Significant reductions in employment in the 

agricultural and construction sector provide a plausible narrative for the transmission channels 

at play, separating between dominant supply versus demand forces, which is relatively rare in 

this literature. While lower employment in the agricultural sector points toward dominant 
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supply effects in the price response of fresh food, lower demand for housing-related goods and 

services in conjunction with lower employment in the construction sector are likely to 

contribute to the negative price response of services and manufactured goods. 

Two interesting related findings are worth highlighting. First, we document and quantify the 

consequences of weather-induced natural disasters for inflation inequality. The distributional 

effects depend primarily on the differing weight of fresh food in the consumption basket of 

households, which is decreasing along the income distribution. Second, we document and 

quantify how the introduction of price regulation in 2012 affects price-gouging behavior. While 

the immediate impact is significantly lower after the introduction of a Bouclier Qualité-Prix, 

price responses a few months after the disaster shock are higher, leading to a similar total effect 

after six months. This result is interesting for policymakers during times of high inflation, in 

which price regulation is actively discussed again in academia and among policy circles (Neely 

2022). 

Finally, the paper makes two smaller methodological contributions of interest for follow-up 

empirical work. First, it shows that an IV approach leads to comparable results as the calibration 

of weather-related damage functions. Second, the findings underline the importance of a careful 

modeling of seasonality, as inflation and weather-induced disaster might share common 

seasonality patterns that potentially bias the estimator. 
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ONLINE APPENDIX 

DECOMPOSING THE INFLATION RESPONSE  

TO WEATHER-RELATED DISASTERS 

Erwan GAUTIER, Christoph GROSSE-STEFFEN, Magali MARX, Paul VERTIER 

 

Appendix A. Data 

A.1 Consumer prices in French DCOMs 

Table A.1 – Descriptive statistics of inflation data 

 Guadeloupe Guyane La Réunion Martinique DCOMs France 

Component m-o-m sd m-o-m sd m-o-m sd m-o-m sd m-o-m sd m-o-m sd 

Headline 0.12 0.47 0.11 0.31 0.12 0.60 0.12 0.36 0.12 0.43 0.12 0.31 

Fresh products 0.22 3.45 0.30 3.41 0.71 9.21 0.26 2.92 0.37 4.75 0.25 3.49 

Other food  0.15 0.47 0.12 0.30 0.16 0.38 0.15 0.37 0.14 0.38 0.12 0.21 

Tobacco 0.77 2.81 0.67 3.00 0.73 3.90 0.77 2.82 0.73 3.14 0.49 1.72 

Manufactured 

products 
0.04 0.93 -0.03 0.26 0.04 0.89 0.02 0.66 0.02 0.68 0.01 1.04 

Energy 0.21 1.94 0.24 2.12 0.22 1.81 0.23 1.91 0.22 1.94 0.30 1.66 

Services 0.13 0.59 0.14 0.50 0.13 0.80 0.13 0.46 0.13 0.59 0.15 0.41 

Note: Moments computed from the first-difference in the logarithm of monthly price indices over the period 1999m01 to 

2018m04. DCOMs refers to the unweighted average across all four overseas territories. 
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Table A.2 – Correlations between main CPI in DCOMs and in France (1999m01-2018m04) 

Component Guadeloupe Guyane La Réunion Martinique DCOMs 

Headline 0.22 

[0.001] 

0.12 

[0.06] 

-0.04 

[0.51] 

0.12 

[0.06] 

0.14 

[0.04] 

Fresh products 0.05 

[0.46] 

0.02 

[0.76] 

0.02 

[0.76] 

-0.12 

[0.06] 

0.00 

[0.95] 

Other food 0.09 

[0.18] 

0.21 

[0.00] 

0.37 

[0.00] 

0.27 

[0.00] 

0.36 

[0.00] 

Tobacco 0.25 

[0.00] 

0.10 

[0.13] 

0.28 

[0.00] 

0.14 

[0.00] 

0.34 

[0.00] 

Manufactured 

products 

0.31 

[0.00] 

0.38 

[0.00] 

-0.21 

[0.00] 

0.36 

[0.00] 

0.23 

[0.00] 

Energy 0.31 

[0.00] 

0.27 

[0.00] 

0.21 

[0.00] 

0.37 

[0.00] 

0.35 

[0.00] 

Services 0.41 

[0.00] 

0.59 

[0.00] 

0.58 

[0.00] 

0.44 

[0.00] 

0.70 

[0.00] 

Note: p-values between brackets 

Headline CPI is significantly correlated between DCOMs and France with an average correlation 

of 0.14, except for La Réunion. The correlation is on average strong and positive for services (0.7) 

but smaller for manufactured products and energy (0.2 to 0.3), and this holds true for all DCOMs 

except for La Réunion in which the CPI of manufactured products is negatively correlated with that 

of France. While the CPI of other food products and tobacco is positively correlated between 

DCOMs and France, this is not the case for the CPI of fresh food products which is not correlated 

between DCOMs and France (0.00 on average). 
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Table A.3 – Coverage ratio of local production 

 Fruits Vegetables 

 Fresh All Fresh All 

Guadeloupe 44 % 16 % 55 % 43 % 

Martinique 31 % 13 % 39 % 26 % 

Guyane  94 % 79 % 90 % 81 % 

La Réunion 62 % 34 % 68 % 48 % 

Note: The table shows the coverage ratio of local production for fruits and vegetables in the 4 DCOMs, both for 

fresh products (Fresh) and the sum of fresh and non-fresh products (All).  

Source: Observatoire des économies agricoles ultramarines (2021)– La couverture des besoins alimentaires 

dans les DCOM 
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Table A.4 Composition of CPI aggregates 

Fresh food    01131 Fresh or chilled fish 
 + 01133 Fresh or chilled seafood 
 + 01161 Fresh or chilled fruit 
 + 01171 Fresh or chilled vegetables other than potatoes and other tubers 

  + 011741 Fresh or conserved potatoes 

Other food    0111 Bread and cereals 
 + 0112 Meat 
 + 01132 Frozen fish 
 + 01134 Frozen seafood 
 + 01135 Dried, smoked or salted fish and seafood 
 + 01136 Other preserved or processed fish and seafood-based preparations 
 + 0114 Milk, cheese and eggs 
 + 0115 Oils and fats 
 + 01162 Frozen fruit 
 + 01163 Dried fruit and nuts 
 + 01164 Preserved fruit and fruit-based products 
 + 01172 Frozen vegetables other than potatoes and other tubers 
 + 01173 Dried vegetables, other preserved or processed vegetables 
 + 011742 Processed potatoes (excluding crisps) 
 + 01175 Crisps 
 + 01176 Other tubers and products of tuber vegetables 
 + 0118 Sugar, jam, honey, chocolate and confectionery 
 + 0119 Food products n.e.c. 
 + 012 Non-alcoholic beverages 

  + 021 Alcoholic beverages 

Footwear and garments    0311 Clothing materials 
 + 0312 Garments 
 + 0313 Other articles of clothing and clothing accessories 

  + 0321 Shoes and other footwear 

Pharmaceutical products    0611 Pharmaceutical products 
 + 06131 Corrective eye-glasses and contact lenses 
 + 06132 Hearing aids 

  + 06139 Other therapeutic appliances and equipment 

Other manufactured products    0431 Materials for the maintenance and repair of the dwelling 
 + 0511 Furniture and furnishings 
 + 05121 Carpets and rugs 
 + 05122 Other floor coverings 
 + 05201 Furnishing fabrics and curtains 
 + 05202 Bed linen 
 + 05203 Table linen and bathroom linen 
 + 05209 Other household textiles 
 + 0531 Major household appliances whether electric or not 
 + 0532 Coffee machines, tea makers and similar appliances 
 + 054 Glassware, tableware and household ustensils 
 + 05511 Motorised major tools and equipment 
 + 05521 Non-motorised small tools 
 + 05522 Miscellaneous small tool accessories 
 + 0561 Non-durable household goods 
 + 0612 Other medical products 
 + 071 Purchase of vehicles  
 + 0721 Spare parts and accessories for personal transport equipment 
 + 07224 Lubricants 
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 + 08201 Fixed telephone equipment 
 + 08202 Mobile telephone equipment 
 + 08203 Other equipment of telephone and telefax equipment 

 
+ 0911 

Equipment for the reception, recording and reproduction of sound 

and picture 

 
+ 0912 

Photographic and cinematographic equipment and optical 

instruments 
 + 0913 Information processing equipment 
 + 0914 Recording media 
 + 0921 Major durables for outdoor recreation 
 + 0922 Musical instruments and major durables for indoor recreation 
 + 0931 Games, toys and hobbies 
 + 09321 Equipment for sport 
 + 09322 Equipment for camping and open-air recreation 
 + 0933 Gardens, plants and flowers 
 + 093421 Products for pets 
 + 095 Newspapers, books and stationery 
 + 121211 Electric appliances for personal care 
 + 1213 Other appliances, articles and products for personal care 
 + 123111 Jewellery 
 + 123121 Clocks and watches 
 + 123211 Travel goods 
 + 123221 Articles for babies 
 + 123291 Other personal effects n.e.c. 

Energy    0451 Electricity 
 + 0452 Gas 
 + 0453 Liquid fuels 
 + 0454 Solid fuels 
 + 07221 Diesel 
 + 07222 Petrol 

  + 07223 Other fuels for personal transport equipment 

Petroleum products    04522 Liquefied hydrocarbons (butane, propane, etc.) 
 + 0453 Liquid fuels 
 + 07221 Diesel 
 + 07222 Petrol 

  + 07223 Other fuels for personal transport equipment 

Rents    0411 Actual rentals paid by tenants 
 + 0441 Water supply 
 + 0442 Refuse collection 
 + 0443 Sewage collection 
 + 0455 Heat energy 
 + 05204 Repair of household textiles 

  + 05523 Repair of non-motorised small tools and miscellaneous accessories 

Health services    062 Out-patient services 

Transportation services    0731 Passenger transport by railway 
 + 0732 Passenger transport by road 
 + 0733 Passenger transport by air 
 + 0734 Passenger transport by sea and inland waterway 

  + 0735 Combined passenger transport 

Communication services    081 Postal services 

  + 083 Telephone and telefax services 

Other services    0314 Cleaning, repair and hire of clothing 
 + 032201 Repair and hire of footwear 
 + 0432 Services for the maintenance and repair of the dwelling 
 + 0444 Other services relating to the dwelling n.e.c. 
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 + 05123 Services of laying of fitted carpets and floor coverings 
 + 0513 Repair of furniture, furnishings and floor coverings 
 + 05204 Repair of household textiles 
 + 0533 Repair of household appliances 
 + 05404 Repair of glassware, tableware and household utensils 
 + 05512 Repair, leasing and rental of major tools and equipment 
 + 05523 Repair of non-motorised small tools and miscellaneous accessories 
 + 0562 Cleaning services 
 + 0723 Maintenance and repair of personal transport equipment 
 + 0724 Other services in respect of personal transport equipment 
 + 0736 Other purchased transport services 
 + 08204 Repair of telephone or telefax equipment 

 
+ 0915 

Repair of audiovisual, photographic and information processing 

equipment 

 
+ 0923 

Maintenance and repair of other major durables for recreation and 

culture 
 + 09323 Repair of equipment for sport, camping and open-air recreation 
 + 09341 Purchase of pets 
 + 0935 Veterinary and other services for pets 
 + 094 Recreational and cultural services 
 + 096 Package holidays 
 + 10 Education 
 + 11 Restaurants and hotels 
 + 1211 Hairdressing salons and personal grooming establishments 
 + 121221 Repair of electric appliances for personal care 
 + 123131 Repair of jewellery, clocks and watches 
 + 123231 Repair of other personal effects 
 + 124 Social protection 
 + 125 Insurance 
 + 126 Financial services n.e.c. 

  + 127 Other services n.e.c. 
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Figure A.1. Seasonal variations of monthly CPI inflation in DCOMs 

 

 

 

 

 

Headline Fresh food products 

  

Other food Manufactured products 

 

  

Services 

 

Energy 

 

Tobacco 

 

 

Note: Average monthly variation (in %) of CPI for each component 
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A.2 Composition of consumer baskets across DCOMs 

The composition of consumption baskets is heterogeneous across French territories and varies over 

time. Table A.5 reports the weights of each aggregate according to the French statistical office 

(Insee) over our sample period, in each territory, and the unweighted mean over the sample. Food 

including tobacco represents about 18% of the consumer basket in the considered territory at the 

end of the sample, with a weight that is declining over time. Fresh products represent roughly 10% 

of the food basket in 2018 (1.6% of CPI basket), and its weight strongly decreased over time from 

5.9% in 1999. Services represent about 45% of the consumer basket at the end of the sample, with 

a maximum weight of 47% in La Reunion and a minimum weight of 43% in Guadeloupe. Contrary 

to food, the weight of services increases over time in all territories. The main component is other 

services (see Table A.4 for details about the composition of this aggregate), which represents about 

22% of the total basket in 2019, and whose weight increased over time. Manufactured products 

represent 29.9% of the CPI basket in 2019, only slightly above the sample mean.  

Table A.5 – Weight of the main aggregates of Consumer Price Index  

 Guadeloupe Guyane La Réunion Martinique DCOMs France 

Aggregate Weight 

2018 

Weight 

1999-

2018 

Weight 

2018 

Weight 

1999-

2018 

Weight 

2018 

Weight 

1999-

2018 

Weigh 

2018 

Weight 

1999-

2018 

Weight 

2018 

Weight 

1999-

2018 

Weight 

2018 

Weight 

1999-

2018 

Food 1709 2226 1757 2359 1812 2181 1897 2140 1794 2226 1820** 1849** 

Fresh products 179 453 162 402 121 263 180 463 160 395 243 218 

Other food 1441 1698 1434 1847 1523 1748 1601 1623 1500 1729 1384 1460 

Tobacco 89 75 161 110 168 172 116 55 133 103 193 193 

Manufactured 

products 

3344 3025 2930 2535 2748 3058 2871 2850 2973 2867 2594 2949 

Footwear and 

garment 

482 626 663 616 506 641 483 676 533 640 416 477 

Other manuf. 

products 

2290 2101 1850 1705 1932 2208 1924 1925 1999 1985 1753 2029 

Pharmaceutical 

products 

572 298 417 214 360 209 464 249 453 242 425 443 

Energy 694 903 789 733 642 748 791 858 729 810 777 776 

Petroleum 

products 

498 691 572 507 464 532 592 645 531 594 408 454 

Services 4253 3847 4524 4372 4748 4013 4441 4152 4491 4096 4809 4404 

Transportation* 223 428 304 440 256 426 163 236 236 382 282 246 

Communication* 409 287 390 387 374 445 425 351 399 367 223 257 

Health 714  367 566 236 968 387 657 348 726 334 617 534 

Rents 774 820 1239 1618 907 988 904 1014 956 1110 764 750 

Other services 2132 2063 2025 1878 2243 1970 2292 2258 2173 2042 2923 2617 

* Data available only since 2010 for all DCOMs. 

Note: The table shows the weight of the main components of CPI in the four DCOMs, and in France, for 2018 and for the 

period 1999-2018. The average for the four DCOMs is an unweighted mean.  
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Comparing, the weights in DCOMs to those in metropolitan France, three facts stand out. First, the 

weight structure is more stable over time in metropolitan France. Second, the weights in DCOMs 

and in France differ mainly with respect to food excluding fresh products (which is higher in 

DCOMs) and service (which is lower in DCOMs). Thirdly, the composition of consumption baskets 

in DCOMs are converging to the one measured in metropolitan France. 

A.3 Real activity 

2.1.2 Data on economic activity 

Table A.6 – Descriptive statistics on real activity  

 Guadeloupe Guyane La Réunion Martinique DCOMs 

Employment (share in total, in %)*      

Agriculture (AZ) 1,48 0,74 1,12 3,75 1,77 

Food manufacturing (C1) 2,47 1,13 2,58 2,20 2,09 

Extractive industry (C2) 1,83 2,77 1,47 2,14 2,05 

Manufacturing – machines (C3) 0,19 0,16 0,29 0,17 0,20 

Manufacturing – transports (C4) 0,02 0,27 0,04 0,02 0,09 

Manufacturing – other (C5) 2,62 3,93 2,62 2,43 2,90 

Construction (FZ) 4,88 6,25 5,69 4,94 5,44 

Car repair (GZ) 12,64 9,30 13,10 11,47 11,63 

Transports (HZ) 4,69 5,12 4,79 4,68 4,82 

Accomodation – restaurants (IZ) 3,90 3,40 2,96 4,00 3,56 

Information – communication 

services (JZ) 
1,82 1,20 1,65 1,70 1,59 

Finance – insurance (KZ) 2,79 1,17 2,32 2,92 2,30 

Real estate (LZ) 0,56 0,62 0,79 0,67 0,66 

Scientific – administrative (MN) 8,22 6,51 8,23 8,89 7,96 

Public administration (OQ) 44,55 51,12 42,35 41,14 44,79 

Other services (RU) 6,21 4,33 8,96 7,92 6,85 

Interim 1,09 2,13 1,10 1,02 1,34 

Number of overnight stays in hotels 

(thousands)** 
90,74 28,81 87,83 102,75 77,53 

Note: The table shows average values of real activity variables used in the main analysis, from the beginning of data 

availability until April 2018. * Data since 2010; ** Data since 2011 

 

We complement our empirical analysis with some sectoral data on real activity. We include 

sectoral employment data at quarterly frequency, available since 2010. Employment in DCOMs 

is dominated by services: non-commercial services (public administration) represent about 45 

percent of employment, and commercial services represent about 39 percent of employment. In 
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contrast, the manufacturing industry represents only about 7 percent of total employment, the 

construction sector about 5 percent, followed by the agricultural sector with 2 percent (Table 

A.6). 

To assess the effect of natural disaster on the tourism sector, we also include monthly hotel 

overnight stays in our analysis. They amount to 77 000 on average every month, which roughly 

corresponds to 15 percent of the average population of DCOMs.  

A.4 Administrative disaster databases 

Table A.7 – Overlap between the administrative measures of shocks  

  Number (%) in Number (%) in 

 N GASPAR EM-DAT Guadeloupe Guyane La Réunion Martinique 

GASPAR 68 - 11 (16.2%) 21 (30.9%) 5 (7.3%) 22 (32.3%) 20 (29.4%) 

EM-DAT 12 11 (91.7%) - 3 (25%) 0 (0%) 5 (41.7%) 4 (33.3%) 

All admin.* 69 - - 21 (30.4%) 5 (7.2%) 23 (33.3%) 20 (30%) 

Note: The table shows descriptive statistics on the distribution of natural disasters in four French oversea 

territories. “All admin”is the union between GASPAR and EM-DAT events. 

 

Table A.8 - Share of total administrative shocks by month of the year 

Month La Réunion Guadeloupe  Martinique  Guyane 

1 26.09 9.52 0 20,00 

2 34.78 0 0 0 

3 8.70 4.76 0 0 

4 21.74 0.00 10.00 20,00 

5 4.35 14.29 10.00 60,00 

6 0 4.76 0 0 

7 0 0 5.00 0 

8 0 4.76 10.00 0 

9 0 19.05 20.00 0 

10 0 14.29 20.00 0 

11 0 19.05 15.00 0 

12 4.35 9.52 10.00 0 

 

Note: The table shows the share of total number of administrative shocks occurring during each 

calendar month, in the different DCOMs. 34.78 % of all shocks in La Réunion occurred during the 

month of February. 
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A.5 Meteorological data 

 

Figure A.2. Location of weather stations 

a) La Reunion b) Guyane 

  

c) Guadeloupe d) Martinique 

  

Note: Weather stations from the Global Summary of the Day (GSOD) database on La Reunion (St Denis Gillot, St Pierre 

Pierrefonds), Martinique (La Lamentin, Martinique Aime Césaire International Airport, Trinité Caravelle), Guadeloupe (La 

Desirade, Le Raizet, Point-à-Pitre International Airport), and Guyane (Maripasoula, Rochambeau, St Laurent du Maron). 
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Figure A.3. Wind speed via remote sensing 

a) La Reunion b) Guyane 

  

c) Guadeloupe d) Martinique 

  

Note: Wind speed via remote sensing from the Cross-Calibrated Multi-Platform (CCMP), measured on a 0.25-degree grid 

in miles per second on a scale between zero and 30. Panels a) to d) show the maximum 6h average wind speed, which 

amount to 27.76 m/s 2007-Feb-25 (12AM) on La Reunion (cyclone Gamede), 17.26 m/s 17-Aug-2007 (6PM) on Martinique 

(hurricane Dean), 21.52 m/s 19-Sep-2017 (6PM) on Guadeloupe (hurricane Maria), and 13.52 m/s 10-Mar-2015 (12 PM) in 

Guyane. 
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Figure A.4. Precipitation via remote sensing 

a) La Reunion b) Guyane 

  

c) Guadeloupe d) Martinique 

  

Note: Precipitation via remote sensing from the Climate Prediction Center (CPC), measured on a 0.5-degree grid in 

millimeters per day. Panels a) to d) show the maximum daily precipitation, which are 319.11 mm, 29.01.2011on La Reunion, 

141.06 mm, 28.09.2016 on Martinique, 252.59 mm, 19.11.1999 on Guadeloupe, and 212.79 mm, 08.04.2000 in Guyane. 
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Table A.9 Summary statistics of meteorological data 

  
 

Precipitation 

 

Wind speed 

 
Remote sensing 

(CPC) 

 Weather stations 

(GSOD) 

Remote sensing 

(CCMP) 

Weather stations 

(GSOD) 

  Mean SD Mean SD Mean SD Mean SD 

La Reunion 43.25 45.92 110.08 122.48 13.12 2.55 2.75 0.46 

Guyane 69.82 30.97 142.67 86.21 10.06 1.31 1.62 0.35 

Guadeloupe 36.67 25.10 89.03 92.81 11.61 1.58 1.99 0.58 

Martinique 40.36 23.98 97.32 79.19 11.17 1.26 2.45 0.70 

Unweighted 

average 47.53 31.49 109.78 95.17 11.49 1.68 2.20 0.52 

Note: All data was harmonized for comparability. Precipitation is measured in cumulative millimeters per day (conversion: 

.01 inches = 0.254 mm). Wind speed is measured in meters/second (conversion: .1 knots = 0.0514444 m/s). 

 

  



53 
 

Table A.10 Météo France events 

Region Date Event name Event type 

La Réunion 24-Feb-2007 Gamede cyclone 

La Réunion 3-Mar-2006 Diwa cyclone 

La Réunion 21-Jan-2002 Dina cyclone 

La Réunion 3-Jan-2018 Ava cyclone 

La Réunion 9-Mar-1999 Davina cyclone 

La Réunion 4-Mar-2018 Dumazile cyclone 

La Réunion 1-Jan-2014 Bejisa cyclone 

La Réunion 7-Mar-2015 Haliba cyclone 

Guyane 15-May-2013 - extreme rain 

Guyane 24-Jan-2010 - extreme rain 

Guyane 1-Jun-2008 - extreme rain 

Guyane 8-May-2006 - extreme rain 

Guyane 30-Apr-2000 - extreme rain 

Guyane 17-May-2000 - extreme rain 

Guadeloupe 10-Nov-2018 - extreme rain 

Guadeloupe 18-Sep-2017 Maria hurricane 

Guadeloupe 12-Oct-2012 Rafael hurricane 

Guadeloupe 3-Jan-2011 - extreme rain 

Guadeloupe 30-Aug-2010 Earl hurricane 

Guadeloupe 17-Aug-2007 Dean hurricane 

Guadeloupe 18-Nov-1999 Lenny hurricane 

Guadeloupe 21-Oct-1999 Jose hurricane 

Martinique 16-Apr-2018 - extreme rain 

Martinique 31-Dec-2017 - extreme rain 

Martinique 28-Sep-2016 Matthew hurricane 

Martinique 6-Nov-2015 - extreme rain 

Martinique 12-Oct-2012 Rafael hurricane 

Martinique 1-Aug-2011 Emily hurricane 

Martinique 30-Oct-2010 Tomas hurricane 

Martinique 4-May-2009 - extreme rain 

Martinique 17-Aug-2007 Dean hurricane 

Martinique 18-Nov-1999 Lenny hurricane 

Note : Events obtained from Météo France websites documenting extreme 

events in the four regions: 

http://pluiesextremes.meteo.fr/lareunion/Le-club-des-500-mm.html, 

http://pluiesextremes.meteo.fr/guyane/-Evenements-memorables-.html 

http://pluiesextremes.meteo.fr/antilles/-Evenements-memorables-.html 

 

 

 

  

http://pluiesextremes.meteo.fr/lareunion/Le-club-des-500-mm.html
http://pluiesextremes.meteo.fr/guyane/-Evenements-memorables-.html
http://pluiesextremes.meteo.fr/antilles/-Evenements-memorables-.html
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Appendix B. Additional results 

Figure B.1 – First stage fitted values: Predicted probability of a significant natural disaster 

 

Note: The figure shows the density plot of fitted values �̂�𝑖𝑡of model (1). Since the dependent variable is an indicator variable 

associated with natural disaster events with large economic damages, we interpret �̂�𝑖𝑡 as the predicted probability of an 

economically significant natural disaster as a function of meteorological data. 

 

Figure B.2 – First stage fitted values: 

predicted probability conditional on the 

occurrence of GASPAR shocks 

 

Figure B.3 – First stage fitted values: 

predicted probability conditional on the 

occurrence of EM-DAT shocks 

 

Figure B.4 – First stage fitted values: predicted probability conditional on the occurrence 

of adminitrative shocks 
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Figure B.5: Main results – CPI components - OLS 

Fresh products 

 

Other food excl. tobacco 

 
Tobacco 

 

Manufactured products 

 
Services 

 

Energy 

 
Note: The figures plot the cumulated impulse response function CPI components, in our baseline OLS specification. Treatment 

effects are expressed in percent. 95 percent confidence intervals with robust standard errors in shaded areas.  
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Table B.1 – Baseline effects on CPI inflation for all available aggregates 

  T=0 T=1 T=2 T=3 T=4 T=5 T=6 

                

Food excl. tobacco 0.39 1.62*** 2.28*** 0.86 -0.38 0.02 0.57 

  (0.24) (0.42) (0.63) (0.57) (0.50) (0.43) (0.41) 

Other food 0.29*** 0.13 0.31*** 0.24* 0.03 0.31** 0.16 

  (0.10) (0.12) (0.12) (0.14) (0.14) (0.15) (0.17) 

Fresh products 1.89 9.48*** 10.60*** 3.96 -2.11 -1.72 2.03 

  1.49 2.29 3.13 2.65 2.32 2.32 2.25 

Tobacco -0.04 -0.38 -0.35 0.00 -0.60 -0.32 -0.38 

  (0.48) (0.75) (0.90) (1.04) (1.26) (1.46) (1.51) 

Energy -0.48 -0.20 0.35 -0.04 -0.25 -1.10 -1.17 

  (0.53) (0.54) (0.58) (0.67) (0.74) (0.78) (0.82) 

Petroleum products -0.69 -0.35 0.43 -0.13 -0.49 -1.68 -1.74 

  (0.73) (0.75) (0.79) (0.92) (0.99) (1.04) (1.08) 

Manufactured products -0.13 -0.27 -0.02 0.11 -0.22 -0.31 -0.15 

  (0.18) (0.23) (0.21) (0.19) (0.20) (0.19) (0.24) 

Other manuf 0.00 -0.11 -0.02 -0.04 -0.12 -0.20* -0.28* 

  (0.08) (0.10) (0.11) (0.10) (0.12) (0.11) (0.15) 

Footwear and garments -0.28 -0.95 -0.27 0.87 -0.75 -1.03 0.10 

  (0.79) (0.92) (0.81) (0.75) (0.78) (0.79) (0.83) 

Pharmaceutical products -0.07 -0.01 0.02 -0.15 0.00 -0.03 -0.26 

  (0.12) (0.15) (0.16) (0.16) (0.21) (0.23) (0.28) 

Services -0.03 -0.19 -0.12 -0.32* -0.20 -0.25 0.06 

  (0.13) (0.17) (0.19) (0.18) (0.21) (0.20) (0.21) 

Other services -0.16 -0.18 -0.12 -0.21 -0.27 -0.45* -0.22 

  (0.16) (0.18) (0.21) (0.22) (0.25) (0.26) (0.27) 

Rents -0.05 -0.20** 0.11 0.07 0.20 0.18 0.33 

  (0.07) (0.10) (0.15) (0.17) (0.20) (0.21) (0.23) 

Communication services -0.35** -0.50 -0.66* -0.61* -0.64* -0.31 0.04 

  0.18 0.34 0.38 0.37 0.37 0.36 0.44 

Health services -0.28** -0.17 -0.20 -0.29 -0.37 -0.27 -0.41 

  (0.13) (0.18) (0.20) (0.23) (0.25) (0.28) (0.32) 

Transportation services -0.22 0.27 1.26 0.31 -0.61 3.59 3.74 

  (2.02) (2.04) (2.05) (1.93) (2.57) (2.42) (3.47) 

Total 0.01 0.17 0.48* 0.08 -0.26 -0.27 0.03 

  (0.12) (0.16) (0.21) (0.21) (0.21) (0.18) (0.17) 

N 926 926 926 926 926 926 926 

Note: Cumulative impulse response functions of consumer prices in the 4 DCOMs estimated between 1999m01 and 2018m04, 

using a 2SLS local projections. Robust standard errors in parentheses. 

*p < 0.10; **p < 0.05; *** p < 0.01. 
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Table B.2: Main results – CPI components - OLS 

  T=0 T=1 T=2 T=3 T=4 T=5 T=6 

OLS estimates             
Total -0,13** -0,04 0,06 -0,01 -0,02 0,04 0,12 

 (0.06) (0.09) (0.11) (0.11) (0.10) (0.09) (0.10) 

Fresh products -0,11 2,41* 2,94* 1,27 -0,25 0,02 0,69 

 (0.86) (1.37) (1.59) (1.37) (1.17) (1.18) (1.18) 

Other food excl. tobacco 0.05 0,09 0.15* 0,10 0,03 0,09 0,05 

 (0.05) (0.06) (0.08) (0.07) (0.09) (0.09) (0.10) 

Manufactured products -0,11 -0,15 -0,04 -0,06 -0,10 -0,08 0,01 

 (0.10) (0.13) (0.11) (0.11) (0.11) (0.11) (0.11) 

Services -0,09 -0,10 -0,06 0,00 0,04 0,06 0,18 

 (0.07) (0.08) (0.09) (0.10) (0.11) (0.11) (0.11) 

Energy -0,45** -0,69** -0,83** -0,85** -0,51 -0,51 -0,53 

 (0.20) (0.27) (0.34) (0.39) (0.41) (0.42) (0.44) 

Tobacco -0,49 -0,52 -0,43 -0,41 0,40 0,11 -0,05 

 (0.43) (0.66) (0.73) (0.77) (0.94) (0.99) (1.02) 
Note: Cumulative impulse response functions of consumer prices in the four DCOMs estimated between 1999m01 and 

2018m04, using OLS local projections. Robust standard errors in parentheses.  

*p < 0.10; **p < 0.05; *** p < 0.01. 
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Table B.3 - Main effects of meteorological extreme events on sectoral employment and on 

hotel stays (2SLS) 

 T=0 T=1 T=2 T=3 T=4 T=5 T=6 

Hotel stays               

Overnight hotel stays -0,23 10,54** 7,88* 7,64 3,52 1,56 -0,21 

  (3,59) (4,66) (4,52) (5,07) (5,78) (4,99) (3,82) 

Employment               

Total -0,37* -0,33 -0,18 -0,16 0,23 0,16 0,13 

  (0,21) (0,27) (0,28) (0,36) (0,37) (0,39) (0,39) 

Agriculture (AZ) -1,08 -2,29* -3,22** -1,27 -1,55 -1,90 -1,88 

  (0,86) (1,26) (1,30) (1,59) (1,73) (1,69) (2,18) 

Food manuf. (C1) -0,03 -0,35 -1,41 0,40 -0,79 -0,91 -1,14 

  (0,58) (0,78) (0,89) (1,13) (1,27) (1,31) (1,26) 

Extractive industry (C2) -0,29 0,20 -0,94 -1,02 -1,43 -1,25 -0,40 

  (0,37) (0,70) (0,78) (0,86) (1,06) (1,02) (1,39) 

Manuf. – machines (C3)  0,46 1,01 -0,10 0,42 0,96 3,52 3,06 

  (1,21) (1,78) (2,01) (1,87) (2,06) (2,15) (2,38) 

Manuf.-transports (C4) 5,73 1,49 7,29 3,79 -4,57 -8,42 -12,24 

  (5,64) (8,90) (8,70) (8,05) (11,26) (10,83) (10,26) 

Manuf. – others (C5) -0,23 -0,05 0,18 -0,04 0,14 0,20 1,20 

  (0,27) (0,46) (0,51) (0,62) (0,68) (0,77) (0,80) 

Construction (FZ) -0,72* -1,06* -1,38* -0,80 0,11 0,19 0,23 

  (0,41) (0,62) (0,75) (1,02) (1,23) (1,27) (1,44) 

Car repair (GZ) -0,12 -0,39 -0,01 0,49 0,94* 1,16** 1,03* 

  (0,27) (0,35) (0,44) (0,44) (0,50) (0,56) (0,58) 

Transports (HZ) -0,28 -0,03 0,17 0,10 0,02 0,64 -0,03 

  (0,32) (0,55) (0,61) (0,64) (0,78) (0,69) (0,73) 

Accom. – restaurants (IZ) 0,32 0,68 0,36 0,23 0,03 0,25 -0,15 

  (0,39) (0,55) (0,64) (0,75) (0,82) (0,86) (0,81) 

Info. – comm (JZ) -1,03* -0,88 1,04 1,55 1,97 1,20 2,37** 

  (0,53) (0,85) (1,21) (1,26) (1,38) (1,22) (1,20) 

Finance – insurance (KZ) 0,12 0,47 0,15 0,54 -0,40 0,28 -0,14 

  (0,61) (0,73) (0,76) (0,70) (0,74) (0,76) (0,68) 

Real estate (LZ) -0,40 -1,14 -0,87 -0,59 -1,71 -0,91 0,30 

  (0,58) (0,83) (0,97) (1,03) (1,35) (1,34) (1,36) 

Scientific – admin (MN) -0,49 -0,11 0,40 0,47 0,37 0,69 0,09 

  (0,40) (0,59) (0,63) (0,83) (0,98) (1,08) (1,15) 

Public admin (OQ) -0,44* -0,35 -0,12 -0,48 0,22 -0,13 0,09 

  (0,24) (0,33) (0,34) (0,41) (0,41) (0,45) (0,47) 

Other services (RU) -0,15 -0,21 -0,58 -1,20 -0,73 -1,01 -0,95 

  (0,41) (0,63) (0,69) (0,84) (0,98) (0,97) (0,91) 

Interim 5,57 9,22 7,02 15,53** 7,97 15,97* 5,89 

  (5,46) (6,85) (7,10) (7,26) (8,17) (8,40) (7,86) 

Note: Cumulative impulse response functions of real activity data in the 4 DCOMs estimated between 1999m01 and 2018m04, 

using a 2SLS local projections. T-stat with robust standard errors in parentheses.  

*p < 0.10; **p < 0.05; *** p < 0.01.  
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Figure B.6: Comparison of baseline damage functions with wind-only damage functions, at 

top percentile 

Total 

 

Fresh products 

 

Note: The figures plot the cumulated impulse response function for headline CPI and fresh products CPI, for wind damage 

function (in solid blue), compared to our baseline 2SLS (in black) and to our combined wind and rain damage function (dotted 

blue). The damage functions are evaluated at the top percentile of shocks, and shaded areas represent 95 percent confidence 

intervals with robust standard errors for wind-only damage functions. Treatment effects are expressed in percent. 

Figure B.7: Comparison of baseline damage functions with rain-only and rain-only damage 

functions, at top percentile 

Total 

 

Fresh products 

 

Note: The figures plot the cumulated impulse response function for headline CPI and fresh products CPI, for rain damage 

function (in solid blue), compared to our baseline 2SLS (in black) and to our combined wind and rain damage function (dotted 

blue). The damage functions are evaluated at the top percentile of shocks, and shaded areas represent 95 percent confidence 

intervals with robust standard errors for rain-only damage functions. Treatment effects are expressed in percent. 
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Table B.4 – Robustness analysis for other components 

  T=0 T=1 T=2 T=3 T=4 T=5 T=6 

(A) Other food excl. tobacco             
2SLS - Baseline 0,29*** 0,13 0,31*** 0,24* 0,03 0,31** 0,16 

2SLS – Baseline – no Réunion 0,27** 0,16 0,21 0,20 -0,01 0,40* 0,31 

2SLS – Baseline, 3 lags shock 0,24*** 0,15 0,33*** 0,24* 0,04 0,29** 0,13 

2SLS – Baseline 3 lags CPI 0,24*** 0,08 0,26** 0,19 0,01 0,29** 0,14 

2SLS – Baseline excl. shock < 6months  0,37*** 0,17 0,40** 0,30 0,02 0,39** 0,20 

2SLS – 6 lags forward 0,23** 0,18 0,31*** 0,28** 0,10 0,29* 0,19 

2SLS – Baseline, Weather station data 0,23** 0,09 0,26** 0,19 0,02 0,31** 0,21 

(B) Manufactured products             

2SLS - Baseline -0,13 -0,27 -0,02 0,11 -0,22 -0,31 -0,15 

2SLS – Baseline – no Réunion -0,09 0,04 -0,07 -0,11 -0,35 -0,47* -0,40 

2SLS – Baseline, 3 lags shock -0,16 -0,23 0,05 0,14 -0,08 -0,11 0,08 

2SLS – Baseline 3 lags CPI -0,17 -0,32* -0,03 0,04 -0,32* -0,37** -0,21 

2SLS – Baseline excl. shock < 6months -0,17 -0,35 -0,03 0,15 -0,29 -0,39 -0,19 

2SLS – 6 lags forward -0,11 -0,35 0,00 0,08 -0,23 -0,29 -0,07 

2SLS – Baseline, Weather station data -0,18 -0,34 -0,32 -0,16 -0,44** -0,52** -0,38 

(C) Services             

2SLS - Baseline -0,03 -0,19 -0,12 -0,32* -0,20 -0,25 0,06 

2SLS – Baseline – no Réunion 0,00 -0,19 -0,16 -0,22 -0,09 -0,28 -0,09 

2SLS – Baseline, 3 lags shock -0,03 -0,16 -0,10 -0,31* -0,15 -0,22 0,12 

2SLS – Baseline 3 lags CPI -0,08 -0,20 -0,17 -0,35** -0,25 -0,30 0,01 

2SLS – Baseline excl. shock < 6months -0,04 -0,25 -0,16 -0,41* -0,26 -0,33 0,07 

2SLS – 6 lags forward -0,18 -0,27 -0,30 -0,37** -0,28 -0,27 -0,11 

2SLS – Baseline, Weather station data -0,05 -0,15 -0,07 -0,19 -0,09 -0,17 0,24 

(D) Energy             

2SLS - Baseline -0,48 -0,20 0,35 -0,04 -0,25 -1,10 -1,17 

2SLS – Baseline – no Réunion -0,45 0,14 0,16 -0,33 -0,03 -0,74 -1,26 

2SLS – Baseline, 3 lags shock -0,46 -0,06 0,46 0,51 0,30 -0,71 -1,00 

2SLS – Baseline 3 lags CPI -0,51 -0,30 0,20 -0,25 -0,44 -1,34* -1,38* 

2SLS – Baseline excl. shock < 6months -0,61 -0,25 0,44 -0,05 -0,34 -1,45 -1,57 

2SLS – 6 lags forward -0,81 -0,54 -0,04 -0,54 -0,65 -1,45* -1,70** 

2SLS – Baseline, Weather station data -0,48 -0,40 0,06 -0,44 -0,67 -1,56** -1,97** 

(E) Tobacco             

2SLS - Baseline -0,04 -0,38 -0,35 0,00 -0,60 -0,32 -0,38 

2SLS – Baseline – no Réunion 0,34 0,99 0,70 1,35 -0,06 0,22 -0,56 

2SLS – Baseline, 3 lags shock -0,37 -0,87 -0,15 0,43 0,43 0,58 0,47 

2SLS – Baseline 3 lags CPI 0,02 -0,51 -0,58 -0,19 -0,78 -0,60 -0,60 

2SLS – Baseline excl. shock < 6months -0,10 -0,53 -0,45 0,00 -0,75 -0,49 -0,58 

2SLS – 6 lags forward 0,50 0,77 0,90 1,00 1,22 1,46 1,53 

2SLS – Baseline, Weather station data -1,03** -1,56** -1,07 -0,06 -0,92 -1,37 -1,78 
Note: The table shows alternative specifications of local projections of consumer prices. Panel (A) shows results for total CPI, panel (B) shows 

results for the CPI of fresh products. “2SLS baseline” is our baseline 2SLS specification. “2SLS – Baseline – no Réunion” is the baseline 

specification excluding La Réunion. “2SLS – Baseline; 3 lags shock” controls for up to 3 lags of the shock (instrumented by relevant lags of 

the instrumental variables). “2SLS – 6 lags forward” controls for up to 6 forward lags of the shock. “2SLS – 3 lags CPI” controls for 3 lags of 

monthly variations of CPI. “Baseline excl. shock < 6 months” is the baseline specification, excluding shocks which occur less than 6 months 

after a previous shock. “2SLS – Baseline, Weather station data” is the baseline specification, but with instruments taken from weather station 

data rather remote sensing data.  

*p < 0.10; **p < 0.05; *** p < 0.01. 
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Figure B.8: Baseline for fresh products CPI, including pre-trends up to 3 months 

Fresh products 

 

Note: The figure plots the cumulated impulse response function for the CPI of fresh products in our baseline IV specification 

(solid blue) and for the OLS specification (dotted blue). 95 percent confidence intervals for the 2SLS specification with robust 

standard errors in shaded areas. Treatment effects are expressed in percent. 
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Appendix C. Constructing wind and rain damage functions 

This section provides complementary information on the construction of damage functions. For 

the calibration of wind speed threshold value 𝑊∗, we follow Emanuel (2011) and set it to 50 

knots. More specifically, we follow a two-step approach. Since remote sensing data is less 

precise for extreme values, we compute in a first step the percentile of wind speed above 50 

knots from ground station recordings available through GSOD. In a second step, we apply the 

percentile to the remote sensing data from CCMP in order to obtain a threshold value �̂�𝑖
∗ for 

each region and expressed in meters per second. 

The calibration of region-specific rainfall threshold values 𝑟𝑖
∗ follows Heinen et al. (2018), The 

threshold is based on precipitation of 112 mm, cumulative over a three-day window, which 

Heinen et al. (2018) calibrated to an intensity duration flood model and actual flood event data 

for Trinidad. Given the heterogeneity of regions in our sample, with likely differing threshold 

values, we proceed in two steps. First, we compute the percentile of 112 mm over three-day 

windows for the closest region to Trinidad in our sample, i.e. Martinique. We then applied this 

percentile value to rainfall data of the remaining regions in our data sample to obtain regional 

threshold values in millimeters. The resulting threshold values are 229 mm for La Réunion, 52 

mm for Guadeloupe and 74 mm for Guyane. 

Exposure weights 𝜉𝑖𝑗 are constructed from satellite nighttime light data from the U.S. Air Force 

Defense Meteorological Satellite Program (DMSP), obtained via the Earth Observation Group 

(Baugh et al 2010). We use the version cleaned by background noise, averaged across the 

calendar year and corrected for percent frequency of light detection. Figure C.1, panel a) 

visualizes the data for the case of La Réunion. Fig. C.1 panel b shows nighttime light 

observations that are cleaned from observations above ocean surface. We use geographic 

information system software and freely available shape files on ocean surface by Natural Earth 

to do so. The main motivation is to take into account noise from coastal areas, such as ships or 

other coastal activities. We compute a proxy of economic activity in a weather cell j in region 

i as 

𝜈𝑖𝑗 = ∑ 𝑁𝑇𝐿𝑖𝑗𝑛 ×

𝑁

𝑛=1

𝟙{𝑂𝑖𝑗𝑛=0} (C.1) 

where 𝑁𝑇𝐿𝑖𝑗𝑛 denotes nighttime light in region i in weather cell j and nighttime light grid cell 

n, and 𝟙 denotes an index variable which takes the value one if the nighttime light is recorded 

above land. Fig. C.1 panel c illustrates that the number of nighttime light observations N per 
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weather cell j can vary substantially. The final weights are obtained by dividing nighttime light 

intensity in each weather cell j by total nighttime light intensity in region i: 

𝜉𝑖𝑗 =
𝜈𝑖𝑗

∑ 𝜈𝑖𝑗𝑗
 (C.2) 

Figure C.1 panel d illustrates the final result, while brighter areas indicate higher values of 𝜉𝑖𝑗. 

Figure C.1. Night time light weights for La Réunion 

 
Note: Panel a) Satellite nighttime lights are from the Defense Meteorological Satellite Program (DMSP), average light for the 

calendar year 2000 times the percentage percent frequency of light detection. Panel b) Nighttime light w/o ocean surface makes 

use of the ocean surface shape file from Natural Earth. Panel c) Weather cells are from the Cross-Calibrated Multi-Platform 

(CCMP). Panel d) Brighter cells of the final nightlight weights indicate higher share of total detected nighttime light, which is the 

proxy for regional economic activity. 
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Appendix D. Constructing an IRF for each quintile of income 

The main difficulty to merge the CPI data with the Budget des familles is that the Budget des 

familles consumption basket and the CPI aggregates we considered, though they are based on 

the same underlying classification (COICOP), have differing compositions. This prevents from 

mapping perfectly the two sets of items. We therefore focus on the item that reacts the most 

strongly in our estimation, namely food. However, reconciling the two dataset is not 

straightforward. Indeed, while Insee publishes the CPI of fresh products and total excluding 

fresh products, the share of fresh products in the consumption baskets is not observed in the 

Budget des familles survey. Conversely, while the Budget des familles survey gives weight for 

total food (including tobacco), the food CPI published by Insee excludes tobacco. We therefore 

resort to the following simple approximation. First, in the Budget des familles survey, for each 

quintile of income, and on average across the four departments, we compute the percent 

deviation in the share of food (including tobacco), compared to the average share. Second, we 

apply these percent deviations to the average weight of fresh product observed in our sample. 

This gives us estimated weights of fresh products for each quintile. We therefore implicitly 

assume that the deviation of weights of fresh products between the quintiles and the average is 

the same as the observed deviation of weights of food including tobacco, and that the deviation 

of weights of food products observed in 2017 between the quintiles and the average is 

representative of the deviations which occurred between 1999 and 2018. Finally, we combine 

the estimated baseline impulse response functions for fresh products and total excluding fresh 

products with these set of weights for fresh products (and their respective counterparts, 

corresponding to the weights of total excluding fresh products for the different quintiles) to 

derive an estimated impulse response function of total CPI for each quintile. 

Table D.1: Share of food (incl. tobacco) in the household consumption basket, by quintile of 

income (2017) 

 Guadeloupe Martinique Guyane La Réunion Average 

Total 15.8 16.0 15.8 17.0 16.2 

1st quintile 19.8 19.9 21.2 23.3 21.1 

2nd quintile 20.1 18.0 20.7 21.9 20.2 

3rd quintile 16.5 16.5 16.2 17.2 16.6 

4th quintile 15.8 15.3 15.2 15.7 15.5 

5th quintile 12.4 13.9 12.2 14.5 13.3 

Note: This table presents the share of food (including tobacco) in the household consumption basket, according the Enquête 

Budget des Familles of 2017. The average across the 4 DCOMs is computed as an unweighted mean. 
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Appendix E. Deriving an optimal shock based on estimated shock probability 

using a ROC curve 

We derive an optimal shock based on estimated shock probability using a ROC curve. To build the 

ROC curve, we discretize the range of observed values of predicted shock probability based on 

equation (1) (i.e. �̂�𝑖,𝑡,𝑚 ) into 928 evenly-spaced values, ranging from a minimum of -0.32 and a 

maximum of 1.18. For each value T among these 928 values, we define a discrete shock variable 

equal to one if �̂�𝑖,𝑡,𝑚 is above T, and zero otherwise. For each of these discrete shocks, we 

compute a true positive rate (TPR, sensitivity) and a false positives rate (FPR, 1-specificity) 

using the following formulas: 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

True positive corresponds to the number of observations classified as a shock based which 

indeed are observed shocks; false negative is the number of observations which are not 

classified as a shock while there is actually a shock; false positive is the number of observations 

classified as a shock while there is actually no shock; true negative is the number of 

observations which are not classified a shock when there is actually no shock.  

The ROC curve in Figure E.1 plots TPR against FPR for all of the 928 discrete shocks defined 

above. The further the ROC line is from the diagonal line, the more successful is the model at 

identifying shocks. 

We define the optimal threshold as the one which maximizes the following formula: 

√𝑇𝑃𝑅 × (1 − 𝐹𝑃𝑅) 

The optimal threshold is of 17.5 %: we then define an observation as shock when its underlying 

estimated probability of an administrative shock is higher than 17.5 %. The confusion matrix 

of shocks derived under the optimal threshold is depicted in Table E.1. It shows that all of actual 

administrative shock are correctly classified as shock, but that observations classified as a shock 

represent less than the half of the total number of observations classified as a shock (69 out 177, 

40 %). 
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Figure E.1. ROC curve based on linear probability models with varying thresholds for shock 

discretization 

 

Note: The curve represents the share of true positive shocks (i.e. the number of true positive divided by the sum of true positive 

and false negative) against the share of false positive (i.e. the number of true positive divided by the sum of false positive and 

true negative), for all of the 928 thresholds of predicted probability between 0 and 1. The red dot corresponds to the threshold 

maximizing the true positive rate while minimizing the false positive rate, and corresponds to a threshold of 17.5 %. 

Table E.1. Confusion matrix for the optimal shock based on the ROC curve 

 
Pred. 

shock=0 
Pred. 

Shock=1 

True shock=0 751 108 

True shock=1 0 69 
 

Results from the regressions presented in Figure 9 are based on the following OLS specification 

for each of the 928 values of T: 

log (
𝑃𝑖,𝑡,𝑚+ℎ

𝑃𝑖,𝑡,𝑚−1
) = 𝜏ℎ + 𝜃ℎ𝟙(�̂�𝑖,𝑡,𝑚 > 𝑇) + 𝛾𝑖,ℎ + 𝛿𝑡,ℎ + 𝜃𝑚,ℎ + 𝜃𝑚,ℎ × 𝑅𝑖,ℎ + 휀𝑖,𝑡,𝑚,ℎ 
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Figure E.2. Distribution of estimated effects on fresh products in the discrete shocks against 

the baseline effect 

 

Note: Distribution of estimated coefficients represented in Figure 9. The red line corresponds to the baseline 2SLS effect.  
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Appendix F. Drawing random weather shocks for placebo estimations 

In this section, we describe how we draw random weather shocks for our first placebo estimation 

(in which we instrument the actual administrative shocks by randomly generated). We model the 

maximum observed monthly rainfalls and wind speed using Gumbel distributions. The latter are 

part of generalized extreme values distributions, which are well suited to model extreme 

phenomena, such as the ones we focus on.  

For wind and rain, we generate 100 random draws from Gumbel distributions whose parameters 

match the empirical moments of the maximum wind and rain distributions. More specifically, the 

expected value and variance of a random variable following a Gumbel distribution of location 

parameter μ and of scale parameter 𝛽 are defined as: 

𝐸(𝑋) =  𝜇 +  𝛽𝛾 

𝑉(𝑋) =  
𝜋2

6
𝛽2 

Where 𝛾 is Euler-Mascheroni constant (approximated by the value 0.5772156649). We therefore 

define �̂� and 𝜇 ̂ as: 

�̂�  = √6 ×
𝑠𝑑(𝑋)̂

𝜋
 

𝜇 ̂  = 𝐸(𝑋)̂ − �̂�𝛾 

Where 𝑠𝑑(𝑋)̂  and 𝐸(𝑋)̂ are empirical standard deviation and expected values observed for the 

variable X in our full sample of observations. Empirically, �̂� and 𝜇 ̂are similar to the parameters 

estimated in Stata using the package extremes. Using these sets of parameters, computed both for 

observed maximum records of wind speed and rainfall, we randomly generate placebo values of 

maximum records of wind speed and rainfall these values, defining them as: 

𝑀𝑎𝑥𝑝𝑙𝑎𝑐𝑒𝑏𝑜 = max (𝜇 ̂ − �̂� × ln(−ln(U)), 0) 

Where U is a random draw in a uniform distribution [0,1]. Since random draws in a Gumbel 

distribution can take negative values, we truncate them at zero, in order to match the fact that 

maximum rainfall and wind speed cannot have negative values. 

In Figures F1 and F2, we plot the densities of placebo records (in grey), the density of observed 

records (in red), and the density of a random draw of a normal distribution with parameters of 
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expected value and standard deviation equal to the empirical moments of maximum wind speed 

and rainfalls (in blue). In Figures F3 and F4, we plot the QQ plots of our random draws against the 

observed distributions. Overall, our random draws match reasonably well the distribution of 

observed maximum wind speed and rainfall, and are better suited to such data than a normal 

distribution. 

Table F.1. Empirical moments of maximum wind and rainfall and computed parameters of 

Gumbel distribution 

 𝑬(𝑿)̂ 𝒔𝒅(𝑿)̂  𝝁 ̂ �̂� 

Maximum wind speed 11.49 2.07 10.56 1.61 

Maximum rainfall 47.53 35.16 31.70 27.41 

 

Figure F.1. Placebo and observed maximum 

wind speed  

 

Figure F.2. Placebo and observed maximum 

rainfall 

 

Note: The grey curves represent 100 densities of random draws in a Gumbel distributions matching the observed moments of 

maximum wind speed and maximum rainfalls. Blue curves correspond to a random draw in a normal distribution. Densities 

of actual maximum wind speed and rainfalls are plotted in red. 

Figure F.3. QQ plots of placebo and observed 

maximum wind speed  

 

Figure F.4. QQ plots of placebo and observed 

maximum rainfall 

 

Note: The graphs plot the range of quantiles of placebo maximum wind speed (resp. placebo maximum rainfall) against the 

respective quantiles of observed maximum wind speed (resp. observed maximum wind speed). 


