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ABSTRACT 

We examine Markov-switching autoregressive models where the commonly used Gaussian 
assumption for disturbances is replaced with a skew-normal distribution. This allows us to 
detect regime changes not only in the mean and the variance of a specified time series, but 
also in its skewness. A Bayesian framework is developed based on Markov chain Monte 
Carlo sampling. Our informative prior distributions lead to closed-form full conditional 
posterior distributions, whose sampling can be efficiently conducted within a Gibbs 
sampling scheme. The usefulness of the methodology is illustrated with a real-data example 
from U.S. stock markets. 
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NON-TECHNICAL SUMMARY 

 
Markov-switching models have been a popular tool used in econometric time series 

analysis. So far almost all extensions and applications of these models have been devoted 
to detecting abrupt changes in the behavior of the first two moments of a given series --- 
namely, the mean and the variance. Notable examples include Hamilton (1989)’s model of 
long-term mean rate of economic growth; stock return volatility models of Turner, Startz, 
and Nelson (1989) and Pagan and Schwert (1990), the exchange rate dynamics model of 
Engel and Hamilton (1990) and the real interest rate model of Garcia and Perron (1996). 

 
By contrast, skewness, the third moment, has received little attention in the Markov-

switching literature, though it is found in many economic time series, such as stock returns 
and exchange rate returns, and it appears to vary over time (see, for example, Alles and 
Kling (1994) and Harvey and Siddique (1999) for analysis of U.S. monthly stock indices, 
and Johnson (2002), Carr and Wu (2007), and Bakshi, Carr, and Wu (2008) for analysis of 
exchange rate returns). This important omission is due to the commonly used Gaussian 
assumption for disturbances, which does not allow for possible departure from symmetry.  

 
 
In this paper, we work with the autoregressive time series (AR) model with Markov-

switching introduced by Hamilton (1989), but relax the normality assumption. Instead, we 
consider a skew-normal distribution proposed by Azzalini (1985, 1986). The key innovation 
in his work is to account for several degree of asymmetry. With respect to the normal 
distribution, the skew-normal family is a class of density functions that depends on an 
additional shape parameter that affects the tails of the density. Such a distribution has 
already been intensively studied in statistics, biologists, engineers, and medical researchers, 
but remains largely unexplored in economics. 
 
 

Our approach here is to propose a simple and easy-to-implement Bayesian 
framework for such models. More specifically, we develop a Gibbs sampler for Bayesian 
inferences of AR time series subject to Markov mean, variance and skewness shifts. Our 
Gibbs sampling procedure can be seen as an extension of Albert and Chib (1993) to account 
for time variations in the skewness. Specifically, we take advantage of the stochastic 
representation of skew-normal variables, which is based on a convolution of normal and 
truncated-normal variables, in order to obtain a straightforward Markov Chain Monte Carlo 
(MCMC) sampling sequence that involves a 7-block Gibbs sampler for Markov-switching 
models, in which one can generate in a flexible and straightforward manner alternatively 
draws from full conditional posterior distributions. In order to make computationally 
feasible estimation and inference, we provide a companion software package for anyone 
interested in such models. 
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As an empirical illustration of our approach, we analyze the time-varying 
distribution of NYSE/AMEX/NASDAQ stock index returns. We establish two regimes. 
The first, prevailing during the periods of financial distress, is marked by negative expected 
returns, large conditional volatility, and positive conditional skewness. The second, 
frequently observed during tranquil periods, exhibits positive expected returns, low 
conditional volatility, and negative conditional skewness. Therefore, our result shows that 
stocks are particularly risky to hold in bad times, like the Great Recession. However, during 
such times, the positive degree of skewness, indicating that extreme values on the right side 
of the mean are more likely than the extreme values of the same magnitude on the left side 
of the mean, allow sometimes to perform large positive returns. Say it differently, stocks 
produce negative average returns in bad times, but sometimes take large positive hits. 

 
U.S. stock returns: probability of being in a risky regime 

 
 
 

Inférence bayésienne pour les modèles 
autorégressifs asymétriques à changements 

de régimes markoviens 
 
Nous examinons les modèles autorégressifs à changements de régimes markoviens dans 
lesquels l’hypothèse gaussienne communément utilisée est remplacée par une loi normale 
asymétrique. Ceci permet de détecter des changements de régimes non seulement dans la 
moyenne et la variance d’une série temporelle donnée, mais également dans son asymétrie. 
Un cadre bayésien est proposé à l’aide d’un algorithme de Monte Carlo par chaîne de 
Markov. Nos distributions informatives a priori permettent d’obtenir une expression 
analytique des distributions postérieures conditionnelles, dont l’échantillonnage peut être 
conduit efficacement à l’aide d’un échantillonneur de Gibbs. Un exemple de résultats 
obtenus à partir de données réelles issues des marchés boursiers américains illustre la 
pertinence de la méthodologie. 

Mots-clés : Changement de régime ; Asymétrie ; Échantillonneur de Gibbs ; Analyse de 
séries temporelles ; Risques à la hausse et à la baisse. 
Les Documents de travail reflètent les idées personnelles de leurs auteurs et n'expriment pas nécessairement 

la position de la Banque de France ou de l’Eurosystème. Ce document est disponible sur 
publications.banque-france.fr 

https://publications.banque-france.fr/
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I. Introduction

Markov-switching models have been a popular tool used in econometric time series analysis.

So far almost all extensions and applications of these models have been devoted to detecting

abrupt changes in the behavior of the first two moments of a given series — namely, the mean

and the variance. Notable examples include Hamilton (1989)’s model of long-term mean rate

of economic growth; stock return volatility models of Turner, Startz, and Nelson (1989) and

Pagan and Schwert (1990); the exchange rate dynamics model of Engel and Hamilton (1990);

and the real interest rate model of Garcia and Perron (1996).

By contrast, skewness, the third moment, has received little attention in the Markov-

switching literature, though it is found in many economic time series, such as stock returns

and exchange rate returns, and it appears to vary over time (see, for example, Alles and Kling

(1994) and Harvey and Siddique (1999) for analysis of U.S. monthly stock indices, and John-

son (2002), Carr and Wu (2007), and Bakshi, Carr, and Wu (2008) for analysis of exchange

rate returns). This important omission is due to the commonly used Gaussian assumption

for disturbances, which does not allow for possible departure from symmetry. In this paper,

we work with the autoregressive time series (AR) model with Markov-switching introduced

by Hamilton (1989), but relax the normality assumption. Instead, we consider a skew-normal

distribution proposed by Azzalini (1985, 1986). The key innovation in his work is to account

for several degree of asymmetry. With respect to the normal distribution, the skew-normal

family is a class of density functions that depends on an additional shape parameter that

affects the tails of the density. Such a distribution has already been intensively studied in

statistics, biologists, engineers, and medical researchers, but remains largely unexplored in

economics.

Our approach here is to propose a simple and easy-to-implement Bayesian framework for

such models. More specifically, we develop a Gibbs sampler for Bayesian inferences of AR time

series subject to Markov mean, variance and skewness shifts. Our Gibbs sampling procedure

can be seen as an extension of Albert and Chib (1993) to account for time variations in the

skewness. Specifically, we take advantage of the stochastic representation of skew-normal

variables, which is based on a convolution of normal and truncated-normal variables, in

order to obtain a straightfward Markov Chain Monte Carlo (MCMC) sampling sequence that

involves a 7-block Gibbs sampler for Markov-switching models, in which one can generate
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in a flexible and straightforward manner alternatively draws from full conditional posterior

distributions. In order to make computationally feasible estimation and inference, we provide

a companion software package for anyone interested in such models.

As an empirical illustration of our approach, we analyze the NYSE/AMEX/NASDAQ stock

index. We establish two regimes. The first, prevailing during the periods of financial distress,

is marked by negative expected returns, large conditional volatility, and positive conditional

skewness. The second, frequently observed during tranquil periods, exhibits positive expected

returns, low conditional volatility, and negative conditional skewness. Therefore, our result

shows that stocks are particularly risky to hold in bad times, like the Great Recession.

However, during such times, the positive degree of skewness, indicating that extreme values

on the right side of the mean are more likely than the extreme values of the same magnitude on

the left side of the mean, allow sometimes to perform large positive returns. Say it differently,

stocks produce negative average returns in bad times, but sometimes take large positive hits.

Finally, we show that our Markov-switching skewed AR model is very strongly preferred to

a Markov-switching symmetric AR model (i.e., errors are governed by normal shocks) by

standard model selection criteria. Overall, our results corroborate with the literature that

time-varying skewness is a real feature of U.S. stock index.

In the literature, time variation in skewness has been, in the first place, modelled through

the generalized autoregressive conditional heteroskedasticity (GARCH) models. Notable ex-

amples include Harvey and Siddique (1999), Jondeau and Rockinger (2003), and Christof-

fersen, Heston, and Jacobs (2006). The deterministic behavior of such systems lead, however,

to limited implications. Feunou and Tédongap (2012) and Iseringhausen (2018) go a step fur-

ther by modelling time-varying skewness as stochastic by extending the standard stochastic

volatility (SV) model; the parameter that governs the asymmetry of the distribution evolves

according to an autoregressive process. By contrast, our Markov-switching framework offers

another way of modelling stochastically time-varying skewness. This choice is justified by the

fact that many economic and financial data sets exhibit rapid shifts in their behaviors due,

for example, to financial or currency crises, and thus models with smooth and drifting coef-

ficients seem to be less suited for capturing such changes. Crises are well-known for hitting

the economy instantaneously, which favor models with abrupt changes like Markov-switching

models.
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In this context, the Nakajima (2013) specification is closest to our approach: namely, allow-

ing the parameter that governs the asymmetry of the (skew-normal) distribution1 to vary over

time according to a first-order Markov-switching process. There are, however, some major

differences. First, our Gibbs sampler leads to closed-form full conditional posterior distribu-

tions for any parameter of the Markov-switching skewed AR model, whereas a Random-Walk

Metropolis-Hastings (RWMH) algorithm is needed to sample the shape parameters in Naka-

jima (2013). Second, our algorithm assumes that mean, variance, and skewness switch at

the same time, wheras only skewness can switch in Nakajima (2013). This considerably re-

stricts the distributional flexibility and complicates the interpretation of the parameters of

the model since in the skew-normal distribution the shape parameter also affects the mean

and the variance. The potential problem is that if a time series specified is in fact subject to

only mean/variance shifts, then the shape parameter may incorrectly switch to compensate

for the absence of mean or variance shifts within framework. Third, as an empirical illus-

tration of our approach, we examine the U.S. excess stock returns, not the exchange rate

returns.

The paper is organised as follows. Section II presents a brief overview of the skew-normal

family of distributions. Section III outlines the Markov-switching model with skew-normal

distributions, and explains how to estimate it. Section IV presents a MCMC method to carry

out posterior inference. Section V deals with real data set from U.S. stock markets. Section

VI concludes.

II. The Skew-Normal Distribution: A preliminary

In this section, we first review the necessary properties of the skew-normal distribution,

and next we describe a constant-parameters AR model with skew-normal errors.

II.1. Basic notions. The skew-normal family was introduced by Azzalini (1985, 1986) as

the extension of the normal family from a symmetric form to an asymmetric form. It is a

distribution that has an additional parameter: a shape parameter α ∈ R, which allow for

possible deviation from symmetry. The following paragraphs provide the general framework

of such distribution.

1Note also that Nakajima (2013) uses a generalized hyperbolic skew Student’s t distribution instead of a

skew-normal one.
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Let Y a random variable with the following density

p(Y |ξ, ω2, α) =
2

ω
φ

(
Y − ξ
ω

)
Φ

(
α
Y − ξ
ω

)
, (1)

where φ(.) and Φ(.) denote the standard normal density function and cumulative distribution

function, respectively. We say that the random variable Y follows a univariate skew-normal

distribution with location parameter ξ, scale parameter ω2, and a skewness parameter α:

skew-normal(Y |ξ, ω2, α). (2)

If the skewness parameter is equal to zero, then the density of Y is a normal distribution

with mean ξ, and standard deviation ω.

The moments of the skew-normal distribution can be summarized as follows

E[Y ] = ξ + ωδ

√
2

π
, var[Y ] = ω2

(
1− 2

π
δ2

)
, (3)

where δ = α√
1+α2 and δ ∈ (−1, 1).

As an illustration, Figure 1 displays skew-normal density functions when α = 0,−1,−4,−10

in the left-hand panel, and α = 0, 1, 4, 10 in the right-hand panel. For the remaining param-

eters, we set ξ = 0 and ω2 = 1. As can be seen, the skewness parameter strongly alters the

tails of the distribution. When α is negative, the distribution tends to be skewed to the left,

while when it is positive, the distribution is skewed to the right.

Following Henze (1986), an interesting characteristic of the skew-normal distribution is

that it can be represented stochastically. In particular, the skew-normal distribution in (2)

is equivalent to

Y = ξ + ωδZ + ω
√

(1− δ2)U, (4)

where Z and U are independent random variables defined, respectively, as follows:

Z = truncated-normal(Z|0, 1)Z>0 and U = normal(U |0, 1), (5)

with truncated-normal(x|µ,Σ) denotes the truncated-normal distribution of x with mean µ,

variance Σ, and truncation below zero, and normal(x|µ,Σ) denotes the normal distribution of

x with mean µ and variance Σ. Say it differently, the skew-normal distribution may be seen

as the combination of a normal random variable and a truncated standard normal variable.

In next sections, we will show that this elegant and stochastic representation is crucial in

order to obtain our Gibbs-sampling procedure.
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Figure 1. Skew-normal density functions when α = 0,−1,−4,−10 in the

left-hand panel, and α = 0, 1, 4, 10 in the right-hand panel. The location

parameter, ξ, is set to zero, and the scale parameter, ω2 to one.

II.2. Skewed AR models. Consider now the following AR model in which the observation

at time t, yt, leads to the following representation:

yt = c+ φ1(yt−1 − c) + . . .+ φτ (yt−τ − c) + εt, t = 1, . . . , T, (6)

where the vector φ = (φ1, · · · , φτ ) contains the coefficients at the lag τ ; T is the sample size;

c is a constant, and εt follows a skew-normal distribution as follows:

skew-normal(εt|b∆, ω2, α), (7)

where ∆ = ωδ, ω2, and α are unknown parameters. We assume that b = −
√

2/π. By doing

so, it guarantees that E(εt) = 0. By considering equations (6) and (7), it can be shown that

this model is a stochastic process constructed by skew-normal process. Therefore, following

the work of Minozzo and Ferracuti (2012), we conclude the stationarity of the model.

A compact form of the AR model in equation (6) is given by:

yt = c+ φxt + εt, (8)
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with xt = [yt−1, . . . , yt−τ ]
′. Equations (6) and (7) are equivalent to

p(yt|Yt−1, c,∆, φ, ω
2, α) = skew-normal

(
yt|c+ φxt + b∆, ω2, α

)
, (9)

with Yt = [y1, . . . , yt]. The stochastic representation of equation (9) can be conveniently

reformulated as

yt = µ+ φxt + ωδzt + ω
√

1− δ2εt, (10)

p(zt) = truncated-normal(zt|0, 1)zt>0, (11)

p(εt) = normal(εt|0, 1), (12)

where µ = c+ b∆.

III. Skewed Autoregressive Models with Markov Shifts

We now extend cosntant-parameters skewed AR models to a setting in which parameters

follow a Markov-switching process. For 1 ≤ i, j ≤ h, the discrete and unobservable variable

st is an exogenous first order Markov process with the following transition matrix Q:

Q =


q1,1 · · · q1,h

...
. . .

...

qh,1 · · · qh,h

 , (13)

where h is the total number of regimes; and qi,j = Pr(st = i|st−1 = j) denote the transition

probabilities that st is equal to i given that st−1 is equal to j, with qi,j ≥ 0 and
∑h

i=1 qi,j = 1.

We assume that the conditional densities of yt, given st, arise from a skew-normal distribution.

By integrating out st, the marginal density of yt leads to a weighted average of conditional

densities as given by

p(yt|Yt−1, θ) =
∑
st∈H

p(yt|Yt−1, st, θ)Pr(st, θ), (14)

where H is a finite set of h elements and is taken to be the set {1, . . . , h}, and θ = (θi)i∈H

with θi = (µi, φi, ω
2
i , αi). The conditional likelihood at time t, p(yt|Yt−1, st, θ), is generated

by

p(yt|Yt−1, st, θ) =
2

ωst
φ

(
yt − φxt − µst

ωst

)
Φ

(
αst

yt − φxt − µst
ωst

)
. (15)
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Equation (14) can be evaluated recursively by updating Pr(st, θ) according to the Hamilton

(1989)’s filter (See Appendix A). Interestingly, the inclusion of the additional shape parameter

does not require to modify the original filter.

For mixtures defined in (14), it follows that each conditional density leads to the following

stochastic representation:

yt = µst + φxt + ωstδstzt + ωst

√
1− δ2

stεt, (16)

where zt and εt are defined in equations (11) and (12). Note that Markov switching affects

the intercept, the scale, and the shape parameters, not the coefficient parameter vector φ.

Given (15), it follows that the overall likelihood of YT is

p(YT |θ) =
T∏
t=1

[∑
st∈H

p(yt|Yt−1, st, θ)Pr(st, θ)

]
. (17)

To form the posterior density, p(θ|YT ), we combine the overall likelihood function p(YT |θ)

with the prior p(θ):

p(θ|YT ) ∝ p(YT |θ)p(θ), (18)

The posterior density p(θ|YT ) is not of standard form, but we will show in the next section

that it is possible to use the idea of Gibbs-sampling by sampling alternatively from conditional

posterior distributions.

For computational reasons, we employ a logarithm transformation in equation (18) to

obtain the log-posterior function as follows

log {p(θ|YT )} ∝ log {p(YT |θ)}+ log {p(θ)} , (19)

where the conditional log-likelihood at time t, given st, is as follows

log {p(yt|Yt−1, st, θ)} = constant−log{ωst}−
(yt − φxt − µst)2

2ω2
st

+log

{
Φ

(
αst

yt − φxt − µst
ωst

)}
.

The strategy to find the posterior mode of (19) is to generate a sufficient number of draws

from the prior distribution of each parameter. Each set of points is then used as starting

points to the CSMINWEL program, the optimization routine developed by Christopher A.

Sims. Starting the optimization process at different values allows us to correctly cover the

parameter space and avoid getting stuck in a “local” peak. Note, however, that we do not

need to use a more complicated method for finding the mode like the blockwise optimization

method developed by Sims, Waggoner, and Zha (2008), in which the authors break the
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parameters into several subblocks of parameters and apply a standard hill-climbing quasi-

Newton optimization routine to each block, while keeping the other subblocks constant, in

order to maximize the posterior density2. The size of the Markov-switching univariate model

in (16) remains relatively small and allows us employ a standard technique.

IV. A Gibbs sampler

In the existing statistical literature, efficient posterior simulation algorithms have been

applied to finite mixtures of skew-normal distributions. See, for example, Lin, Lee, Yen, and

Chung (2007) and Frühwirth-Schnatter and Pyne (2010). Our work differs from this literature

along several dimensions. First, we assume that regime shifts evolve according to a Markov

chain. Finite mixture models seems to be less suited for time series analysis as they consider

unrealistically rapid switching regimes. By contrast, Markov-switching models can be seen

as an extension of mixture models with a general solution to the problem of state persistence.

Second, we introduce an autoregressive process of finite order, as naturally modelled in the

macroeconomics literature. Third, our MCMC algorithm is able to directly generate draws

of the shape parameters from a closed-form full conditional posterior distribution, and thus

avoiding to employ a RWMH algorithm. Overall, Our MCMC approach can be seen as an

extension of Albert and Chib (1993) to Markov mean, variance and skewness shifts.3

A MCMC simulation method is employed to approximate the joint posterior density

p(θ, ZT , ST |YT ), where St = [s1, . . . , st], and Zt = [z1, . . . , zt] for t ≥ 1. Here, a key to

Bayesian estimation of a Markov-switching skewed AR model is to exploit the stochastic

representation as defined in equation (16).

Because we consider a Bayesian approach to inference of the complete model, as defined

by equations (11), (12), (13), and (16), we now explicit our priors. For k = 1, . . . , h, the prior

on the set of parameters θ is given by:

φ = normal(φ|b̄, B̄), (20)

µk = normal(µk|ā, Ā), (21)

2See, for example, Lhuissier (2017) and Lhuissier and Tripier (2019), for applications of such a method in

the context of multivariate-equation Markov-switching models.
3Albert and Chib (1993) develop a Gibbs sampling for AR time series subject to Markov mean and variance

shifts.
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ωk = inv-gamma(ωk|ᾱ, β̄), (22)

qk = dirichlet(qk|ᾱ1k, . . . , ᾱhk), (23)

αk = normal(αk|α0, ψ0), (24)

where b̄, B̄, ā, Ā, ᾱ, β̄, ᾱ1k, . . . , ᾱhk are the hyperparameters; qk denotes the kth column of Q;

and dirichlet(qk|α1, ..., αh) is the Dirichlet distribution of qk as follows:

1

B(α)

h∏
i=1

qi
αi−1 (25)

with B(α) =
∏h

i=1 Γ(αi)

Γ(
∑h

i=1 αi)
, where Γ denotes the standard gamma function. As can be seen,

we directly specify informative priors for the shape parameter αk rather than for δk, the

transformed shape parameters.4

The stochastic representation leads us to exploit the idea of Gibbs-sampling. Let θ6=x

contain the model’s parameters, except for x. The MCMC sampling scheme at the (i)st

iteration, for i = 1, . . . , N1 +N2, consists of sampling from the following conditional posterior

distributions

(1) p
(
S

(i)
T |YT , θ(i−1)

)
;

(2) p
(
Q(i)|S(i)

T

)
;

(3) p
(
Z

(i)
T |YT , S

(i)
T , θ

(i−1)
)

;

(4) p
(
φ(i)|YT , S(i)

T , Z
(i)
T , θ

(i−1)
6=φ

)
;

(5) p
(
µ

(i)
k |YT , S

(i)
T , Z

(i)
T , θ

(i−1)
6=µk

)
;

(6) p
(
ω

(i)
k |YT , S

(i)
T , Z

(i)
T , φ

(i), δ
(i−1)
k

)
;

(7) p
(
α

(i)
k |YT , S

(i)
T , Z

(i)
T , θ

(i)
6=α

)
.

A few items deserve discussion. First, simulation from the conditional posterior density

p
(
S

(i)
T |YT , θ(i−1)

)
, given ZT and θ, is standard and in closed form. Second, simulation

from the conditional posterior density p
(
Q(i)|S(i)

T

)
is independent of the time series YT ,

4When specifying priors for δk, instead of αk, there is no closed form for the posterior distribution of δk,

and one must impose a non-informative prior (i.e., uniform distribution on a bounded interval between −1.00

and 1.00), and use a RWMH algorithm. This explains our difference with the Nakajima (2013)’s MCMC

algorithm.
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the random variable ZT and the model’s other parameters. Third, simulation from the con-

ditional posterior density p
(
Z

(i)
T |YT , S

(i)
T , θ

(i−1)
)

, given Yt, Zt and θ, is available in closed

form due to the stochastic representation of the Markov-switching model through normal

and truncated-normal variables. Fourth, simulations from the conditional posterior densities

p
(
φ(i)|YT , S(i)

T , Z
(i)
T , θ

(i−1)
6=φ

)
and p

(
σ

(i)
k |YT , S

(i)
T , Z

(i)
T , φ

(i), δ
(i−1)
k

)
reduces to Bayesian inference

for Markov-switching models with known allocations, ST . Finally, simulation from the con-

ditional posterior density p
(
α

(i)
k |YT , S

(i)
T , Z

(i)
T , θ

(i)
6=α

)
is in closed form, and follows an unified

skew-normal distribution introduced by Arellano-Valle and Azzalini (2006).

This sampler begins with setting parameters at the peak of the posterior density function.

We collect N1 + N2 draws of the MCMC sequence and keep only the last N2 values. The

only computational complication involves the simulation from the posterior distribution of

α, which requires to sample from a truncated multivariate normal distribution. With respect

to Albert and Chib (1993), our Gibbs-sampling procedure involves two more blocks, namely

the conditional posterior distribution of ZT , given the parameters and the states, and the

conditional posterior distribution of αk, given ZT , ST and the remaining parameters.

The researcher can use our companion computer program, written in C++, to estimate

and simulate an AR skewed model with Markov shifts. The user just needs to provide an

input file in which he/she must mention each specification (such as the number of lags, prior

settings, the number of draws, the number of burn-in, etc...) of the AR model.5 Due to its

simplicity and efficiency, we believe that our companion computer code is relevant for anyone

interested in inference of such models.

The subsections that follow provide the computational details for each conditional posterior

distribution.

IV.1. Conditional posterior densities, p
(
S

(i)
T |YT , θ(i−1)

)
. For t = 1, 2, ..., T , we can gen-

erate S
(i)
T using the Carter and Kohn (1994)’s multi-move Gibbs-sampling as following

p(S
(i)
T |YT , θ

(i−1)) = p(s
(i)
T |YT , θ

(i−1))
T−1∏
t=1

p(s
(i−1)
t |s(i)

t+1, YT , θ
(i−1)). (26)

5The software is available at http://stephanelhuissier.eu/assets/skewcodes.zip. In Appendix B, we provide

a concrete example of how to use the interface with our C++ computer code. The software program was

written in modern C++11 and mainly uses the GNU Scientific Library (GSL-2.5) and the Eigen library

(3.3.5). Both libraries are open source.

http://stephanelhuissier.eu/assets/skewcodes.zip
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Drawing S
(i)
T from the full conditional distribution based on this equation is standard. We

begin with a draw from p(sT |YT , θ) obtained with the Hamilton (1989) basic filter, and then

iterate recursively backward to draw sT−1, sT−2, . . . , 1 according to

p(st|YT , θ) =
∑
st+1

p(st|YT , θ, st+1)p(st+1|YT , θ), (27)

where

p(st|YT , θ, st+1) =
Pr [st+1|st] p(st|YT , θ)

p(st+1|Yt, θ)
. (28)

Appendix A provides the details for derivation of the Hamilton (1989) filter.

IV.2. Conditional posterior densities, p
(
Q(i)|S(i)

T

)
. The conditional posterior distribu-

tion of Q(i) is as follows:

p(q
(i)
k |ST ) = dirichlet(q

(i)
k |ᾱ1k + n1k, ..., ¯αHknHk) (29)

where q
(i)
k is the kth column of Q(i), nij is the total number of transitions from state j to

state i over the entire sample.

Drawing Q(i) from the above full conditional distribution is also standard.

IV.3. Conditional posterior densities, p
(
Z

(i)
T |YT , S

(i)
T , θ

(i−1)
)
. Here, the nice property of

such a model is that the full conditional distribution of Zt given Yt, S
(i)
T , and θ(i) is available

in closed form.

For t = 1, 2, ..., T , we generate Z
(i)
T according to

p
(
Z

(i)
T |YT , S

(i)
T , θ

(i−1)
)

=
T∏
t=1

p
(
z

(i)
t |Yt, S

(i)
t , θ

(i−1)
)
, (30)

where

p
(
z

(i)
t |Yt, S

(i)
t , θ

(i−1)
)

= truncated-normal
(
z

(i)
t |δ(i−1)

st

(
yt − φ(i−1)xt − µ(i−1)

st

)
, ω(i−1)

st

2
(

1− δ(i−1)
st

2
))

z
(i)
t >0

.

IV.4. Conditional posterior densities, p
(
φ(i)|YT , S(i)

T , Z
(i)
T , θ

(i−1)
6=φ

)
. If we let y∗t =

yt−µst−δstzt
ωst

√
1−δ2st

,

and x∗t = xt
ωst

√
1−δ2st

, we obtain an homoskedastic model as follows

y∗t = φx∗t + νt, (31)

where νt follows a standard normal distribution. Then, simulation from the full conditional

distribution of φ(i), given YT , S
(i)
T , Z

(i)
T and θ

(i−1)
6=φ , becomes straightforward, given a conjugate

prior distribution. The posterior is defined as
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p
(
φ(i)|YT , S(i)

T , Z
(i)
T , θ

(i−1)
6=φ

)
= normal

(
u

(i)
φ , U

(i)
φ

)
, (32)

where

u
(i)
φ =

(
B̄−1 +X ′X

)−1 (
B̄−1b̄+X ′y∗t

)
, (33)

U
(i)
φ =

(
B̄−1 +X ′X

)−1
, (34)

and b̄ and B̄ are known hyperparameters of the prior distribution — the mean and the

variance, respectively — and X = [x∗1, . . . , x
∗
T ]′.

IV.5. Conditional posterior densities, p
(
µ

(i)
k |YT , S

(i)
T , Z

(i)
T , θ

(i−1)
6=µk

)
. If we let y∗∗t =

yt−φxt−δstzt
ωst

√
1−δ2st

,

and x∗∗t = 1

ωst

√
1−δ2st

, we obtain an homoskedastic model as follows

y∗∗t = µstx
∗∗
t + ςt, (35)

where ςt follows a standard normal distribution.

Therefore, the posterior can be defined as

p
(
µ

(i)
k |YT , S

(i)
T , Z

(i)
T , θ

(i−1)
6=µ

)
= normal (vµ,k, Vµ,k) , (36)

where

vµ,k =

Ā−1 +
∑

t∈{t:st=k}

x∗∗t
2

−1Ā−1ā+
∑

t∈{t:st=k}

x∗∗t y
∗∗
t

 , (37)

Vµ,k =

Ā−1 +
∑

t∈{t:st=k}

x∗∗t
2

−1

, (38)

with ā and Ā are known hyperparameters of the prior distribution — the mean and the

variance, respectively.

IV.6. Conditional posterior densities, p
(
ω

(i)
k |YT , S

(i)
T , Z

(i)
T , φ

(i), µ
(i)
k , δ

(i−1)
k

)
. Given Yt, ST ,

ZT , θ, and ST , the scale parameter ω can be drawn using the following inverse-gamma dis-

tribution

p
(
ω

(i)
k |YT , S

(i)
T , Z

(i)
T , φ

(i), µ
(i)
k , δ

(i−1)
k

)
= inv-gamma(ᾱ + ssrk, β̄ + Tk), (39)
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where Tk is the number of elements in {t : st = k} for k = 1, . . . , h, and ssrk is the sum of

squared residual defined as

ssrk =
∑

t∈{t:st=k}

yt − φ(i)xt − µ(i)
st − δ

(i−1)
st z

(i)
t√

1− δ(i−1)
st

2

2

, (40)

where ᾱ and β̄ are the shape hyperparameters implied by the choice for the prior mean and

variance.

IV.7. Conditional posterior densities, p
(
α

(i)
k |YT , S

(i)
T , θ

(i)
6=α

)
. Let ȳt =

yt−φxt−µst
ωst

and

Y T = [ȳ1, . . . , ȳT ]′. Consider the following derivation for the full conditional distribution

of αk, given YT , S
(i)
T , and θ

(i)
6=α:

p
(
α

(i)
k |YT , S

(i)
T , θ

(i)
6=α

)
∝ φ

(
αk − α0

ψ0

) T∏
t=1

Φ (αkȳt)

∝ φ

(
αk − α0

ψ0

)
ΦT

(
αkY T ; IT

)
∝ φ

(
αk − α0

ψ0

)
ΦT

(
Y Tα0 + Y T (αk − α0); IT

)
∝ SUN1,T

(
α

(i)
k |α0,∆1,kα0/ψ0, ψ0, 1,∆1,k,Γ1,k

)
where SUNd,m(x|ξ, τ, ω,Ω,∆,Γ) refers to the unified skew-normal (SUN) distribution intro-

duced by Arellano-Valle and Azzalini (2006) as follows

φd (z − ξ;ωΩω)
Φm (γ + ∆Ω−1ω−1(z − ξ); Γ−∆Ω−1∆′)

Φm(γ; Γ)−1
, (41)

with Φd is the cumulative density function of d-variate Gaussian distribution with variance-

covariance matrix Σ, Ω, Γ, and Ω∗ = ((Γ,∆)′, (∆′,Ω)′) are correlations matrices, and ω is a

d×d diagonal matrix; ∆1,k = [ζt]t∈{t:st=k} with ζt = ψ0ȳ
2
t (ψ

2
0 ȳ

2
t +1)−1/2; Γ1,k = I−diag(∆1,k)

2+

∆1,k∆
2
1,k; and where diag(V ) is a diagonal matrix, the elements of which coincide with those

of vector V .6

6Canale, Pagui, and Scarpa (2016) demonstrate that informative priors (i.e., normal or skew-normal dis-

tribution) for the shape parameter of a constant skew-normal model lead to closed-form full conditional

distributions.
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To simulate draws from the SUN distribution, one can use its stochastic representation.

Let U0 and U1,−γ have the following distribution

U0 = normal
(
U0|0,Ψ∆

)
, and U1,−γ = truncated-normal(U1|0,Γ)−γ. (42)

Then, it can be show the SUN distribution can be generated as follows

ξ + ω
(
U0 + ∆Γ−1U1,−γ

)
. (43)

Once we obtain αk, we can directly transform it to recover δk = αk√
1+α2

k

.

IV.8. Label-switching. Due to the label-switching problem, we normalize the labels of

regimes to obtain accurate posterior distributions, such as, for example, α1 < . . . < αh. To

achieve this constraint, we adopt rejection sampling.

V. Application: U.S. excess stock returns

In this section, we apply the proposed algorithm to the U.S. excess stock return for value-

weighted portfolio of all CRSP firms listed on the NYSE, AMEX, or NASDAQ. The time

series, shown in Figure 2, is organized monthly from July 1926 to April 2019.7 We consider

a Markov-switching skewed AR(1) model with h=2 regimes.

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

years

-0.2

-0.1

0

0.1

0.2

0.3

ex
ce

ss
 s

to
ck

 r
et
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n

Figure 2. Sample period: 1926.M07 — 2019.M04. Historical path of U.S.

excess stock returns.

The priors are defined in Table 1, which reports the specific distribution, the mean and

the standard deviation for each parameter. A few of them deserve further discussion. First,

7The excess return dataset is freely available at the Kenneth R. French’s homepage:

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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for µk and φ1 we choose a normal prior with the mean 0.00 and the standard deviation 2.00.

These priors are rather dispersed and cover a large parameter space. Second, The prior for

the scale parameter, ωk, follows an inverse-gamma distribution, with the mean 0.05 and the

standar deviation 0.10. Third, the prior for the shape parameter, αk, has a normal density

with the mean 0.00 and the standard deviation 2.00. Fourth, it may be worth noting that we

impose the exact same prior across regimes, so that differences between regimes result from

data rather than priors. Finally, the prior duration of each regime is about twenty months,

meaning that the average probability of staying in the same regime is equal to 0.95 and a

standard deviation equal to 0.05.

The results shown in this paper are based on 11, 000 draws with our Gibbs-sampling

procedure developed in Section IV. We discard the first 1, 000 draws as burn-in, and keep

every 10-th draw in order to achieve an approximately independent sample. On the right-

hand side of Table 1, we report the posterior mode, mean, and median with the 90 percent

probability interval for each parameter of the estimated model.

Table 1. AR(1) Markov-switching model for U.S. excess stock returns.

Prior Posterior

Coefficient Description Density para(1) para(2) Mode Mean Median [5; 95]

µ1 location N 0.00 2.00 −0.1094 −0.0961 −0.1004 −0.1509 −0.0236

µ2 location N 0.00 2.00 0.0431 0.0378 0.0396 0.0162 0.0481

ω1 scale I-G 0.05 0.10 0.1465 0.1414 0.1360 0.1057 0.1957

ω2 scale I-G 0.05 0.10 0.0520 0.0486 0.0488 0.0384 0.0573

α1 shape N 0.00 2.00 1.5655 1.4306 1.3976 0.1455 2.7200

α2 shape N 0.00 2.00 −1.4640 −1.2065 −1.2571 −1.8731 −0.2209

q11 prob. D 0.95 0.05 0.9449 0.9222 0.9256 0.8668 0.9667

q22 prob. D 0.95 0.05 0.9921 0.9873 0.9881 0.9765 0.9955

φ persistence N 0.00 5.00 0.0095 0.0135 0.0126 −0.0413 0.0680

Note: Sample period: 1926.M07—2019.M04. N stands for Normal, D for Dirichlet, and Inv-

G for Inverted-Gamma distributions. The 5 percent and 95 percent demarcate the bounds of

the 90 percent probability interval. Para(1) and Para(2) correspond to the means and standard

deviations.

The first finding that is evident is the remarkable difference in the estimated parameters

across the two states. Regarding the shape parameter, the first state gives a positive value
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(1.5655 at the mode), while its value in the second state is negative (−1.4640 at the mode).

The probability intervals for α1 and α2 lie exclusively within positive and negative regions,

respectively. This reinforces our estimates, and reveals strong evidence of time variation in

the skewness of U.S. excess stock returns. Regarding other regime-switching parameters,

both location and scale parameters are subject to important shifts across regimes. The

location parameter turns out to be lower in the first regime than in the second one, where

µ1 at the mode is robustly negative (−0.1094 at the mode), and µ2 is positive (0.0431 at the

mode). Regarding the scale parameters, the estimates for ω1 and ω2 are 0.1465 and 0.0488,

respectively, with their corresponding error bands appearing relatively tight. Thus, volatility

turns out to be three times higher in the first regime. To sum up, the first (second) regime is

characterized by low (high) first moment, high (low) second moment, and positive (negative)

third moment.

Regarding the persistence parameter, φ, its estimates gives a value close to zero, and its

probability intervals lies within both the negative and positive regions, suggesting that φ

could be dropped from the model.

Regarding the posterior probabilities (q11 and q22) of the Markov-switching process, it is

apparent that the persistence of staying in each state is relatively high. The 90% probability

intervals for q11 are 0.8668 and 0.9667, and those for q22 are 0.9765 and 0.9955, indicating

that the first regime is much less persistent than the second regime. Once again, posterior

modes, means and medians are concentrated in tight ranges, reinforcing estimated transition

parameters.

Figure 3 displays marginal posterior density estimates for parameters of the model using

normal kernel density estimates. Several comments can be made from viewing these plots.

First, the distributions for µ2 and α2 parameters are bimodals. Their MCMC draws tend

to occasionally visit values close to 0. Such a behavior results directly from the integrated

effect of the non-conjugate joint posterior distribution of all parameters that have multiple

peaks. Second, the distributions for α1 and α2 are almost entirely displayed in positive and

negative regions, respectively, meaning that the differences between skewness parameters are

apparent.

Figure 4 reports the probabilities — evaluated at the mode — of being in Regime 1 over

time. The probabilities are smoothed in the sense of Kim (1994); i.e., full sample information
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Figure 3. Marginal posterior densities using normal kernel density estimates

from skewed AR(1) model with Markov shifts.

is used in getting the regime probabilities at each date. One can see from the figure that

U.S. economy has been characterized by switches between the two regimes over time. The

first regime coincides remarkably well with periods of financial distress such as the Great

Depression of the late 1920s and 1930s, the 1973-74 stock market crash, 1987’s Black Monday

market crash, and the 2007-2009 Great Recession. Interestingly, our results seem to reveal

that the U.S. stock return is skewed to the right in periods of financial distress, and skewed to

the right during the remaining periods. This is somewhat similar to Alles and Kling (1994),

wo report that the skewness of stock indices is more negative during economic upturns and

less negative, even positive, during downturns. In other words, extreme values on the right

side of the mean are more likely than the extreme values of the same magnitude on the left
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Figure 4. Sample period: 1926.M08 — 2019.M04. Smoothed probabilities of

Regime 1.

side of the mean, due to the positive degree of skewness. Those results might be, at first

sight, quite surprising, but can be largely understood through the existing information-based

theories. See Alles (2004) for a comprehensive explanation of such patterns.

Table 2. Information criteria

Markov-switching

model m log-likelihood AIC BIC

Skew-normal

shocks 9 1863.0 −3708.1 −3662.9

Normal shocks 7 1854.2 −3694.3 −3659.4

Note: Akaike information criteria (AIC): AIC = −2 ∗

(log-likelihood−m). Bayesian information criteria (BIC): BIC =

−2 ∗ {log-likelihood− 0.5mlog(T )}. The number of parameters

and the size of sample are denoted by m and T , respectively.

For comparison purposes, we also fit a Markov-switching AR(1) model with normal shocks

(α1 = α2 = 0). The log-likelihood at the peak and two information-based criteria, AIC

(Akaike (1973)) and BIC (Schwarz (1978)), are shown in Table 2. Clearly, our Markov-

switching model with skew-normal shocks outperforms the one with normal shocks, since it

has the largest log-likelihood, and the smallest AIC and BIC.
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VI. Conclusion

Our main goal in this paper was to develop a MCMC procedure for skewed autoregressive

models subjet to Markov shifts. We use to the stochastic representation of the skew-normal

family to obtain closed-form full conditional posterior distributions, whose sampling can be

efficiently conducted within a Gibbs sampling scheme. An application of this procedure to

U.S. excess stock returns demonstrates evidence of time-varying skewness.

Extending univariate AR models with Markov skewness shifts to a multivariate framework,

like vector autoregression, would seem to be a natural next step. Another area of future

work would be to relax the assumption of exogeneity of regime switching in order to better

understand the sources of changes in the skewness of a time series. As such, the works by

Kim, Piger, and Startz (2008) and Chang, Choi, and Park (2017) on endogenous Markov-

switching AR models could then be used in this direction. All in all, we believe those

extensions certainly represent an interesting avenue for future research and would be suited

to a variety of economic problems.
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Appendix A. The likelihood, p(YT |θ)

The evaluation of the overall likelihood function is obtained using the standard Hamilton

(1989) filter. The likelihood of YT is

p(YT |θ) =
T∏
t=1

p(yt|Yt−1, θ), (44)

where the conditional likelihood function p (yt|Yt−1, θ), given θ, at date t is obtained by

integrating the density p(yt, st|Yt−1, θ) over st as follows

p(yt|Yt−1, θ) =
∑
st∈H

p(yt, st|Yt−1, θ), (45)

=
∑
st∈H

p(yt|st, Yt−1, θ)Pr[st|Yt−1, θ], (46)

Using the Hamilton (1989) filter, we can recursively compute Pr[st|Yt, θ] forward. Specifi-

cally,

Pr[st|Yt−1, θ] =
∑

st−1∈H

qst,st−1Pr(st−1|Yt−1, θ), for t > 0, (47)

where qst,st−1 = Pr[st|st−1] is the transition probability described in (13).

We then update the joint probability term in the following way:

Pr[st|Yt, θ] =
p(yt, st|Yt−1, θ)

p(yt|Yt−1, θ)
(48)

=
p(yt|st, Yt−1, θ).Pr(st|Yt−1, θ)

p(yt|Yt−1, θ)
, for t > 0, (49)

Once the parameters of the model are estimated, we follow Kim (1994) and Kim and

Nelson (1999) by making inference on sT , the smoothed probabilities, in the following way:

Pr[st|YT , θ] =
∑

st+1∈H

Pr[st, st+1|YT , θ], (50)

where

Pr[st, st+1|YT , θ] =
Pr[st+1|YT , θ].Pr[st|YT , θ].Pr[st+1|st]

Pr[st+1|YT , θ]
. (51)

The advantage of such a method is that it allows us to infer the unobservable variable st

using all the information in the sample.
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Appendix B. Computer Software

Once compiled, our companion C++ computer code for this paper, available at the author’s

website, is easy to use. One must provide an input file that indicates prior specifications, the

structure of AR process, MCMC options, and time series data. An example of this interface

is provided below.

1 //== Number Lagged Var iab l e s ==//

2 1

3

4 //== Si z e Sample ==//

5 267

6

7 //== Number Regimes ==//

8 2

9

10 //== Pr ior f o r Phi ==//

11 0 .0000 5 .0000

12

13 //== Pr ior f o r Sca l e ==//

14 1 .1782 2 .5891

15

16 //== Pr ior f o r Shape ==//

17 0 .0000 3 .0000

18

19 //== Pr ior f o r Trans i t i on Matrix ==//

20 12 .00 3 .000

21 3 .000 12 .00

22

23 //== Number Optimizat ion Runs ==//

24 100

25

26 //== Number Draws ==//

27 11000

28
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29 //== Number Burn−in ==//

30 1000

31

32 //== Thinning Factor ==//

33 10

34

35 //== Y−data ==//

36 2.1999843197342273e−01

37 1.0628799925268773e+00

38 . . .

This input file concerns an AR model of order 1 where the shape parameter follows a two-

states Markov process. Regarding the MCMC procedure, the input file asks for 11, 000 draws,

whose 1, 000 as burn-in, and 10 as thinning factor. In this file, the header bracketed by

1 //== . . . ==//

communicates with the software what kind of data is expected. The number below the

header “Number Lagged Variables” indicates how many lags are defined for the model. The

number below the header “Size Sample” indicates the size of the sample. The number below

the header “Number Regimes” indicates the number of regimes for the Markov process.

The numbers below the headers “Prior for Phi”, “Prior for Scale”, “Prior for Shape”, and

“Prior for Transition Matrix” indicate the hyperparameters for the parameters φ, ω, α, and

Q, respectively. The number below the header “Number Optimization Runs” indicates the

number of times the optimization process is repeated. At each time, a new set of points,

generated from the prior, is used. The number below the header “Number Draws” indicates

the number of draws in the MCMC algorithm. The number below the header “Number

Burn-in” indicates the number of burn-in in the MCMC algorithm. The number below the

header “Thinning Factor” indicates the thinning factor in the MCMC algorithm. Finally,

the values below the header “Y-data” contain time series data.
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