
Banque de France Working Paper #688  August 2018 

 

 
Estimating Non-Linear DSGEs with the 

Approximate Bayesian Computation: 
an application to the Zero Lower Bound 

Valerio Scalone1 

August 2018, WP #688 

ABSTRACT 
Abstract: Estimation of non-linear DSGE models is still very limited due to high computational 
costs and identification issues arising from the non-linear solution of the models. Besides, the use 
of small sample amplifies those issues. This paper advocates for the use of Approximate Bayesian 
Computation (ABC), a set of Bayesian techniques based on moments matching. First, through 
Monte Carlo exercises, I assess the small sample performance of ABC estimators and run a 
comparison with the Limited Information Method (Kim, 2002), the state-of-the-art Bayesian 
method of moments used in DSGE literature. I find that ABC has a better small sample 
performance, due to the more efficient way through which the information provided by the 
moments is used to update the prior distribution. Second, ABC is tested on the estimation of a 
new-Keynesian model with a zero lower bound, a real life application where the occasionally 
binding constraint complicates the use of traditional method of moments. 
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NON-TECHNICAL SUMMARY 

Despite the growing importance of non-linear DSGE models, their estimation is still very limited 
mainly due to the high computational burden associated to the non-linear estimation techniques. 
Beside, some identification issues can arise due to non-regularities deriving from the non-linear 
solution.  

Are there estimation methods which overcome those issues and make non-linear DSGE 
estimation easier to apply? The Bayesian versions of the methods of moments can provide a 
useful response in this sense. In particular, this paper advocates for the use of Approximate 
Bayesian Computation, a set of techniques developed in epidemiology and population genetics 
(Pritchard et al. [2000]).   

ABC is a set of Bayesian methods through which the prior distribution of the structural 
parameters of the model is updated by the information provided by the moments (i.e. variances, 
covariances, etc.). In a first step, a large number of vectors of parameters is drawn from the prior 
distribution. In a second step, for each vector o parameter, the model is simulated. For each 
simulation, the distance between the vector of simulated moments and the vector of the observed 
moments is computed. In a third step, a selection step is made for each simulation: simulations are 
accepted only if the Euclidean distance is smaller than a fixed threshold, otherwise they are 
rejected. Finally, the parameters associated to the accepted simulations provide an approximation 
to the posterior distribution. 

Schematic representation of the basic algorithm of Approximate Bayesian Computation 

 

 

Through Monte Carlo exercises, I show that ABC has a better small sample performance 
compared to the state-of-the-art Bayesian method of moments used in DSGE estimation, the 
Bayesian Limited Information (Kim [2002], Christiano et al. [2015]). This result hinges on the way 
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through which the distribution of the moments is obtained and used to update the prior 
distribution.  

Furthermore, I estimate a New-Keynesian DSGE model with an occasionally binding ZLB by 
using simple ABC-rejection. I estimate the model on US data by using ABC and I find three 
results. First, including the period of the ZLB in the sample is crucial to correctly estimate the 
probability of hitting the Zero Lower bound. Second, the use of conditional moments in the 
estimation (i.e. moments conditional on the state of the economy) can ease the identification 
issues generated by the presence of the Zero Lower Bound. Third, estimation helps the model to 
replicate some of the main features observed before and after the Great Recession and to ease the 
over-reaction of macroeconomic variables predicted by the DSGE with ZLB, as highlighted by 
Fernandez-Villaverde [2015].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Estimation des modèles DSGE non-linéaires 
par Approximate Bayesian Computation : 

une application au Zero Lower Bound 
L’estimation des modèles DSGE non-linéaires est encore très limitée, vu les coûts de calcul 
importants et les problèmes d’identification qui peuvent découler de la forme non-linéaire de la 
solution du modèle. Ce papier préconise l’utilisation de la Approximate Bayesian Computation (ABC), 
une méthode des moments bayésienne. À travers des exercices Monte-Carlo, la performance de 
l’ABC pour de petits échantillons est comparée à celle de la méthode de l’Information limitée 
(BLI- Kim, 2002), l’état de l’art dans l’estimation des modèles DSGE par méthodes des moments. 
On observe une meilleure performance de l’ABC par rapport au BLI, en particulier quand le 
nombre d’observations est réduit. A titre d’exemple, l’ABC est testée sur l’estimation d’un modèle 
néo-keynésien avec une politique monétaire au zero lower bound.  

Mots-clés : Analyse Monte Carlo; Méthode des moments, Bayésien,  Zero Lower Bound, 
estimation des modèles DSGE  
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1 Introduction

Despite the growing importance of non-linear DSGE models, their estimation is

still very limited. First, considering the likelihood approach (Fernández-Villaverde

and Rubio-Ramı́rez [2007]), this fact can be explained by the computational burden

associated to the Particle filter. Second, standard methods of moments (GMM,

SMM) can present important small sample bias and encounter identification issues,

related to the non-linear structure of the model.

Are there estimation methods which overcome those issues and make non-linear

DSGE estimation easier to apply? The Bayesian versions of the methods of moments

can provide a useful response in this sense. In particular, this paper advocates for

the use of Approximate Bayesian Computation, a set of techniques developed in

epidemiology and population genetics (Pritchard et al. [2000], Blum [2010]). In

ABC, the information provided by the data is conveyed in moments, which are

used to update the prior distribution on the parameters. In the paper, I highlight

the positive aspects related to the use of ABC in estimation of non-linear DSGEs.

Through Monte Carlo exercises, I show that ABC has a better small sample perfor-

mance compared to the state-of-the-art Bayesian method of moments used in DSGE

estimation, the Bayesian Limited Information (BLI, Kim [2002], Christiano et al.

[2010b, 2015]). This result hinges on the way through which the distribution of

the moments is obtained and used to update the prior distribution. Furthermore,

by applying ABC to a New-Keynesian DSGE model with an occasionally binding

ZLB, I show that the use of moments limits the computational burden associated

to the likelihood approach, making the estimation of medium-scale DSGE models

feasible. Before running the estimation, I highlight the computational and identifi-

cation issues related to the use of moments in non-linear models, generated by the

non-regular mapping functions relating the structural parameters and the moments

used in the estimation. To this extent, I show how ABC -and Bayesian method of

moments- can ease those problems. First, the Bayesian structure of ABC allows to

fix the computational issues related to non-regularity in objective functions, gen-

erated by the use of moments in a non-linear framework. Second, the good small

sample properties of ABC simplify the use of conditional moments (i.e. moments

computed conditional on the state of the economy), easing identification issues.

I estimate the model on US data by using ABC and I find three results. First,

including the period of the ZLB in the sample is crucial to correctly estimate the

probability of hitting the Zero Lower bound. Second, the use of conditional mo-

ments in the estimation (i.e. moments conditional on the state of the economy) can

ease the identification issues generated by the presence of the Zero Lower Bound.
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Third, estimation helps the model to replicate some of the main features observed

before and after the Great Recession and to ease the over-reaction of macroeconomic

variables predicted by the DSGE with ZLB, as highlighted by Fernández-Villaverde

et al. [2015].

When the economy enters in a period of Zero Lower Bound, the relations be-

tween the observable variables significantly varies with respect to normal times (for

example the policy rate does not positively co-vary with income in ZLB), generating

non-regular mapping functions. This phenomenon is associated to two main issues:

1) an identification issue; 2) a computational issue. First, the use of unconditional

moments can cause important identification issues in small sample, as underesti-

mating the parameters controlling the non-linearity of the model. For example, in a

linear New-Keynesian model, standard deviations of demand side shocks are usually

positively related to the covariance between interest rate and output. Instead in a

non-linear model, large negative demand shocks can push the interest rate on its

(zero) lower bound. To this extent, higher standard deviations can be associated

to prolonged periods of Zero Lower bound where the covariance between interest

rate and output is equal to zero. Therefore, the use of unconditional covariance

(i.e. without distinguishing between periods of ZLB and Taylor rule periods) can

lead to underestimate the standard deviation of demand side shocks. Instead, the

use of conditional moments (moments computed conditionally on the state of the

economy) can ease the identification issue, by making the use of the information

provided by the data more efficient. In the case of a DSGE with ZLB, moments can

be computed conditionally on being (and not being) on the Zero Lower Bound and

be included in the computation of objective functions. However, the presence of con-

ditional moments can amplify the small sample bias. To this extent, ABC proves to

have a better small sample performance than the other Bayesian alternative (BLI).

Second, the presence of non-regular mapping functions generate non-regular ob-

jective functions, whose minimum can be computationally hard to find with the

optimization algorithms used in frequentist methods (GMM, SMM). Instead, the

Bayesian structure of ABC allows to run estimation also when the objective function

is non-regular. Overall, the use of conditional moments in a Bayesian framework, as

such is the case of ABC, appears crucial to help the model to replicate some of the

main features observed in the macroeconomic data during the period of Zero Lower

Bound.

In Economics, application of ABC is still very limited.1 ABC is a set of Bayesian

1 Creel and Kristensen [2011] propose the Indirect Likelihood Inference, a type of estimator
whose Bayesian simulated version (Simulated Bayesian Indirect Likelihood estimator, SBIL) co-
incides with a variant of ABC (ABC-kernel). In their paper they also show an application to
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methods through which the prior distribution p(θ) is updated by the information

provided by the moments s (i.e. variances, covariances, etc.). The model is simu-

lated a large number of times with different parameters θi, drawn from the prior.

For each simulation, the distance between the vector of simulated moments si and

the vector of the observed moments s is computed (ρi = ||si − s||). In the selection

step, simulations are accepted only if the Euclidean distance is smaller than a fixed

threshold ε. The parameters associated to the accepted simulations provide an ap-

proximation to the posterior distribution p(θ|s = s∗). Importantly, each simulation

has the same sample size of the observed sample. This allows to make inference

by studying the actual distribution of the moments (i.e. taking into account the

sample size). This feature marks the main difference of ABC with respect to the

BLI method. The BLI is often interpreted as the Bayesian version of GMM/SMM

estimators, where the likelihood of the moments is used to update the prior distribu-

tion. Likelihood is obtained relaying on the asymptotic distribution of the moments.

However, in small sample, the actual distribution of moments (biased with respect

to the analytic value) can substantially differ with respect to the one deriving from

the asymptotic distribution (normal and centered around the analytic value). This

difference delivers a comparative advantage of ABC with respect to BLI under small

sample. This statement is shown in two Monte Carlo exercises: on an AR(1) with

different autocorrelations and on a RBC model. In order to run the comparison

from a Bayesian perspective, the ABC and the BLI are assessed with respect to the

full likelihood posterior distributions. The smaller the sample, the larger will be the

advantage of ABC with respect to the BLI.

Literature. This paper is related to three streams of literature. First, the pa-

per focuses on methods to estimate non-linear DSGE models. In order to compute

the likelihood and estimate the models, Fernández-Villaverde and Rubio-Ramı́rez

[2007] proposed the use of the Particle filter.2 Alternatively, Ruge-Murcia [2007,

2012], Christiano et al. [2010b], Christiano et al. [2015] apply methods of moments

to estimate DSGE models. In particular, Ruge-Murcia [2012] applies the Simulated

Method of Moments (Duffie and Singleton [1990]) to estimate a non-linear DSGE

model of an economy subject to asymmetric productivity shocks. In order to over-

come weak identification issues and add extra-data information, Christiano et al.

[2010b], Christiano et al. [2015] adopt the Limited information method (BLI) by

a non-linear DSGE model. Furthermore, Grazzini et al. [2017] apply the ABC to estimate an
agent-based model.

2Despite being a fascinating device, this alternative tool is often considered too computationally
burdensome to handle medium or large-scale DSGE models. Besides, for the application of the
Particle filter, measurement errors must be added to the observable variables,and in most cases,
given the size of the model, the standard deviation of the measurement errors is fixed in advance.
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Kim [2002] to estimate linear DSGE models with financial frictions. This paper

contributes to this literature along more dimensions. As a main contribution, the

paper focuses on ABC methods, which are relatively new in Economics, and runs a

Monte Carlo analysis to compare its small sample performance with the one of of

the BLI, the state-of-the-art Bayesian method of moments popular in the DSGE lit-

erature. Furthermore, the paper highlights the consistency and identification issues

arising when using the frequentist methods of moments (GMM, SMM, Indirect In-

ference) in the context of non-linear DSGE models, in particular by focusing on the

identification issues related to the use of unconditional moments in the context of

models featuring Occasionally Binding Constraints (OBC). Finally, the paper shows

that those issues can be partially fixed by matching the conditional moments and

the Bayesian versions of the methods of moments (ABC and BLI).

I contribute to a second stream of literature bridging the gap between the ABC

literature developed in population genetics and the Economics literature. Creel and

Kristensen [2011, 2016], Forneron and Ng [2015], Creel et al. [2015] explored the

use and the asymptotic properties of ABC methods in the estimation of economic

models. In particular, Creel and Kristensen [2011] present the Indirect Likelihood

Inference estimator, whose simulated Bayesian (SBIL) version coincides with the

ABC, to a DSGE models. Creel and Kristensen [2011] provide asymptotic results

for the estimator and show that Indirect Likelihood Inference estimators have a

higher order efficiency with respect to the GMM style estimators. In their paper,

using a DSGE model solved by perturbation methods, they compare the small sam-

ple performance of the SBIL estimator with the one of the Simulated Method of

Moments. The Monte Carlo experiments are run from a frequentist perspective,

by computing the RMSEs of the SMM and of the SBIL estimator with respect to

the true values. In this paper, the comparison is run between ABC and the BLI

and is made from a Bayesian perspective, by assessing to which extent the posteriors

obtained from the BLI and the ABC approximate the full likelihood posterior distri-

butions. Also, I apply ABC to a real life application: a DSGE with an occasionally

binding Zero Lower Bound, solved by piecewise linear approximation (Guerrieri and

Iacoviello [2015]) and estimated on US data using different sample sizes. In doing

that, I focus on the ability of ABC to handle non-regular objective functions, coming

from the use of moments computed in a non-linear framework.

The third stream of literature focuses on DSGE models with the Zero Lower

Bound (Eggertsson and Woodford [2003], Fernández-Villaverde et al. [2015], Gust

et al. [2012], Aruoba et al. [2013] ). Gust et al. [2012] estimate a new-Keynesian

DSGE model with the ZLB, by estimating the model with three observables (in-
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flation, output and interest rate). In order to compute the likelihood they use the

particle filter. In this paper, I estimate a DSGE with the ZLB ( Fernández-Villaverde

et al. [2015]) by using a matching moments procedure, with conditional moments.

Besides, Aruoba et al. [2013] and Christiano et al. [2015] estimate a non-linear model

by using data pre-2008 (i.e. excluding the ZLB from the sample). In this paper, the

benchmark estimation is run on a sample which includes the ZLB while conditional

moments on the regime of monetary policy are used to compute the objective func-

tion. Data after 2008 are shown to provide crucial information to help the model

to replicate some of the essential features observed in macroeconomic aggregates

during the Great Recession and the slow recovery period.

The reminder of the paper is the following. Section 2 presents the ABC tech-

niques. Section 3 runs the comparison between ABC estimator and the BLI estima-

tor. Section 4 exposes the challenges related to the use of method of moments in

the estimation of the DSGE with the ZLB and the estimate results by ABC-SMC.

Section 5 concludes.

2 Approximate Bayesian Computation.

Approximate Bayesian Computation (ABC) is a set of statistical techniques de-

veloped in population genetics at the end of the 90’s: Pritchard et al. [2000] de-

veloped the basic algorithm (ABC-rejection), while a series of computational re-

finements have been introduced over time (Beaumont et al. [2002], Marjoram et al.

[2003], Sisson et al. [2007]). In the last decade, the methodology spread across all

natural sciences, namely epidemiology, ecology and biology. In Economics, ABC

methods have been applied by Grazzini et al. [2017], to estimate an agent-based

macroeconomic model.

ABC is a likelihood-free method through which the prior distribution is updated

by the information provided by the moments of the observed sample (e.g. variances).

The core of ABC generally presents three steps. First, the model is simulated a large

number of times. Importantly, each simulation has the sample size of the observed

sample and is run by using different parameters. Second, a measure for the distance

between the simulated data and the observed ones is computed for each simulation.

Third, a selection step is made on the simulations, on the basis of this measure. The

parameters associated to the accepted simulations provide an approximation to the

full likelihood posterior distribution.

ABC simplest form -the ABC-rejection- features the following pseudo-algorithm:

• Draw θi from the prior distribution p(θ);

5



• Simulate the model and get the variable yi;

• Compute the summary statistics si;

• If the Euclidean distance ρ||si − s|| < ε accept θi otherwise reject it;

• Repeat the procedure for N times;

where si is the vector of moments from the simulated sample, s is the vector of

moments of the observed data, ε is the tolerance level. In this method, the initial

parameters are drawn from the prior distribution p(θ). For each simulation the

selection criterion is the Euclidean distance ρi between the summary statistics of

the simulations (i.e. moments) si and the ones from the observed sample s. The

selection step is an accept-reject: when the Euclidean distance is smaller than a fixed

threshold ε, the simulation is accepted. The parameters of the accepted posterior

distributions are a sample of the approximate posterior distribution p(θ|si = s). The

Bayes Rule of the Bayesian statistics is approximated in the following way:

P (θ|y) ∝ L(y|θ)P (θ)→ P (||si − s|| < ε)P (θ) (1)

where P (θ|y) is the exact likelihood posterior distribution, L(y|θ) is the exact like-

lihood, P (θ) is the prior distribution. In particular, the likelihood function is ap-

proximated by the accept-reject step on the Euclidean distances criterion, while

the ABC posterior distribution is an approximation to the full likelihood posterior

distribution.

To this extent, asymptotic theory for ABC methods studies the conditions un-

der which the ABC posterior distributions converge to the full likelihood posterior

distribution. In particular, Blum [2010], Biau et al. [2015] and Barber et al. [2015]

show that, under very weak assumptions, if the moments used in the estimation are

sufficient statistics, the approximate posterior distribution converge to the full like-

lihood posterior distribution for ε → 0 and N → ∞. Besides, Barber et al. [2015]

quantify the bias introduced by the presence of a positive tolerance level ε > 0.

Given a threshold level equal to ε, the ABC bias is asymptotically proportional to

ε2 as ε→ 0.

Concerning the asymptotic efficiency, Creel and Kristensen [2011] show that

ABC-style estimators have a higher order efficiency with respect to the GMM-style

estimators.3 The higher efficiency is the result of the fact that in ABC the simu-

lations have the same size of the observed sample. Thanks to this feature, ABC

3In fact, Creel and Kristensen [2011] provide asymptotic results for the Indirect Likelihood
inference estimator. In this paper, the authors propose a series of estimators for which inference
is based on exploiting the information provided by the likelihood of the moments: the indirect
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Figure 1: Illustration of the ABC-rejection algorithm.

exploits the simulated moments distribution, in order to update the prior. This

simulated distribution takes into account the actual simulated distribution of the

moments , i.e. taking into account the sample size, and represents one of the main

points of strength of ABC with respect to the other methods of moments. This

point is analyzed and presented in more depth in the following section.

ABC posterior differs from the full likelihood posterior distribution for three

issues. First, the positive tolerance level ε which cannot be equal to 0, introduces

an approximation error: accepted simulations are not associated to the minimal

distance between the simulated and the observed moments. Second, the number of

simulations cannot be infinite: this creates a simulation error (called also sampling

error), deriving from the fact that we learn the approximate posterior through a

finite sample of accepted simulations. Third, the moments used in the estimation

are hardly sufficient: a part of the information contained by the full data is partially

lost when using moments.

likelihood. The Maximum Indirect Likelihood (MIL), the Bayesian Indirect Likelihood (BIL) and
their simulated versions are illustrated (the Simulated Maximum Indirect Likelihood, SMIL, and
and the Simulated Bayesian Indirect Likelihood, SBIL). The SBIL estimator coincides with the
ABC. In the paper, they provide asymptotic results for these estimators. In the proposition 1,
they affirm that MIL and BIL are consistent estimators. They prove the asymptotic equivalence of
the simulated version of the MIL and BIL. They show the first order equivalence relative between
the MIL, the BIL and the GMM-style estimators (GMM, SMM, Indirect Inference). Importantly,
they also show that the IL estimators are higher order efficient relative to the moments based
estimators. In fact, high order expansions reveal that the second order variance of the estimator
is smaller than the one obtained by the GMM-style estimators.
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Moreover, concerning the first two points, a trade-off exists between the approx-

imation and the simulation error: given a fixed number of simulations, if we lower

the tolerance level, the approximation error decreases while the simulation error

increases. In order to reduce the simulation error without increasing the approxi-

mation error, it is necessary to increase the number of simulations N , while keeping

the tolerance level fixed. 4 To this extent, Barber et al. [2015] compute the optimal

threshold, by minimizing a loss function which takes into account the bias intro-

duced by the threshold, and the computational cost associated to the production of

the simulations.

As highlighted by (Biau et al. [2015]), in practice ABC is a a k-nearest neighbour

estimator: instead of fixing a threshold level, practitioners prefer to fix in advance

the fraction of the simulations which are accepted. By doing this, the tolerance

level is automatically determined by the largest Euclidean distance associated to

the accepted simulations. On an exploratory stage, the estimation can be run with

different tolerance level and results can be compared. From the comparison of the

results obtained with tolerance levels, we can assess whether the tolerance level is

sufficiently low to identify our parameters of interests or if we need to reduce the tol-

erance level further, in order to tackle the approximation error. As a rule of thumb,

very irregular shapes of the approximate marginal posteriors for the different pa-

rameters can be associated to large simulation errors, due to a tolerance level which

is too low with respect to the number of simulations N. Conversely, an important

approximation error can arise when the tolerance level is too large to correctly iden-

tify parameters that are weakly identified (i.e. parameters for which the curvature

of the objective function is almost flat). This happens because weakly identified pa-

rameters have a low weight in the determination of the Euclidean distance and the

selection step is not able to exploit the information provided by the moments and

update the marginal prior distribution for those parameters. As a general practice,

assessing the curvature of the Euclidean distance with respect to those parameters

allows to have an intuition of the magnitude of the approximation error which can

be tolerated without compromising identification.

Alternatively, in order to improve identification, additional moments can be

added, to improve the identification for certain parameters. More in general, the

set of moments needs to get as close as possible to set of information provided by

the sufficient statistics (i.e. the set of moments resuming the information provided

4The computational cost for generating ABC sample is like δ−q, where q is the dimension of
the observations. They also provide a criterion to optimally choose the tolerance level, balancing
the MSE, depending on the simulation error, with the computational cost, related to the costs
associated to producing a number of simulations.
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by the data). On the one hand, the moments selected will be hardly sufficient.

Moreover, it is hard to determine to which extent they miss the sufficiency con-

ditions. On the other hand, this flexibility can be exploited to include moments

that are particularly informative on some parameters. Finally, it is worth to stress

that these same issues related to the moments selection are found also in the other

methods using limited information (GMM, SMM and Indirect Inference estimators

(Ruge-Murcia [2012], Christiano et al. [2016]). To this extent, Creel and Kristensen

[2016] developed an algorithm for the selection of moments.

Concerning the estimation exercises for the paper, DSGEs are estimated by

matching the variances, the covariances and the autocovariances up to order 2, the

skewness and the courtosis of the observable series (consumption, interest rate, in-

come). In the main estimation exercise, the moments are computed conditionally

on the state of the monetary policy regime (unconstrained monetary policy versus

Zero Lower Bound binding). These moments are not necessarily sufficient to ensure

the convergence to the full likelihood posterior distribution.To this extent, keeping

a Bayesian perspective, ABC can be interpreted as a procedure through which the

extra-data information (prior) is updated by the information conveyed in the ob-

served moments, without necessarily claiming the convergence to the full likelihood

posterior. Overall, increasing the number of moments can be a good strategy to con-

verge towards the sufficiency. However, increasing the number of moments decreases

the asymptotic rate through which the approximated posterior converges to the full

likelihood posterior (Beaumont et al. [2002], Barber et al. [2015]). As explained by

Grazzini et al. [2017], this finding derives from the trade-off between the approxima-

tion error and the simulation error: when the number of moments increases, for a

fixed number of simulations, either the tolerance level becomes too high (important

approximation error), or the acceptance ratio too low (important simulation error).

In other words, ABC encounters the curse of dimensionality, especially when the

number of parameters to estimate is large. This phenomenon is amplified when the

prior and the posterior distribution strongly differ: because of the low acceptance

ratio, a large number of simulations must be produced to contain the simulation

error.

In order to improve the computational efficiency and ease the curse of dimen-

sionality, several types of types of refinements have been developed. One approach

consists in refining the algorithms to better exploit the information provided by the

Euclidean distance and by the different moments. For example, accepted simula-

tions can be assigned a weight according to a kernel function. The argument of

the kernel is the Euclidean distance: the smaller the distance, the larger will be
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the weight. Puit it differently, the indicator function which is implicitly applied

in the ABC algorithm, is substituted by other types of kernel functions (Normal

kernel, Epanechnicov etc.). In the remainder of the paper, we call this specifica-

tion ABC-kernel.5 Furthermore, a post-sampling correction step can be added. In

ABC-regression (Beaumont et al. [2002]), the accepted parameters are regressed

against the mismatch between the simulated and observed moments. The estimated

regression is then exploited to correct the accepted parameters.

Alternatively, a more efficient way of drawing the parameters can be obtained by

ABC-Importance Sampling (Creel and Kristensen [2016]), ABC-MCMC (Marjoram

et al. [2003]) and ABC-SMC (Sisson et al. [2007]). These algorithms exploit the

core mechanism of ABC-rejection in a Monte Carlo structure. In Section 4, a DSGE

with ZLB is estimated by ABC-rejection. For ABC-MCMC ad ABC-Regression and

ABC-SMC, more details on can be found in the Appendix.

3 A comparison with the Bayesian Limited Infor-

mation Method

In this section I compare the small sample performance of the ABC estimators

with the one of Limited Information Method (Kim and Kim [2003]). The BLI has

been chosen to run the comparison for two reasons. First, it is the state-of-the-

art method of moments used in DSGE estimation (Christiano et al. [2010a, 2016]).

Second, being Bayesian, it can be directly compared to the ABC, in that both the

methods aim at providing an approximation of the full likelihood.

In BLI, the prior distribution is updated by the likelihood of the moments, ob-

tained by relying on moments asymptotic distribution, via Central Limit Theorem.

Given the vector of parameters θ, the sample moments γ̂ and the estimated variance

of the moments V̂ , the Approximate Posterior distribution P (θ|γ̂, V̂ ) is obtained ac-

cording to the Bayesian updating rule:

P (θ|γ̂, V̂ ) =
P (γ̂|θ̂, V̂ )P (θ)

P (γ̂|V̂ )
(2)

where T is the number of moments,γ̂ is the vector of sample moments, γ(θ) is

the vector of analytical moments depending on the parameter θ, P (θ) is the prior

5The ABC kernel coincides with the simulated Bayesian version of the estimator proposed by
Creel and Kristensen [2011] (i.e. the Bayesian Indirect Likelihood estimator).
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distribution. The likelihood P (γ|θ̂, V̂ ), conditional on V̂ , is computed according to:

P (γ|θ̂, V̂ ) =
1

(2π)(
N
2
)
|V̂ |−

1
2 exp

{
−T

2
(γ̂ − γ(θ))′ V̂ −1 (γ̂ − γ(θ)) .

}
. (3)

In BLI, the likelihood of the moments, thanks to their asymptotic normality, is

computed by focusing just on the first and the second moments of their distribution.

This marks a key difference with ABC methods, where the simulations have the

same size of the observed sample and the simulated distribution of moments takes

into account the small sample bias. This difference may result in an important

comparative advantage of ABC with respect to the BLI estimator, when the actual

and the asymptotic distribution of the moments substantially differ, as it can be the

case of small samples.

The relative performance of the ABC estimator with respect to the BLI method

is measured in two Monte Carlo exercises. The exercise is run from a Bayesian

perspective: the goal is to understand to which extent the two methods approximate

the full likelihood posterior distributions under small samples. To do that, I compute

two different objects. First, I compute the Root Mean Square Error (RMSE) with

respect to the Full likelihood Posterior Mean. RMSE measures how close are the

two estimators to the Full likelihood Bayesian estimator (the Posterior Mean). In

particular, the RMSE is obtained by:

RMSE =
1

N

∑(
θ̂app − θ̂full

)2
θ

, (4)

where θ̂app is the mean of the posterior of one of the two approximating methods,

θ̂full is the full likelihood posterior mean.

Second, I compute the Overlapping Ratio, capturing which of the two methods

deliver a better approximation of the posterior distributions. The Overlapping Ratio

is obtained by:

OR =
CI90%,App ∩ CI90%,F l
CI90%,App ∪ CI90%,F l

(5)

where CIi−%,App is the i− th Percentile of the Approximate Posterior distribution,

∩ stands for Intersection and ∪ for Union. The Overlapping Ratio is always in-

cluded in the interval [−1, 1]. For example if the two intervals perfectly coincide

the Overlapping Ratio equals 1, whereas if two degenerate posterior distributions

do not overlap at all, the Overlapping Ratio equals -1.

I run the Monte Carlo experiment on two different models: an AR(1) model and

11



a RBC model subject to some weak identification issues.6

3.1 Case 1: AR(1)

In this subsection I run a Monte Carlo experiment on an AR(1) process and

I find that the ABC methods outperform the BLI method in approximating the

full likelihood posterior distribution. The exercise is run for for different auto-

correlations in the Data Generating Process (DGP) and for different sample sizes.

According to the results, the advantage of ABC increases with the auto-correlations

in the DGP. Also, the smaller the sample, the larger the advantage of ABC with

respect to BLI.

Before presenting the experiment in more depth, I provide an intuition on why

the sample size and the persistence concur in this way to the results. In Fig. 2 and

3, I report the distributions of the sample autocovariances obtained by simulating

the AR(1) model, respectively when the autocorrelation φ of the DGP 0.5 and when

0.99. The distributions are reported for different sample sizes: from 50 to 1000

observations. In the case of lower auto-correlation (Fig. 2), when the sample size

increases, the distribution of the autocovariances converges to a normal distribution

with mean equal to the population autocovariance (γ = φ/(1 − φ2)), (the pink

plane), whereas in small sample the distribution is skewed and not centered around

the analytic moment. Fig.3 reports the case when φ = 0.99, for which even when the

sample contains 5000 observations, the sample distribution substantially differs from

the asymptotic one. In the updating step ABC relies on the simulated distribution in

order to update the prior distribution, whereas BLI relies on the asymptotic normal

distribution of the moments. For small samples and high autocorrelation in Data

Generating Processes, this difference plays in favour of a substantial comparative

advantage of ABC over BLI.

For each couple of autocorrelations and sample sizes, the estimation for each

AR(1) process is run 1000 times. The sample sizes considered are 100, 300, 1000 ob-

servations. The autocorrelation factor tuning the persistence assumes the following

values φ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]. The moment to match

is the first order autocovariance, whereas the prior distribution is a Uniform prior

∼ U [0, 1]. For the ABC, 10000 simulations are produced drawing from the prior,

6In a similar exercise, Creel and Kristensen [2011] run Monte Carlo experiments to assess the
small sample performance of the Indirect Likelihood Inference with respect to Simulated Method
of Moments. Their comparison is run from a frequentist perspective, since they compare the
performance of the estimators in inferring the true parameter of the Data Generating process. The
following exercises can be thought as the Bayesian version of their exercise, given the Bayesian
nature of the estimators which are compared and the Bayesian criteria adopted in assessing the
performance.
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Figure 2: Distribution of the sample autocovariance for an AR(1) process with
φ = 0.50 for different sample sizes: from 50 to 2000 observations. The pink plane
represents the population autocovariance.
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Figure 3: Distribution of the sample autocovariance for an AR(1) process with
φ = 0.99 for different sample sizes: from 50 to 4000 observations. The pink plane
represents the population autocovariance.
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and the 1% of the simulations are accepted, according to the Euclidean distance.

The curse of dimensionality does not affect the estimation since 10000 simulations

are enough to make the simulation error negligible. For this reason, the correction

step of the ABC-regression and the Kernel Weighting do not improve the estima-

tion results upon the ABC-rejection procedure. Only results for ABC-regression are

reported for the sake of brevity.

For the Bayesian Limited Information method, the likelihood of the autocovari-

ance is computed and the prior is updated. The posterior distribution is studied

with the Importance Sampling algorithm: as importance distribution the prior dis-

tribution is used and 10000 samples are drawn for each estimation. The variance

covariance matrix V̂ is computed with two alternatives: the HAC Variance Covari-

ance Estimator or a bootstrapping procedure.7

Fig. 4, 5 and 6 present the evolution of the RMSEs with respect to the Full

likelihood posterior mean, obtained using three different sample sizes: respectively

100, 300 and 1000 observations. For each figure, on the horizontal axis, the auto-

correlation of the DGP varies from φ = 0.1 up to φ = 0.99. We find that ABC

has a smaller RMSE with respect to the BLI. Furthermore, the difference widens

in smaller sample and when the DGP is more persistent. Among the different

approaches to estimate the variance covariance matrix of the moments V̂ , the HAC

Newey-West estimator ensures smaller RMSEs especially in highly persistent cases

and small samples, while the bootstrapping methods has smaller RMSE with low

autocorrelations. In large samples, the RMSEs converge, at least for the cases where

the autocorrelations φ of the DGP is smaller than 0.95.

In order to assess to which extent the posterior distributions approximate the full

likelihood posterior, we compute the Overlapping Rations (OR) between the 90th

credible intervals of ABC and BLI with respect to the one of the Full Likelihood.

Figs. 7, 8 and 9 report the evolution of the Overlapping Ratios. Again, the samples

are made of 100, 300 and 1000 observations. The OR difference between ABC

methods and BLI is larger in general for highly persistent processes proving that

ABC outperforms BLI in approximating the posterior distributions under small

7In the first case, the Newey-West estimator is computed, using a Bartlett Kernel, having a
bandwidth equal to B(T ) = floor(4 ∗ (T/100)(2/9)), where T is the sample size. In the second
case, the bootstrapping is applied in two steps. A first step estimator is computed to minimize a
quadratic objective function using the identity matrix as variance covariance matrix. Afterwards,
the AR(1) process is simulated for 1000 times (bootstrapping) to compute the autocorrelation for
each bootstrap and the covariance of the moments V̂ to compute the likelihood. In this simple case,
the identity matrix at the initial step is simply the unity scalar, whereas the the covariance matrix
of the second step is the variance of the autocovariances computed in the firt one. This method
is inspired to the solution proposed in Christiano, Trebandt ad Walentin, where the covariance
matrix is estimated through a bootstrap step.
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Figure 4: RMSE of the Monte Carlo experiment: AR(1) process. Comparison among
the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample size=100. Different
autocorrelations on the horizontal axis.

sample. Also from this standpoint, results suggest that among the BLI estimators,

the HAC estimation of the variance covariance matrix has a larger OR values than

the Bootstrapping Procedure for persistent processes, while the opposite is true for

the low persistent cases. 8

3.2 Case 2: A RBC with identification issues

In this second section, the performance of the two estimators is studied in a

more complex application. The experiment is run on a linear RBC model with

three structural shocks and three observables.9 The model equations are presented

in Appendix.

The RBC studied in this section encounters some identification issues concerning

the preference parameters, due to the presence of three stochastic processes: a

8The difference in the result between the two different versions of the BLI is explained by the
way through which the likelihood updates the prior.Indeed, in BLI the variance covariance matrix
has two roles. First, as in the GMM-style estimators, it is the weighting function of the moments
used in the estimation. Second, the variance covariance determines the weight of the likelihood
with respect to the prior distribution. In this estimation exercise, the role of the variance covariance
is limited to the latter element, since we use only one moment to update the inference. Generally
speaking the estimation of the variance co-variance matrix is one of the trickiest steps for all the
methods of moments, especially in a context of small sample. In this respect, concerning the BLI,
the variance covariance estimation not only affects the computation of the objective function (i.e.
the likelihood), but also the weight that this function has in updating the prior distribution.

9The comparison is run on a linear solution: the likelihood is computed by Kalman filter.
Running a comparison with respect to the likelihood in a non-linear version would have implied the
use of Particle filtering for the likelihood computation. This would have introduced an additional
computational error in the estimations related to the use of the particle. The use of the linear
model allows to avoid this additional source of error in the Monte Carlo exercise.
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Figure 5: RMSE of the Monte Carlo experiment: AR(1) process. Comparison among
the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample size=300. Different
autocorrelations on the horizontal axis.
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Figure 6: RMSE of the Monte Carlo experiment: AR(1) process. Comparison among
the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample size=1000. Different
autocorrelations on the horizontal axis.
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Figure 7: Overlapping Ratios of the Monte Carlo experiment: AR(1) process.
Comparison among the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample
size=100. Different autocorrelations on the horizontal axis.

productivity shock on the production function, a shock on the preference affecting

the labour supply and a shock on the interest rate requested by the household. The

presence of these three shocks allows to estimate the full likelihood distribution using

three observable variables, without the need of adding measurement errors.

Each Monte Carlo experiment is made of 100 repetitions. The RMSE and the

Overlapping Ratio are computed using different sample sizes: 100, 200, 500 obser-

vations. The data generating process parameters are the following the subjective

discount: β = 0.95, the utility function parameter γ = 2, the autocorrelations for

the TFP process, for the labour supply and for the interest rate are respectively

ρa = 0.95, ρb = 0.95, ρd = 0.95, while the respsective standard deviation of the

shocks are σa = 0.01 σb = 0.01, σd = 0.01. The moments used in the estimation are

the covariances and the first order autocovariances of three observables: income Yt,

hours Ht and investments It.

The prior distribution is reported in Table 1. Concerning the ABC methods,

the RBC is simulated 5000 times, the tolerance level is such that the acceptance

ratio of the simulations is equal to 5%. We report the results for ABC-rejection,

ABC-kernel, ABC-regression. The variance covariance matrix of the BLI estimator

is obtained through the HAC Newey-West estimator. For each Full likelihood and

BLI estimation, posteriors are studied by MCMC methods (An and Schorfheide

[2007]). Each chain contains 10000 draws with a burn-in period of 1000 draws.

Table 2 contains the results of the RMSE for the case of 100 observations, in-

formative prior and high persistence of the process. Overall, RMSEs with ABC are

smaller than the RMSEs with BLI. Tables 3 and 4 report the RMSEs respectively
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Figure 8: Overlapping Ratios of the Monte Carlo experiment: AR(1) process.
Comparison among the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample
size=300. Different autocorrelations on the horizontal axis.
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Figure 9: Overlapping Ratios of the Monte Carlo experiment: AR(1) process.
Comparison among the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample
size=1000. Different autocorrelations on the horizontal axis.
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for 200 and 500 observations. Also, under the long samples, the gap between the

estimators is still in favour of the ABC. Overlapping Ratios of the 90% credible

intervals of the approximate posterior distributions and the Full likelihood posterior

distribution are compared. The results are respectively reported in Tables 5,6,7.

Overall, ABC methods outperforms BLI in approximating the full likelihood

posterior distribution under the three different sample sizes.

4 A real life application: a DSGE with ZLB

In the reminder of the paper, I estimate a non-linear DSGE with an occasionally

binding Zero Lower Bound (Fernández-Villaverde et al. [2015]).

The Zero Lower Bound is often pointed as one of the main amplification factors

of the financial crisis, helping to explain the magnitude of the downturn observed

during the Great Recession and the slow recovery. When the monetary policy is

constrained, economies are more sensitive to demand shocks since interest rates

cannot be lowered to counteract the negative demand shocks. Despite the centrality

of this topic in contemporary policy analysis, few papers tackle the estimation of

new-Keynesian models featuring the Zero Lower bound. 10

This paper borrows a standard new-Keynesian model with an occasionally bind-

ing positivity constraint by Fernández-Villaverde et al. [2015]. A household maxi-

mizes her utility consuming and providing labour (the unique productive factor) to

intermediate firms that operate in monopolistic competition and readjust prices ac-

cording to Calvo type of contracts. The differentiated products are then assembled

by retail firms operating in perfect competition. The models equations are housed

in the Appendix.

The presence of the lower bound generates state-dependency in the solution,

due to the fact that agents consider that monetary policy will not be able to set

the interest rate below its effective lower bound. In our case, the presence of the

occasionally binding constraint generates two alternative regimes: a slack regime

where the monetary policy sets the interest rate in accordance with the Taylor rule,

and a constrained one where the ZLB binds. In order to take this non-linearty

into account, the model is solved by Piecewise linear approximation Guerrieri and

Iacoviello [2015].11

10Most of the estimated models use samples which exclude the Zero Lower Bound (Christiano
et al. [2015], Aruoba et al. [2013]. Gust et al. [2012] estimate a new-Keynesian model with a binding
constraint on the interest rate using the particle filter. Their sample contains three observable
variables to make inference on the structural parameters. They solve the model with a fully
non-linear method.

11The piecewise linear apporximation is a solution method that allows handling occasionally
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In the reminder of the section, first, I present the main issues related to the use of

the methods of moments in in this type of models and show why ABC is the natural

candidate to tackle those issues. Second, I apply the ABC method to estimate the

DSGE.

4.1 Methods of moments and the ZLB: some challenges

The estimation of non-linear DSGE by methods of moments encounters one

practical limitation: mapping functions between the parameters and the moments

are not necessarily as regular as in the linear versions. This lack of regularity can

cause two main problems: 1) identification issues for the parameters that control

the degree of non-linearity of the model; 2) computational problems during the

minimization of the objective function. The identification issue can be partially

eased by the use of conditional moments (moments computed conditionally on the

state of the economy). The computational problems can be tackled by the use of

Bayesian methods (ABC, BLI). Also, the use of conditional moments amplifies the

small sample issue. To this extent ABC appears as the natural candidate to be

used, given its good small sample performance relative to the alternative Bayesian

methods, as seen in section 3.

In linear models, variable dynamics are not affected by the state of the economy.

This allows computing moments unconditionally on the state of the economy (i.e.

unconditional moments). Instead, in non-linear solutions, dynamics are affected

by the state of the economy. To this extent, unconditional moments convey state-

dependent dynamics in a unique object. This can generate irregular and strongly-

non monotonic mapping functions, causing substantial identification issues in the

estimation. For an illustration of this point, let us consider the case where we want

to make an estimate by matching the unconditional moments of the model with the

ones observed: i.e. moments, as covariances and variances computed unconditional

on the state of the economy. In fig. 10, I report the covariance between income

binding constraints. With repsct to alternative non-linear solution method (value function itera-
tion, Chebyshev polynomial) the solution method reduces the compuational burden expecially in
case of medium-size DSGE models. The piecewise linear solution allows to obtain a large number
of simulations and tackles the curse of dimensionality encountered when dealing with medium-scale
models. The piecewise solution method delivers a first order perturbation solution in a piecewise
fashion. The solution is not just the juxtaposition of two linear solutions: the policy coefficients
depend on how long the regime is expected to last. How long the model lasts is influenced by the
state vector. This feedback effect can produce an important non-linearity. However, a drawback of
this solution method is that it assumes that agents do not expect future shocks hitting the econ-
omy in the following periods. Hence precautionary savings are not considered. To solve the model
two conditions must be met. First, Blanchard-Khan conditions must hold in the reference regime.
Second, if the shocks hitting the economy move the model away from the reference regime to the
alternative regime, in absence of future shocks the model must return to the reference regime.
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Figure 10: y axis: Covariance between income and interest rate. x-axis: standard
deviation of the preference shock. The dashed line represent the covariance when
the solution of the model is linear. The continuous line is the covariance when the
model is solved non-linearly

and interest rate, with respect to the standard deviation of the preference shock

(i.e. a demand shock). On the horizontal axis, I report the standard deviation of

the preference shock. The dashed line represent the covariance when the solution of

the model is linear. The solid line is the covariance when the model is solved non-

linearly. The figure shows that the when the model is linear, the function relating

the parameter to the covariance is regular and monotonic. Instead, when the model

is solved non-linearly, the relation becomes less regular and non-monotonic. This

irregularity derives from the fact when the standard deviation of the shock increases,

the model hits the ZLB more often. Under ZLB, the covariance between the interest

rate and income is close to zero. Therefore, when using this mapping function to

build the objective function, this irregularity can lead to a strong identification issues

(e.g. in this case leading to under-estimating the standard deviation of the model).

The use of conditional moments (Gospodinov and Otsu [2012]) can ease this

problem. For example, moments can be computed and matched conditionally on

the state of the economy: e.g. covariances and variances can be computed with

respect to condition holding for the constraint (ZLB versus unconstrained monetary

policy). By this fashion, we can convey the information provided by the data in a

more efficient way. For example, this will decrease the underestimation obtained in

the unconditional case.

A second issue generated by the use of non-regular mapping function is the non-

regularity of the objective function itself. The use of conditional moments can only

ease the problem, since the mapping functions themselves of the conditional mo-

ments remain less regular than the ones produced in the linear case. This is due to

the fact that conditional moments can only partially capture the state-dependent di-
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mension of the moments. Additionally, non-linear solution methods can also produce

non-regular mapping functions due to possible instability in the solution algorithms.

To this extent, frequentist methods, involving minimization of the objective func-

tions, can encounter problems in finding the minimum of the objective function. For

example, the minimization step can be severely affected by the choice of the initial

point in the algorithm. In this case, ABC and BLI can ease the problem, avoid-

ing the minimization step and studying the posterior distribution through Bayesian

techniques.

Finally, it is worth to notice that the use of conditional moments can amplify

the small sample bias, due to the fact that conditional moments are computed on

subset of the sample, further decreasing the information on which the moments are

computed. To this extent, ABC appears as the natural candidate to be used in the

estimation with conditional moments, given its good small sample performance, as

shown in the Monte Carlo exercises run in the Section 3.

4.2 Estimation

In this subsection, ABC-rejection is applied to the estimation of a new-Keynesian

model with an occasional binding constraint on the zero lower bound. I focus on

two main aspects: i) the importance of adding data observed during the ZLB in

affecting the dynamics of the estimated model; ii) the role of different types of

moments in exploiting data and update prior information. In presenting the results,

I also compare the estimated model with its original calibrated version in Fernández-

Villaverde et al. [2015].

In order to estimate the model, 30000 simulations are produced. Priors are

standard and presented in table 8. Of the simulations, 0.33% with the smallest

Euclidean distance are accepted. Moments are rescaled by their observed value. The

observables are: consumption, output, interest rate, inflation and wages. Estimation

is performed using different sample sizes: i) the benchmark estimation 1966Q1-

2015Q4, ii) 1966Q1-2009Q1, iii) 1983Q1-2009Q1, iv) 1983Q1-2015Q4, v) 1994Q1-

2015Q4. Except for the second and the third set, all the others include the period

with the ZLB.

Estimation is performed using different combinations of moments. Each combi-

nation contains variances, covariances, and autocorrelations of order 1 and 2. Vari-

ances and covariances can be computed unconditionally (i.e. computed considering

the whole sample) and conditionally (computed conditional on the monetary policy

regime). Conditional moments are expected to better exploit the information pro-

vided by the data, given the different dynamics of economic variables when the ZLB
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binds. Finally, estimation is performed with and without including higher order

moments (asymmetry and kurtosis). These moments are expected to provide useful

information, given the asymmetries produced by the constraints.

Concerning the estimation across periods, including the period of ZLB in the

model helps to replicate some important facts observed during and after the fi-

nancial crisis: 1) a higher volatility of data with respect to the standard Great

Moderation fluctuation; 2) a larger persistence of economic shocks; 3) a strong per-

sistence of inflation despite the negative downturn and the long duration of the

ZLB. Table 9 reports estimated parameters using the different sample sizes. Results

across the different periods are robust. The estimates based on sample including the

ZLB (1966Q1-2015Q4, 1983Q1-2009Q1, 1999Q1-2015Q4) are characterized by larger

standard deviation for the preference shocks (σU=0.0017), whereas the same param-

eter is at 0.0012 and 0.0015 respectively for 1966Q1-2009Q1 and 1983Q1-2009Q1.

The same holds for the autocorrelation parameter for the preference process: for

the exercises excluding the period ZLB ρU = 0.73, whereas the same parameter is

around 0.79 in the cases where the ZLB is included. Besides, concerning the pa-

rameter affecting the inflation dynamics -and its interaction with the real economy-,

the estimates for the Great Moderation period are characterized by higher price

stickiness (θ = 0.68) and lower inflation reaction coefficient (φπ = 2.15), relatively

to the estimated parameters obtained considering the other sample. When the ZLB

is included, price stickiness is generally lower (around 0.63) and the inflation reac-

tion coefficient is generally above 2.25. Concerning the reaction coefficient to output

variations, the parameter φy = 0.10, whereas it is higher for the other cases. Finally,

estimates for the long term inflation are higher for the samples than without the

ZLB (π = 0.50). No significant variations are found for the other parameters.

Concerning the role of the different moments in adding information, in Table 10

I compare the estimated parameters for four different combinations of moments by

alternatively using: i) conditional moments (i.e. moments conditional on the mone-

tary policy regime) or unconditional moments; 2) by including or excluding higher

order moments (asymmetries and kurtosis). Overall, conditional moments play a

more important role in identification with respect to the higher order moments. In

particular, when conditional moments are used, autocorrelation ρU for the prefer-

ence processes is higher, being around 0.78 in the first case and 0.73. The same holds

for the standard deviation (around 0.0016 when conditional moments are used) and

0.0012 in the case of unconditional moments. Also, the use of conditional moments

increases the estimates for the standard deviations of the monetary policy shock

and for the productivity shocks. No significant differences emerge by adding higher
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order moments. These results play in favour of the use of conditional moments in

the estimation in order to exploit information that is not efficiently used when using

standard unconditional moments.

These estimated parameters ease one limitation of the New-Keynesian models

with ZLB, highlighted by Fernández-Villaverde et al. [2015]: the variation of con-

sumption when the economy hits the ZLB is too large with respect to what found in

the data. To this extent, a larger inflation reaction coefficient limits the variation of

the price dispersion and its negative consequences on the real economy. When the

model is estimated using data related to the financial crisis and to ZLB, the esti-

mation tries to match the moments observed with the one predicted by the model.

With respect to the calibration, the estimated Taylor rule coefficient for inflation in-

creases while the price stickiness decreases to help the model to reproduce a smaller

fluctuation of consumption and output during the ZLB. In the calibrated model in-

flation persistence is mainly explained by the high Calvo parameter, whereas in the

estimated model the stronger inflation persistence is more related to the monetary

policy coefficients.

In Figure 11, we plot the impulse responses to a negative preference shock. This

shock can be interpreted as an exogenous decrease in demand, pushing down output,

inflation and interest rates. We apply the shock to the estimated model, according to

the different sample sizes. The shock has the same size (0.0096) for all the estimated

versions. For the sake of comparison, the size of the shock is the same as the one

used by Fernández-Villaverde et al. [2015] to show the non-linear dynamics of their

calibrated model. In figure 11, the impulse responses for interest rates, consumption,

output and inflation are reported. Impulse responses are obtained for the calibrated

version (in blue dotted line), for the model estimated with the sample including the

Zero Lower bound (1966-2015, the solid green light), and for the model estimated

excluding the Zero Lower Bound (1966-2009, in red dashed line). In the latter case,

the shock sends the economy on the Zero Lower bound for 3 periods. In case the

estimation sample includes includes the Zero Lower Bound, shock sends the interest

rate to zero for four periods. The calibrated version features the longest spell,

mainly due to the fact that in the calibrated version the auto-correlation parameter

ρR of the Taylor rule equals zero, whereas it is positive in estimated versions. In

the estimated version 1966-2015, a larger value for φπ and a smaller value for the

price stickiness θ make inflation and output more resilient in the period of ZLB with

respect to the calibrated version: the percentage deviation of output, consumption

and inflation is smaller for the estimated model compared to the ones obtained for

the calibrated version.
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Figure 11: Impulse responses to a negative preference shock for interest rate (in
levels), consumption, output, inflation (in percentage deviation from the steady
state value). Impulses are reported for the calibrated version (dotted blue line) and
for the estimated versions using: i) the sample 1966-2015 (red lines); ii) the sample
1966-2009 (dashed red line)

5 Conclusion

In this paper, I pledge for the use of Approximate Bayesian Computation tech-

niques in the esimation of non-linear DSGE model.

In particular, through two Monte Carlo exercises, I show that ABC has a better

small sample performance, compared to the other GMM-style estimators. In par-

ticular I show that ABC have a better small sample performance with respect to

the Bayesian Limited Information Method (BLI), Kim [2002], the state-of-the-art

Bayesian method of moments used in DSGE estimation. This result hinges on the

fact that in ABC methods, the distribution of moments is simulated taking into

account the actual size of the sample, rather than focusing on the asymptotic one,

as it is done for the GMM-style estimators.

ABC is also tested on a real life application: a new-Keynesian model with a Zero

Lower Bound. The non-linear solution displays some of the common challenges aris-

ing when applying the methods of moments in non-linear DSGE estimation. ABC

is shown to deal with those issues. In particular, I show that the presence of non-

linearities, as the ones generated by the Zero Lower Bound, can generate non-regular

mapping functions between the structural parameters and the moments, limiting

identification of the parameters controlling the degree of non-linearity. This issue

can be eased by recurring to conditional moments, i.e. moments computed con-

ditionally on the state of the economy. Another issue is related to the fact that
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non-regular mapping function are likely to generate non-regular objective functions,

whose minimum can be harder to find. To this extent, the use of a Bayesian method

of moments, as the ABC and BLI, can circumvent problems related to the minimiza-

tion. Besides, ABC can also tackle the small sample issue amplified by the use of

conditional moments. Besides, I estimate the model with simple ABC-rejection and

I find three main results. First, including the period of the ZLB in the sample pro-

vides important information help the model to replicate the higher volatility of the

macroeconomic variables, the persistence of inflation and of the Zero Lower Bound

itself. Second, conditional moments tackle identification issue more than higher or-

der moments, as such as asymmetry and kurtosis. Third, the estimated version of the

model eases the problem identified in its calibrated version by Fernández-Villaverde

et al. [2015], related to the predicted over-reaction of macroeconomic aggregates

durig the period of ZLB. To this extent higher Taylor rule coefficient in response

of inflation and lower price stickiness look crucial in reducing the the sensitivity of

consumption and output to negative demand shocks inducing Zero Lower Bound.
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Kryshko, and Raül Santaeulàlia-Llopis. Methods versus substance: Measuring

the effects of technology shocks. Journal of Monetary Economics, 59(8):826–846,

2012.

Francisco Ruge-Murcia. Estimating nonlinear dsge models by the simulated method

of moments: With an application to business cycles. Journal of Economic Dy-

namics and Control, 36(6):914–938, 2012.

Francisco J Ruge-Murcia. Methods to estimate dynamic stochastic general equi-

librium models. Journal of Economic Dynamics and Control, 31(8):2599–2636,

2007.

Scott A Sisson, Yanan Fan, and Mark M Tanaka. Sequential monte carlo without

likelihoods. Proceedings of the National Academy of Sciences, 104(6):1760–1765,

2007.

Frank Smets and Raf Wouters. An estimated dynamic stochastic general equilibrium

model of the euro area. Journal of the European economic association, 1(5):1123–

1175, 2003.

29



Table 1: Prior distribution for the RBC parameters

Parameter Distribution 1 2

β Beta 0.95 0.02
γ Normal 2 0.50
ρa Beta 0.95 0.04
ρb Beta 0.95 0.04
ρd Beta 0.95 0.04
σa Gamma Inverse 0.01 4
σb Gamma Inverse 0.01 4
σd Gamma Inverse 0.01 4

Prior distribution: Informative Prior
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Table 2: RMSE, sample size=100 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.01395 0.04079 0.01812 0.01566 0.01609 0.27268 0.22648 0.12772
ABC-ker 0.01456 0.04394 0.01871 0.01596 0.01666 0.27522 0.22939 0.13000
ABC-OLS 0.01406 0.06961 0.02131 0.02157 0.02014 0.27040 0.26608 0.16532
ABC-regr 0.01415 0.07220 0.02195 0.02180 0.02079 0.27223 0.26811 0.16567
ABC-HC 0.01920 0.10839 0.02755 0.03006 0.02448 0.26240 0.28406 0.22597
BLI 0.03729 0.05116 0.04154 0.03172 0.02695 0.67502 0.87365 0.30317

RMSE obtained in a Monte Carlo experiment, 100 repetitions. The sample contains
100 observations. Case: High peristency and Informative Priors. ABC-rej= ABC-
rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC + OLS
Regression Step; ABC-regr= ABC-regression with Local Linear Regression, ABC-
HC=ABC-regression + Correction for Heteroskedasticity

Table 3: RMSE, sample size=200 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.01231 0.05162 0.01738 0.01691 0.01543 0.25187 0.22934 0.10386
ABC-ker 0.01332 0.05151 0.01798 0.01763 0.01606 0.25104 0.23001 0.10843
ABC-OLS 0.01237 0.06588 0.02006 0.02174 0.02197 0.24180 0.26175 0.13565
ABC-regr 0.01269 0.06876 0.01998 0.02186 0.02150 0.24271 0.26266 0.14553
ABC-HC 0.01655 0.09258 0.02385 0.02764 0.02650 0.22664 0.26542 0.20675
BLI 0.03418 0.10956 0.04294 0.05040 0.02682 0.58462 0.72849 0.59571

RMSE obtained in a Monte Carlo experiment, 100 repetitions. The sample contains
200 observations. Case: High peristency and Informative Priors. ABC-rej= ABC-
rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC + OLS
Regression Step; ABC-regr= ABC-regression with Local Linear Regression, ABC-
HC=ABC-regression + Correction for Heteroskedasticity

Table 4: RMSE, sample size=500 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.01093 0.05065 0.02034 0.01764 0.01665 0.22934 0.27019 0.13820
ABC-ker 0.01110 0.05388 0.02042 0.01761 0.01669 0.22629 0.26472 0.14590
ABC-OLS 0.01081 0.08508 0.01765 0.01776 0.02078 0.22260 0.28040 0.19021
ABC-regr 0.01068 0.08764 0.01759 0.01755 0.02098 0.22184 0.28060 0.19879
ABC+HC 0.01205 0.11679 0.01875 0.01930 0.02520 0.20846 0.27512 0.26526
BLI 0.03742 0.06969 0.03863 0.03228 0.04938 0.58462 0.93056 0.53128

RMSE obtained in a Monte Carlo experiment, 100 repetitions. The sample contains
500 observations. Case: High peristency and Informative Priors. ABC-rej= ABC-
rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC + OLS
Regression Step; ABC-regr= ABC-regression with Local Linear Regression, ABC-
HC=ABC-regression + Correction for Heteroskedasticity
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Table 5: OR100, sample size=100 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.60627 0.81372 0.75159 0.80626 0.70472 0.44003 0.50961 0.70015
ABC-ker 0.67059 0.87735 0.76656 0.80266 0.80791 0.49469 0.58173 0.76644
ABC-OLS 0.36064 0.81120 0.72085 0.72093 0.75838 0.28645 0.39473 0.75102
ABC-regr 0.35319 0.80143 0.72284 0.72073 0.75071 0.28332 0.38944 0.74532
ABC-HC 0.55281 0.73430 0.66426 0.63165 0.68748 0.40299 0.42275 0.71252
BLI 0.04772 0.88188 0.66390 0.33132 0.34849 0.05231 -0.03619 0.43781

Overlapping Ratio obtained in a Monte Carlo experiment, 100 repetitions. The sam-
ple contains 100 observations. Case: High peristency and Informative Priors. ABC-
rej= ABC-rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC
+ OLS Regression Step; ABC-regr= ABC-regression with Local Linear Regression,
ABC-HC=ABC-regression + Correction for Heteroskedasticity

Table 6: OR200, sample size=200 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.57967 0.79299 0.73966 0.79252 0.67809 0.42241 0.47965 0.69985
ABC-ker 0.65300 0.87342 0.77590 0.78717 0.79739 0.48200 0.54320 0.76554
ABC-OLS 0.29644 0.82433 0.69746 0.68340 0.72241 0.22776 0.34818 0.74757
ABC-regr 0.29253 0.81414 0.69455 0.67834 0.72318 0.22574 0.34598 0.74664
ABC-HC 0.51729 0.77607 0.68972 0.67147 0.69955 0.39251 0.40124 0.71773
BLI 0.31990 0.77961 0.66926 0.62000 0.19545 0.12139 0.26556 0.43072

Overlapping Ratio obtained in a Monte Carlo experiment, 100 repetitions. The sam-
ple contains 200 observations. Case: High peristency and Informative Priors. ABC-
rej= ABC-rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC
+ OLS Regression Step; ABC-regr= ABC-regression with Local Linear Regression,
ABC-HC=ABC-regression + Correction for Heteroskedasticity

Table 7: OR500, sample size=500 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.50557 0.79718 0.68900 0.76053 0.64924 0.36181 0.44401 0.64670
ABC-ker 0.55337 0.86392 0.73684 0.76653 0.75746 0.40674 0.49992 0.73275
ABC-OLS 0.20349 0.79516 0.56611 0.58313 0.66112 0.13250 0.31733 0.69377
ABC-regr 0.20260 0.78619 0.56501 0.58256 0.65981 0.13104 0.31516 0.68630
ABC-HC 0.47321 0.76688 0.70070 0.74279 0.63753 0.34438 0.44529 0.67628
BLI 0.05993 0.83720 0.70892 0.31765 0.68671 0.11578 -0.04109 0.59651

Overlapping Ratio obtained in a Monte Carlo experiment, 100 repetitions. The
sample contains 500 observations. Case: High persistence and Informative Priors.
ABC-rej= ABC-rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS=
ABC + OLS Regression Step; ABC-regr= ABC-regression with Local Linear Re-
gression, ABC-HC=ABC-regression + Correction for Heteroskedasticity
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Par Prior Distr Prior Mean Prior St.Dev.
θ Beta 0.7 0.1
φy Normal 0.12 0.1
φπ Normal 2.0 0.5
ρR Beta 0.75 0.1
π Uniform 1.005 0.001
ρA Beta 0.80 0.10
ρG Beta 0.80 0.10
ρU Beta 0.80 0.10
σA InvGamma 0.005 0.01
σG InvGamma 0.005 0.01
σM InvGamma 0.005 0.01
σU InvGamma 0.005 0.01

Table 8: Prior distribution for the estimation of the newkeynesian model with the
occasionally binding ZLB

Sample
Benchmark:
1966Q1-2015Q4

1966Q1-2009Q1 1983Q1-2009Q1 1983Q1-2015Q4 1999Q1-2015Q4

ρA 0.806 0.812 0.796 0.804 0.802
(0.629 0.942) (0.582 0.942) (0.613 0.928) (0.606 0.942) (0.583 0.929)

ρG 0.784 0.798 0.794 0.811 0.802
(0.560 0.945) (0.554 0.927) (0.560 0.953) (0.601 0.943) (0.538 0.962 )

ρU 0.786 0.737 0.738 0.793 0.799
(0.610 0.929) (0.537 0.923) (0.534 0.923) (0.610 0.923) (0.570 0.932 )

φy 0.135 0.154 0.108 0.139 0.127
(-0.094 0.332) (-0.011 0.348) (-0.063 0.274) (-0.056 0.367) (-0.063 0.316)

φπ 2.25 2.35 2.15 2.28 2.248
(1.626 3.238) (1.524 3.248) (1.358 3.200) (1.610 3.207) (1.471 3.050)

φR 0.654 0.645 0.685 0.627 0.636
(0.439 0.817) (0.434 0.792) (0.466 0.842) (0.439 0.822) (0.439 0.787)

σA 0.00314 0.00311 0.0061 0.0030 0.0036
(0.001 0.009 (0.0007 0.0070) (0.0025 0.0134) (0.0008 0.0072) (0.0008 0.0099)

σG 0.0040 0.0042 0.0040 0.0041 0.0036
(0.0010 0.0135) (0.0008 0.0188) (0.0009 0.01225) (0.0010 0.015) (0.0009 0.0105)

σM 0.0019 0.0012 0.0014 0.0017 0.0017
(0.0008 0.0039) (0.0005 0.0021) (0.0007 0.0030) (0.0007 0.0034) (0.0007 0.0035)

σU 0.0017 0.0012 0.0015 0.0016 0.0017
(0.0007 0.0028) (0.0005 0.0020) (0.0006 0.0031) (0.0007 0.0027) (0.0007 0.0028)

θ 0.6311 0.5978 0.6886 0.6290 0.6497
(0.4401 0.7833) (0.4313 0.7960) (0.4591 0.8562) (0.4515 0.7854) (0.4653 0.8204)

π̄ 1.0045 1.0049 1.0050 1.0045 1.0046
(1.0030 1.0067) (1.0031 1.0068) (1.0031 1.0067) (1.0030 1.0067) (1.0030 1.0070)

Table 9: Estimate results for the structural parameters of the New-Keynesian model
with the occasionally binding Zero Lower Bound.The estimates are obtained by
usng the information provided by conditional moments and higher order moments.
Estimates are reported for the different sample sizes: a) 1966Q1-2015Q4; b) 1966Q1-
2009Q1; c) 1983Q1-2009Q1; d) 1983Q1-2015Q4; e) 1993Q1-2015Q4. 5% credible
intervals are reported between parenthesis.
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Conditional +
higher order moments

Conditional without
higher order moments

Unconditional +
higher order moments

Unconditional without
higher order moments

ρA 0.806 0.8064 0.7867 0.7871
(0.6296 0.9426) (0.6296 0.9426) (0.5452 0.9424) (0.5452 0.9424)

ρG 0.7846 0.7825 0.8000 0.7938
(0.5607 0.9457) (0.5607 0.9457) (0.5238 0.9414) (0.5167 0.9273)

ρU 0.7867 0.7874 0.7383 0.7338
(0.6102 0.9296) (0.6102 0.9296) (0.4511 0.8717) (0.4511 0.8954)

φy 0.1359 0.1333 0.1549 0.1571
(-0.0944 0.3322) (-0.0944 0.3322) (-0.0289 0.3370) (-0.01188 0.3251)

φπ 2.2531 2.2505 2.3090 2.291
(1.6268 3.2384) (1.6268 3.2384) (1.5216 3.1488) (1.4102 3.1141)

φR 0.6545 0.6556 0.6605 0.6670
(0.4396 0.8175) (0.4396) 0.8270 (0.4344 0.8407) (0.4344 0.8407)

σA 0.0031 0.0031 0.0022 0.0022
(0.0008 0.0090) (0.0008 0.0090) (0.0007 0.0044) (0.0007 0.0049)

σG 0.0040 0.0041 0.0044 0.0044
(0.0010 0.01353) (0.0010 0.0135) (0.0010 0.0188) (0.0010 0.01889)

σM 0.0019 0.0019 0.0012 0.0011
(0.0008 0.0039) (0.0008 0.0039) (0.0005 0.0022) (0.0005 0.0019)

σU 0.0016 0.0017 0.0012 0.0012
(0.0007 0.0028) (0.0007 0.0028) (0.0005 0.0024) (0.0005 0.0022)

θ 0.6311 0.6303 0.5984 0.5997
(0.4401 0.7833) (0.4401 0.7833) (0.4313 0.7570) (0.4162 0.7570)

π̄ 1.0045 1.0045 1.0051 1.005
(1.0030 1.0067) (1.0030 1.0067) (1.0031 1.0067) (1.0032 1.0067)

Table 10: Estimate results for the structural parameters of the New-Keynesian
model with the occasionally binding Zero Lower Bound.The sample contains obser-
vations from 1966Q1 to 2015Q4. Estimates are reported for the different combina-
tions of moments: a) Conditional moments and higher order moments; b) conditional
moments without higher order moments; c) unconditional moments and higher or-
der moments; d) unconditional moments. 5% credible intervals are reported between
parenthesis.
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Appendix 1: ABC refinements

ABC-regression

ABC-rejection is affected by the curse of dimensionality: to estimate a large

set of parameters, we need to increase the number of summary statistics in the

Euclidean distance computation. The probability of the simulated parameters to

be accepted decreases and a higher number of simulations have to performed. This

may have a huge impact on the feasibility of the estimation procedure. Besides,

to increase the tolerance level can strongly compromise the approximation of the

posterior distribution due to a larger simulation error. ABC-regression increases the

efficiency of ABC through a post-sampling correction.

Two main refinements are introduced after the selection step:

• Each accepted simulation is assigned a weight according to its euclidean dis-

tance: the smaller the distance ρi, the larger the weight Wi. An Epanechnicov

weighting function is generally used, but the algorithm is compatible with

other kinds of kernel (normal, triangular and so forth). 12.

• The accepted parameters are corrected exploiting the result of a regression run

after the selection step (hence the name ABC-regression). Each parameter is

updated according to the result of a local linear regression of the accepted

parameters on the discrepancies between simulated moments and observed

ones (Beaumont [2010]).

In ABC regression (Beaumont et al. [2002]), ABC is equivalent to a problem of

conditional density estimation, where a joint density distribution P (si, θi) is updated

through an accept-reject algorithm:

P (θ|s) =
p(si, θ)

I {ρ|si − s| < ε}
(6)

For this reason, conditional density estimation techniques (Fan an Gijbels, 1992)

estimation are borrowed and incorporated in the ABC algorithms.

The ABC-regression pseudo-algorithm is:

• Draw θi from the prior P (θ);

• Simulate the model and obtain the observable variables yi;

• Compute the simulated moments si and the absolute standard deviation for

each moment kj;

12This correction coincides with the Indirect Likelihood Inference by Creel and Kristensen [2011]
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• Compute the Euclidean distance for each simulation;

ρ|si, s| =

√√√√ s∑
j=1

(si/kj − s/kj)2 (7)

• Select the tolerance level such that a fraction of the simulated parameters is

accepted Pε = N/M ;

• Each accepted draw is assigned a weight according to the Epanechnikov kernel:

Kε(ρi) =

ε−1(1− (ρi
ε

)2) ρi ≤ ε,

0, ρi > ε;

• Apply a local linear regression to the linear model:

θi = α + (si − s)′β + εi, (8)

for i = 1, ..., N .

• Adjust the parameter given the results of the local linear regression:

θ∗ = θ − (si − s)′β̂, (9)

which is equivalent to compute: θ∗i = α̂ + ε̂i.

The adjusted parameters associated to their kernel weights are random draws of the

approximate posterior distribution. The initial part of the ABC-regression is the

simple ABC rejection. The accepted parameters are corrected given two assumptions

on the relation between the parameters drawn and the summary statistics simulated:

• Local linearity: a local linear relationship between the discrepancies of the

moments and the parameters holds in the vicinity of the observed moment s

such that the parameters can be expressed by the following equation:

θi = α + (si − s)′β + εi; (10)

• Errors εi’s have zero mean, are uncorrelated and homoskedastic.

In general, linearity only in the vicinity of s is a more palatable assumption than

global linearity. In the local linear regression to estimate the coefficients for α and
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β, the minimized object is:

m∑
i=1

{
θi − α− (si − s)Tβ

}2
Kδ(||si − s||). (11)

In ABC literature, Epanechnikov kernel function is the one more common but others

are feasible. In Eq.(11), the only difference with respect to the standard OLS is

that the squared errors are weighted according to the distance ρi associated to the

parameter θi. The solution is given by:

(α̂, β̂) = (XWX)′(XWθ), (12)

where X = (si− s) for i = 1, ..., N and W is a diagonal matrix, where each non zero

element is Kδ(||si − s||).
The estimates for α and β are used in the adjustment step, through the adjustment

equation 9. In conditional density estimation terms: E[θ|si = s] = α. The posterior

mean coincides with the Nadaraya-Watson estimator (Nadaraya [1964], Watson,

1964), as suggested by Blum and François [2010] :

α =

∑
i θ
∗
iKδ(||(si − s||)∑

iKδ||(si − s)||)
. (13)

Blum and François [2010] add further step: a correction for heteroskedasticity in

the adjustment step with non-linear regression in lieu of the local linear regression.

For the sake of simplicity, here the local linearity assumption is maintained allow-

ing the variance of the errors to change with the moments Beaumont [2010]. The

heteroskedastic version is:

θi = α + (si − s)′β + εi = α + (si − s)′β + σiξi, (14)

where σ2
i is the variance of the error conditional on observing the simulated moments

V ar[θ|si] and ξi ∼ N(0, 1). In this new procedure (ABC-regression with correction

for heteroskedasticity) estimates α and β remain the same while in a further step the

conditional variance for each draw is estimated. Finally, the correction mechanism

is applied.

Blum and François [2010] model the conditional variance on the moments dis-

crepancy by a second local linear model, borrowing from Fan and Yao [1998]. A

second local linear regression is run and the conditional variance for each draw σi is

estimated :

log(εi)
2 = τ + (si − s)′π + υi, (15)
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where υi is iid with mean zero and common variance. In this second local linear

regression, the following object is minimized:

min
{
log(ε̂i)

2 − (si − s)′π
}
Kδ(||si − s||), (16)

where ε̂i’s are the heteroskedastic errors estimated in the first regression. The vari-

ance conditional on the observed moments is σ2 = V ar[θ|s] is obtained according

to

σ̂ = τ̂ , (17)

while the the variance conditional on each simulated moments is

σ̂i = τ̂ + (si − s)′π̂. (18)

The Values obtained in equation 18 are used in the new post-sampling correction

(equation 19) where the magnitude of each heteroskedastic error εi is corrected by

the estimated standard deviation σ̂i:

θ∗ = α̂ +
σ̂

σ̂i
ε̂i. (19)

When the associated variance is higher than the variance conditional on the observed

moments, the ratio σ̂
σ̂i

is lower than 1 and the magnitude of the correction will be

decreased with respect to the estimated ε̂i.

ABC-regression allows to increase the tolerance level (i.e. increase the frac-

tion of accepted simulations), making the algorithm computationally more efficient.

Nonetheless, when the dimensionality of the parameters increases, the algorithm can

deliver unstable results. Besides, some problems in the adjustment step can arise

when the local linearity assumption does not hold: when the observed moments lie

at the boundary of the simulated moments, adjusted values can be updated out-

side the support of the prior distribution (extrapolating rather than interpolating).

Some refinements have been found by the literature to fix this problem, but a general

consensus has not been reached.

Before adopting ABC-regression, drawing scatter plots can be useful to assess

the informativeness of the moments regard the parameters to infer. In particular,

(local) linear relations between moments and parameters can be found.
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ABC-MCMC

ABC-MCMC methods draw parameters from a distribution closer to the poste-

rior. This increases the acceptance rate of the algorithm. The algorithm developed

by Marjoram et al. [2003] is the following:

• For t = 0, Draw θ ∼ π(θ);

• For t ≥ 1 draw from:

θ
′ ∼ K(θ|θt−1); (20)

• Simulate and produce the moments conditional on θt;

• If ρ(S(x), S(y)) < ε

– Draw u ∼ U(0, 1),

– If

u ≤ π(θ′)

π(θ)t−1
K(θt−1|θ′)
K(θ′|θt−1)

(21)

then, θt = θ
′
; otherwise θt = θt−1

otherwise θt = θt−1

The MCMC produced by the algorithm is an approximation of the posterior distri-

bution. Problems associated with ABC-MCMC are mainly related to presence of

multimodality and mixing problems.

ABC-Sequential Monte Carlo

ABC-SMC nests ABC into the structure of a SMC technique: in an initial step,

the vectors of parameters are drawn from a proposal distribution and a first selection

is done on the basis of the Euclidean distance. In the following steps, the distribution

of accepted parameters is perturbed and iteratively used in new simulation and

selection steps, until convergence to the target distribution.

At each iteration, the accepted particles are perturbed according to a Kernel

function. Each particle is accepted or rejected according to the Euclidean distance,

choosing a decreasing tolerance level for each iteration such that εt ≤ εt−1. If

accepted, the particle is assigned a weight according to the Kernel function. A

resampling procedure is envisaged to avoid sample degeneracy (i.e. few particles

ending up hoarding much of the weight).

The algorithm is the following:
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1. Initialize the tolerance level sequence: ε1, ε2, ε3...εT and select a sampling dis-

tribution µi. Set the iteration indicator t = 1.

2. Set the particle indicator i = 1 and:

• If t = 1, draw the swarm of particles {θ1θ2...θN} from the importance

distribution µ1.

• If t > 1, sample the new swarm
{
θ∗∗i,t−1

}
i = 1N with weights

{
W ∗∗
i,t−1

}N
i=1

ad perturb each particle according to a transition kernel θ∗∗ ∼ Kt(θ|θ∗)

3. Simulate the model to obtain x∗∗ conditional on each particle : if ρ(S(x∗∗, S(x0)) <

εt accept the particle, otherwise reject.

4. If accepted, assign the particle a weight:

• If t = 1, Wi,1 =
π(θi,1)

µ1(θi,1)
.

• If t > 1,

Wi,t =
π(θi,t)∑N

j=1Wt−1(θt−1,j)Kt(θt,i|θt−1,j)
(22)

where π(θ) is the prior distribution for θ.

5. Normalize the weights such that
∑N

i=1Wt,i = 1.

6. Compute the Effective Sample Size (ESS):

ESS =

[
N∑
i=1

(Wt,i)
2)

]−1
(23)

If the ESS is below N 1
2
, resample with replacement the particles according

to the weights {Wi,t}Ni=1 and obtain the new population with new weights

Wt,i = 1
N

.

7. If t < T , return to (2).

ABC-SMC exhibits two interesting properties in the context of non-linear DSGE

estimation. First, ABC-SMC is able to explore the whole support of the distribution,

also in case of multimodality, which can arise in non-linear models. Second, it eases

the computational inefficiency in case of significant mismatch between prior and

posterior.
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Appendix 2: the Real Business Cycle Model.

The households maximize the following expected sum of the utility functions:

maxEt

(
∞∑
t=0

βt

(
lnCt −Bt

H
1+ 1

ν
t

1 + 1
ν

))
, (24)

subject to the budget constraint:

Ct + It = WtHT +DtRtKt. (25)

Et stands for the expectation operator, Ct is the consumption, Ht are the hours

offered by each household, Bt is the shock to the preference, namely the labour

supply (Ŕıos-Rull et al. [2012]) and Dt is the shock to the interest rate requested by

the household like in Smets and Wouters [2003]. β is the subjective discount factor

and ν is the Frisch elasticity. Capital Kt is cumulated according to the following

rule:

Kt+1 = (1− δ)Kt + It, (26)

where δ is the depreciation rate and It is the investment. Firms choose how much

capital and hours to employ in the production function given the technology At:

Yt = AtK
α
t H

1−α
t . (27)

The market clearing is defined by:

Yt = Ct + It. (28)

The economy is subject to the following three structural shocks:

log(At+1) = ρalog(At) + σaεa, (29)

log(Bt+1) = ρblog(Bt) + σbεb, (30)

log(Dt+1) = ρdlog(Dt) + σdεd. (31)

The technology autoregressive process At is the AR(1) of the RBC literature (Kyd-

land and Prescott [1982]). The shock on the preferences Bt perturbs the labour

supply hitting the marginal rate of substitution between consumption and leisure

(see Rı́os-Rull et al. [2012]). The shock on Dt is a shock on the interest rate requested

by the households and can be interpreted as a shock to the risk premium.(Smets
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and Wouters [2003]). The model equilibrium is obtained by the following equations:

Ht =

(
1

Bt

Wt

Ct

)γ
, (32)

1

Ct
= β

(
1

Ct+1

((1− δ) +Dt+1Rt+1)

)
, (33)

Yt = Ct + It, (34)

Kt+1 = Kt(1− δ) + It, (35)

Rt = αAtK
α−1
t H1−α

t , (36)

W = (1− α)AtK
α
t H

−α
t , (37)

Yt = AtK
α
t H

1−α
t . (38)

Eq. 32 expresses the intratemporal choice between consumption and leisure, Eq. 33

is the Euler Equation. Eqs. 34 and 35 are respectively the resource constraints and

market clearing conditions completing the equilibrium of the model. Eq. 35 is the

law of motion of capital and Eq.s 36, 37, 38 are the exogenous processes.

The experiment adopts an informative prior distribution similar to the one used

by Ŕıos-Rull et al. [2012] to estimate a state-of-the-art Real Business Cycle. Infor-

mativeness in the prior distribution eases the identification issues associated to the

preferences parameters.
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Appendix 3: the new-Keynesian DSGE model with

occasionally binding Zero Lower Bound.

Households maximise the following utility function separable in consumption ct

and labour lt.
∞∑
i=0

(
t∏
i=0

βi

){
logct − ψ

l1+φt

1 + φ

}
, (39)

where φ is the inverse of the Frisch labour supply elasticity and βt is the subjective

discount factor subject to stochastic fluctuations around the mean β:

βt+1 = β1−ρbβρbt exp(σbεb,t+1), (40)

with εb,t+1 ∼ N(0, 1). ρb and σb are respectively the autocorrelation and the standard

deviation of the AR(1) process. The household maximizes her utility subject to the

budget constraint:

ct +
bt+1

pt
= wtlt +Rt−1bt/pt + Tt + Ft, (41)

where bt is a nominal government bond that pays a nominal interest rate Rt. pt is

the price level, whereas Tt and Ft are respectively the lamp sum taxes and the profits

of the firms. Retail firms reassemble intermediate goods yit and the technology:

yt =

(∫ 1

0

y
ε−1
ε

it di

) ε
ε−1

, (42)

with ε is the elasticity of substitution. Final producers maximize their profit taking

into account intermediate goods prices pit, final prices pt. The demand for each good

will follow:

yit =

(
pit
pt

)−ε
yt, (43)

and the price of the final good will be equal to:

pt =

(∫ 1

0

p1−εit di

) 1
1−ε

. (44)

The wholesale firms operate according to the production function:

yit = Atlit, (45)
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where the productivity At evolves according to the law of motion:

At = A1−ρAAρAt−1exp(σAεA,t), (46)

with εt ∼ N(0, 1). The marginal costs are mct = wt
At

.

The firms choose their price according to a Calvo rule, where each period just a

fraction 1− θ firms can re-optimize their prices pit. Firms will choose their price to

maximize the profits:

max
pit

Et

∞∑
τ=0

θτ

(
τ∏
i=0

βt+1

)
λt+1

λt

(
pit
pt+τ

−mct+τ
)
yit+τ , (47)

s.t.

yit =

(
pit
pt

)−ε
yt, (48)

where λt+s is the Lagrangian multiplier for the household in period t + s. Two

auxiliary x1,t and x2,t are used to define the solution to the maximization problem:

εx1,t = (1− εx2,t), (49)

x1,t =
1

ct
mctyt + θEtβt+1Π

ε
t+1x1,t+1, (50)

x2,t =
1

ct
Π∗tyt + θEtβt+1Π

ε−1
t+1

Π∗t
Π∗t+1

x2,t+1 = Π∗t

(
1

ct
yt + θEtβt+1

Πε−1
t+1

Π∗t+1

x2,t+1

)
, (51)

where Π∗t =
p∗t
pt

. Inflation dispersion will be equal to:

1 = θΠε−1
t + (1− θ)(Π∗t )1−ε. (52)

The government sets the nominal interest rate:

Rt = max [Rt, 1] , (53)

with the notional interest rate Zt:

Zt = R1−ρrRρr
t−1

[(
Πt

Π

)φπ ( yt
yt−1

)

)φy]1−ρr
mt, (54)

with mt being the monetary policy iid shock mt = exp(εm,tσm), εm,t ∼ N(0, 1). The

gross interest rate is equal to the notional interest rate as long it is larger than 1,

since it cannot be set below 1 (the zero lower bound).
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The government sets also the spending:

gt = sg,tyt, (55)

sg,t = s1−ρgg s
ρg
g,t−1exp(σgεg,t), (56)

with ε ∼ N(0, 1). Since the agents are ricardian, we can set bt = 0.

After aggregation we obtain:

yt =
At
vt
lt, (57)

with vt is the loss of efficiency introduced by the price dispersion:

vt =

∫ 1

0

(
pi,t
pt

)−ε
di, (58)

Moreover, following the Calvo pricing properties we can write:

vt = θΠε
tvt−1 + (1− θ)(Π∗t )−ε. (59)

The Equilibrium

The Equilibrium is given by the sequence

{yt, ct, lt,mct, x1,t, x2,t, wt,Πt,Π
∗
t , vt, Rt, Zt, βt, At,mt, gt, bt, sg,t}∞t=0 . (60)

The equilibrium is defined by the following equations. The intertemporal and

the intratemporal household F.O.Cs:

1

ct
= Et

{
βt+1

ct+1

Rt

Πt+1

}
, (61)

ψlφt ct = wt, (62)

The solution of the maximization problem of the firms:

mct =
wt
At
, (63)

εx1,t = (1− εx2,t), (64)

x1,t =
1

ct
mctyt + θEtβt+1Π

ε
t+1x1,t+1, (65)
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x2,t =
1

ct
Π∗tyt + θEtβt+1Π

ε−1
t+1

Π∗t
Π∗t+1

x2,t+1 = Π∗t

(
1

ct
yt + θEtβt+1

Πε−1
t+1

Π∗t+1

x2,t+1

)
. (66)

The government equations are:

Rt = max [Rt, 1] , (67)

Zt = R1−ρrRρr
t−1

[(
Πt

Π

)φπ ( yt
yt−1

)

)φy]1−ρr
mt. (68)

Inflation evolution and price dispersion:

1 = θΠε−1
t + (1− θ)(Π∗t )1−ε, (69)

vt = θΠε
tvt−1 + (1− θ)(Π∗t )−ε. (70)

Market clearing conditions:

yt = ct + gt, (71)

yt =
At
vt
lt. (72)

The stochastic processes are:

βt+1 = β1−ρbβρbt exp(σbεb,t+1), (73)

At = A1−ρAAρAt−1exp(σAεA,t), (74)

sg,t = s1−ρgg s
ρg
g,t−1exp(σgεg,t), (75)

mt = exp(εm,tσm). (76)

Observable equations

The observable equations are the following:

log∆GDPt = 100(yt − yt−1) + γ, (77)

log∆CONSt = 100(ct − ct−1) + γ, (78)

log∆WAGESt = 100(wt − wt−1) + γ, (79)

logHOURSt = 100lt + l̄, (80)

log∆DEFLt = 100 ∗ (pt ∗ π + π − 1), (81)

logFEDDUNDSt = 100(exp(rt) ∗RSS − 1)− 1. (82)
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Where ∆ is the difference operator, RSS = π
β
.
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