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ABSTRACT 

The Covid-19 crisis has highlighted innovative high-frequency dataset allowing to measure in real-
time the economic impact. In this vein, we explore how satellite data measuring the concentration of 
nitrogen dioxide (NO2, a pollutant emitted mainly by industrial activity) in the troposphere can help 
predict industrial production. We first show how such data must be adjusted for meteorological 
patterns which can alter data quality and pollutant emissions. We use machine learning techniques to 
better account for non-linearities and interactions between variables. We then find evidence that 
nowcasting performances for monthly industrial production are significantly improved when relying 
on daily NO2 data compared to benchmark models based on PMIs and auto-regressive (AR) terms. 
We also find evidence of heterogeneities suggesting that the contribution of daily pollution data is 
particularly important during “crisis” episodes and that the elasticity of NO2 pollution to industrial 
production for a country depends on the share of manufacturing in the value added. Available daily, 
free-to-use, granular and covering all countries including those with limited statistics, this paper 
illustrates the potential of satellite-based data for air pollution in enhancing the real-time monitoring 
of economic activity. 
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NON-TECHNICAL SUMMARY 

The sudden shock of the Covid-19 crisis – with some countries shutting down almost entirely 

in a matter of days – has put new emphasis on high-frequency data. Weekly, daily, or even 

hourly data have been extensively used to assess in real-time the impact of the pandemics. In 

particular, satellite measurements of air pollution have been put forward on several occasions 

to show the alleged dramatic effect of the shutdown of factories on air pollution. 

Against this background, we assess whether satellite data for tropospheric pollution can help 

predicting industrial production. We focus on nitrogen dioxide (NO2), a pollutant mainly 

emitted by industrial activity. Compared to official or alternative indicators, such data present 

advantages of timeliness, global coverage – including over developing countries with limited 

official statistics, granularity, and free use. While an avenue for future research could be to 

compare predictive performances of NO2 satellite data with other high-frequency indicators, 

the global and uniform coverage of satellite data appears a key advantage. 

Raw satellite data are however far from ready-to-use. Our first step is fetching the data and 

making it easier to process: we select and aggregate relevant data at ZIP code, allowing to go 

from a daily download of 4 Gb in multiple files into a single 20 Mb csv file. As the quality of 

satellite data can be altered over cloudy or snowy areas, we also clean the data. This results 

however in a large amount of missing points. Since missing data at local level might result in 

undesired composition effects when aggregating at national level, we interpolate them. We 

rely on a machine learning technique (the k-nearest neighbours’ algorithm) that allows 

interpolation to account both for spatial and temporal correlations. Finally, NO2 pollution 

heavily depends on meteorological factors (temperature, wind, humidity). Given that their 

effect is non-linear and features interactions between variables, we use a random forest 

algorithm. Data is then aggregated at national level to match the granularity of official 

statistics, most notably the industrial production that we intend to nowcast. 

Our second step checks the relevance of NO2 pollution from a forecasting standpoint. We 

rely on panel regression over 17 emerging and 16 advanced countries to make up for the 

limited available timespan (since Dec. 2018 only). We find evidence that a model based on 

daily NO2 pollution data over-performs benchmark models based on survey data (Purchasing 

Managers’ Index) or auto-regressive (AR) terms. Mimicking a real-time set-up from March 

2020 to December 2020, we find that this over-performance holds for all days of the month: 

the model based on daily NO2 pollution data over-performs benchmarks at every day – with 

evidence that gains in predictive accuracy are greater as the month advances and more daily 

data become then available (see figure 1). There are additional accuracy gains when relying 

on a MIxed DAta Sampling (MIDAS) approach to predict monthly industrial production 

using daily NO2 pollution – using a panel-MIDAS recently introduced in the literature.  

We finally find evidence for heterogeneities. First, accuracy gains are greater for countries 

that have been more affected by the Covid-19 crisis, suggesting that the contribution of high-

frequency data is more important during “crisis” episodes than during “normal” times. 

Second, the elasticity of pollution to industrial production appears to be greater for countries 

with a larger share of manufacturing in the value added. In the end, we turn to business cycle 

detection. Building on a Markov-switching framework, we find that daily NO2 pollution data 

allow for a swifter detection of turning points compared with relying on monthly official 

data, with a lead time of around 2.5 months for the former over the latter. 
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Figure 1. Models’ performance (out-of-sample RMSE) relative to the AR(1) benchmark 

(Sources: ESA, authors’ calculation) 

 
 

Les données satellite de pollution de l’air 
prédisent-elles la production industrielle ?  

RÉSUMÉ 

La crise de la Covid-19 a illustré le rôle des données haute-fréquence pour mesurer en 
temps réel l’activité économique. Dans cet esprit, nous étudions si les données satellite de 
pollution au dioxyde d’azote (NO2, un polluant émis principalement par l’activité 
industrielle) dans la troposphère permettent de prédire la production industrielle. Nous 
montrons d’abord que ces données doivent être corrigées par les facteurs météorologiques 
qui affectent la qualité des données et le niveau de pollution. Nous utilisons des techniques 
de machine learning pour tenir compte des non-linéarités et interactions entre variables. Nous 
montrons ensuite que les prévisions en temps réel ont de meilleures performances en 
utilisant les données de pollution par rapport à des modèles basés sur les enquêtes PMI ou 
des termes autorégressifs. L’analyse fait aussi apparaitre des hétérogénéités avec une 
contribution plus significative des données de pollution pendant les épisodes de crise, et 
avec une élasticité de la pollution au NO2 par rapport à l’activité plus importante dans les 
pays ou la part de l’industrie dans la valeur ajoutée est la plus forte. Disponible 
quotidiennement, a un niveau de précision élevée, et une couverture uniforme de tous pays 
– y compris ceux aux systèmes statistiques peu développés – cette étude montre le potentiel 
des données de satellite pour améliorer le suivi en temps réel de l’économie. 

Mots-clés : science des données, big data, données satellite, prévision en temps réel, machine 
learning, production industrielle 
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Introduction 

The sudden shock of the Covid-19 crisis – with some economies shutting down almost entirely 

in a matter of days – has put new emphasis on high-frequency data. Weekly, daily, or even 

hourly data have been extensively used to assess in real-time the impact of the Great 

Lockdown on economic activity in a way that could permanently disrupt how official statistics 

are constructed (Veronese et al., 2020). Among all these high-frequency data, satellite 

measurements of tropospheric1 pollution have been highlighted in a number of press articles 

displaying graphic comparisons of how the shutdown of factories had supposedly reduced 

air pollution in dramatic proportions (see for example China in figure 1). 

Figure 1. Tropospheric pollution over China: January 2020 vs. February 2020 

Source: Earth observatory 

 

Against this background, this paper aims at assessing whether satellite data for tropospheric 

pollution can help predicting industrial production. We focus on nitrogen dioxide (NO2), a 

pollutant emitted by industrial activity and transportation which presents the advantage of 

having a limited duration period in the troposphere – making it appropriate for real-time 

                                                           
1 Earth atmosphere has a series of layers. Moving upward from ground level, these layers are the troposphere (0 

to around 15 km), stratosphere, mesosphere, thermosphere and exosphere. 
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monitoring. Compared to other official or alternative statistics, these data present a number 

of additional advantages: timeliness, global coverage, granularity, and free use. Available 

daily, relying on these data can make up for the publication lags of official statistics – 

published monthly for industrial production and generally 20-30 days after month end. Also, 

satellite data has a global coverage, including in areas where statistics are scarce and for which 

such data can provide an alternative indicator. The uniformity of this coverage is also an 

advantage, alleviating potential biases at local level due to idiosyncratic errors or to the 

arbitrary locations of sensors. In addition, the high granularity – data are given for 7×3.5 km2 

areas – allows to capture events at regional level while official statistics are usually aggregated 

at national level. Not to finally mention that satellite data are free-to-use. 

Raw satellite data are however far from ready-to-use and a first step is data retrieval, cleaning, 

and weather correction. We first fetch the data, check their consistency and make it more 

easily to process (from a daily 4 Gb in multiple files to a single 20 Mb csv file) by aggregating 

data at ZIP code level and dropping data out of land areas. We then clean data based on their 

quality index since satellite measurements can be altered over cloudy or snowy areas, but also 

by solar zenith or viewing angles. This results however in a large share of missing points, so 

we must interpolate missing data to avoid undesired composition effects when aggregating 

at regional or national level. We rely on the KNN (K-Nearest Neighbours) algorithm which 

allows to account for both spatial and temporal correlations while still having a limited 

computational cost. Finally, NO2 pollution depends heavily on meteorological factors 

(temperature, wind, humidity). Since they affect air pollution in a non-linear fashion and 

feature interactions between variables, we use the random forest algorithm – in line with 

recent advances in the geo-statistical literature. In the end, we aggregate pollution data at a 

national level to match the granularity of official statistics – most notably of the industrial 

production that we intend to nowcast. 

The second step checks the relevance of satellite data on air pollution from a forecasting 

standpoint. We rely on a panel regression over several advanced and emerging countries to 

make up for the limited timespan (satellite was launched in 2017 so our dataset starts in 2018). 

We find evidence that nowcasting models for industrial production based on daily pollution 

data over-perform benchmark models based on survey data (Purchasing Managers’ Index) or 

auto-regressive (AR) terms. Mimicking a real-time set-up, we find that this holds for all days 

in a given month: nowcasting with the latest data available for NO2 pollution (i.e. up to the 

preceding day) over-performs benchmark models for every day in the month – with evidence 

that gains in forecasting accuracy are greater as the month advances and more daily data 

become then available for the corresponding month. While these results are obtained using a 

simple averaging of daily data at monthly frequency, we show that there are additional 

accuracy gains when relying on a MIxed DAta Sampling (MIDAS) approach – where different 

weights are attributed to the different lags of high-frequency regressors. To do so, we build 

on recent advances in the literature by Khalaf et al. (2021) who are the first to combine MIDAS 
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and panel. We also find evidence of heterogeneities. First, accuracy gains are greater for 

countries more affected by the Covid-19 crisis, suggesting that the contribution of high-

frequency data is more important during “crisis” episodes than during “normal” times. 

Second, the elasticity of pollution to industrial production is greater for countries with a larger 

share of manufacturing in the value added. In the end, we turn to the detection of business 

cycles. Building on a Markov-switching framework, we find evidence that the high-frequency 

satellite data allow for a swifter detection of turning points in the economy compared with a 

method relying on official monthly statistics. We indeed estimate that the former detects 

turning points around 2.5 months earlier than the latter. 

This paper is at the crossroads of the literature on high-frequency data and on satellite data. 

It contributes to the former by exploring the potential of NO2 pollution data, which had not 

been analysed yet and which, in contrast to most other high-frequency indicators, has the 

advantage of a global and uniform coverage. The paper also explores whether high-frequency 

data enhance nowcasting performances as well as the detection of turning points, contributing 

to the on-going debate over the value added of such data to forecasting. In addition, our paper 

contributes to the literature on satellite data by exploring their benefits for economic 

monitoring. Most of the literature to date has shown how economic crisis has an impact on air 

pollution, but very few have explored whether air pollution can be an early indicator for 

economic conditions. In that vein, closest to us is the literature using “night lights” to measure 

economic activity. We contribute to this strand of the literature not only by exploring a new 

dataset and setting a method for its usage in economics, but also by providing such satellite-

based indicators at a daily frequency in contrast with the literature on “night lights” relying 

mostly on yearly averages. Also, while recent advances in the literature of “night lights” have 

shown that these data are uncorrelated with economic growth for advanced economies, 

evidence in our paper suggests that NO2 pollution is still a valid indicator for industrial 

production in those economies – albeit with a lower elasticity than for more manufacturing-

based emerging economies. 

The rest of the paper is organized as follows: section 1 reviews the related literature, section 

2 describes satellite data and explains our choice to rely on such data largely uncharted in the 

economics literature, section 3 details the corrections applied to the raw data, while section 4 

compares nowcasting performances across different models.  

 

Section 1: Literature review 

Our paper first contributes to the burgeoning literature on alternative high-frequency data. In 

the wake of the Covid-19 crisis, a number of new datasets have emerged such as daily credit 

card spending (Carvalho et al., 2020), daily housing online listings (Bricongne et al., 2021) or 
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hourly electricity consumption (Chen et al., 2020).2 This paper first adds to this list, but in a 

greater contribution, it goes a step further in two directions. The first one is related to the 

global coverage of satellite-based pollution data, uniform across countries. This is not the case 

in most of the literature which generally focuses on a particular geography. Even for data with 

a wide-spectrum coverage – e.g. Google Trends or Google mobility data, a number of 

countries remain missing (notably China due to Google’s ban) and the coverage is of 

heterogeneous quality depending on Google’s market penetration (in particular for 

developing economies with a subpar Google’s penetration).3 In contrast, our data cover the 

entire world with a uniform quality. The second contribution is that besides delivering an 

innovative indicator, this paper explores to which extent such data enhance the real-time 

forecasting as well as the detection of turning points in economic activity.  

In that vein, this paper contributes to the on-going debate on whether high-frequency data 

improve nowcasting performances. The general trade-off between timeliness and accuracy 

(Ahnert and Bier, 2001) makes it non-trivial since such data, while highly timely, can prove 

noisy. The INSEE (2020) has tried augmenting models with high-frequency data but did not 

generally report an improvement in out-of-sample performances. On the other hand, Ferrara 

et al. (2020) show that a nowcasting of the US economy based on high-frequency data provided 

more reliable forecasts than others based on standard monthly indicators. This paper 

contributes with a cross-country effort. In this endeavour, we are close to Woloszko (2020) 

who uses Google trends to predict GDP growth in OECD countries. More generally, this paper 

contributes to the literature on forecasting industrial production by exploring the potential of 

pollution data while the bulk of such literature relies on survey data and particularly on 

Purchasing Managers’ Index (PMIs).4  

Our paper also contributes to the literature using NO2 pollution to observe economic events. 

A number of papers have shown that economic growth increases NO2 pollution in the longer-

run (e.g. Cui et al., 2020) including at city level (Zhou et al., 2018). While this literature points 

to a sense of causality in which economic activity drives pollution, this link can conversely be 

used in to detect large economic recessions that lead to a drop in NO2 pollution. Some have 

documented the fall in pollution due to the Great Financial Crisis (GFC) in Europe (Boersma 

and Castellanos, 2012), the US (Russell et al., 2012), or China (Du and Xie, 2017). Similar studies 

have been conducted during the Great Lockdown over China (Le et al., 2020) and Europe (e.g. 

Tobias et al., 2020) but also for less developed economies such as Kazakhstan (Baimatova et 

al., 2020). Keola and Hayakawa (2021) also document the changes in NO2 pollution following 

                                                           
2 It is also worth mentioning Chetty et al. (2020) who have provided a vast amount of data on US economic activity 

– which were privately held until now. For France, Bricongne et al. (2020) have compiled a number of innovative 

indicators based on alternative data available for free and at higher frequency than official statistics. 
3 It might also be added that Google Trends data are by design prone to substantial revisions in subsequent data 

releases given the scaling of the series between 0 and 100 (its maximum). Pollution data are, on the contrary, not 

subject to revisions. 
4 This strand of the literature is developed in greater details in section 4 as we explain our choice of benchmark 

models. 
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lockdown measures.5 In a further effort, Franke et al. (2009) have shown how shipping lanes 

can be detected with satellite data while de Ruyter de Wilt et al. (2012) have documented how 

the fall in world trade during the GFC resulted in a 12-36% decline in NO2 pollution over those 

shipping lanes. Albeit some have investigated the link between PMIs and NO2 pollution (e.g. 

Diamond and Wood, 2020), we are not aware of papers which would have the causality and 

explored how NO2 pollution could predict industrial production or other macroeconomic 

indicators. The bulk of this literature falls indeed outside the economics field; our paper then 

bridges a gap between this literature in geo-physical sciences and economics.  

Our paper more broadly relates to the literature using satellite data for economic analysis. 

Among this rich literature (see Donaldson and Storeygard, 2016 for an extensive review), our 

paper is closely related to studies using night lights to measure economic activity. Following 

the seminal work of Henderson et al. (2012), several studies have used these data to provide 

alternative measures for GDP and GDP-per-capita in particular for countries whose statistical 

system is deficient (Keola et al., 2015; Jean et al., 2016; Pinkovskiy and Sala-i-Martin, 2016) or 

to track the impact of peculiar events such as India’s demonetization (Chodorow-Reich et al., 

2020). The relationship also exists at more local level (Montgomery and Holloway, 2018). 

Recently, night lights have been used to examine the impact of Covid-19 crisis in India (Beyer 

et al., 2021). Compared to this literature, our contribution is twofold. First, using NO2 pollution 

data allows us to achieve higher frequency as such data are available daily vs. monthly at best 

for night lights. Second, and more important, Hu and Yao (2019) recently showed that the 

relationship between night lights and GDP depends on the stages of development and 

estimate a null elasticity for advanced economies – similar to the empirical findings of the 

World Bank (2017). In contrast, evidence in this paper suggests that the elasticity of industrial 

production to daily pollution is still significant for advanced countries, and that such data 

allow for an enhanced nowcasting of economic conditions including in those countries. 

 

Section 2: Why satellite data? 

Data come from satellite observations of tropospheric pollution made by the TROPOMI 

instrument, on-board the Sentinel-5P satellite launched by the European Spatial Agency 

(ESA). Technically, pollution data are obtained through a nadir-viewing (in which satellites 

can observe the atmosphere by looking straight down rather than diagonally), imaging 

spectrometer covering wavelength bands between the ultraviolet and the shortwave infrared. 

To attain an assessment of tropospheric pollution, the instrument uses passive remote sensing 

techniques by measuring the solar radiation reflected by and radiated from Earth. Sentinel-5P 

                                                           
5 While the authors of this study document a fall in NO2 pollution in emerging economies, they don’t find similar 

evidence over the developed economies. It should be however noted that, in contrast with our paper, the authors 

don’t apply weather-correction to the remote data – which might partly explain to some extent differences with 

our results. 
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covers the entire surface of Earth each day in Sun-synchronous orbit, making its daily passing 

at the same time (around 13:35 local Sun time, enabling to capture homogenously the middle 

of the day which appear intuitively relevant to follow industrial production in real time) 

above each location. Finally, it should also be noted that a number of papers have been 

validating the quality of TROPOMI pollution data against other well-tested measurement 

techniques (see e.g. Wang et al., 2019). 

The TROPOMI instrument measures the concentration of various pollutants in the 

troposphere but we focus on nitrogen dioxide – abbreviated as NO2 – which appears to be the 

most appropriate for our objective. First, its duration period in the troposphere is relatively 

small compared to other pollutants (Lamsal et al., 2011), making it relevant for a real-time 

monitoring. Second, NO2 is emitted by the combustion of fossil energies in industrial sites, 

transportation, and coal-fired power plants – all strongly correlated with industrial activity. 

Lastly and importantly, NO2 is a precursor for other pollutants (Henneman et al., 2017) and 

hence, particularly suitable as an “early” indicator. 

Other data sources on pollution would however have been available, but our choice of turning 

to TROPOMI’s is directed by the key advantages of global coverage, uniqueness of the sensor 

and enhanced precision. The former two mark a key difference with observations from 

ground sensors as satellite data reach a global coverage including over developing countries 

where ground sensors are scarce. The uniqueness of the sensor has also the double advantage 

of: (i) alleviating the risk of idiosyncratic errors due to the malfunction of some of the ground 

sensors; and (ii) delivering a uniform coverage over an area while data from pooled ground 

sensors would depend on the arbitrary choice in the location of these sensors. This is in line 

with conclusions of the geophysical literature demonstrating that for large-scale studies, it is 

more efficient to use remote sensing than ground observations despite the higher accuracy of 

the latter (Remer et al., 2005). Finally, the enhanced precision is the reason why we have 

selected data from TROPOMI over other satellite measurements – in particular NASA’s OMI 

which has been affected by various malfunctions over the past years (Wang et al., 2020). 

TROPOMI data have the additional advantage of unprecedented spatial resolution (7×3.5 

km2); one of the reasons why studies have highlighted its higher quality over competing 

satellite data (Griffin et al., 2019). 

In our effort to monitor industrial production in real-time, the greater timeliness offered by 

such daily data is key as represented in figure 2 (example for Japanese statistics). At any 

month m, the first estimation of industrial production is published only after 20 to 30 days of 

month m+1. Similarly, PMIs – which are the standard indicator for industrial activity – for a 

month m are not published before the first days of month m+1. Therefore, during month m, no 

indicator is available to assess in real-time the fluctuations of industrial production. While this 

might not be an issue in “normal” times where economic conditions remain broadly stable 

over time, this might be more of an issue when a sudden crisis occurs. 
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Figure 2. Timeline: standard macroeconomic indicators for industrial production 

Sources: Thomson Reuters Datastream, IHS Markit, authors 

 

 

Section 3: Data retrieval, cleaning, weather-normalization, and aggregation  

3.1. Data retrieval 

The first step relates to fetching the data and making it exploitable considering the large 

volume of raw data (3-4 Gb per day). The retrieval process is automatized on a deviant server 

automatically fetching data from the CREODIAS platform. Among the various files that are 

retrieved, the variables of interest for our study include the NO2 concentration for each data 

point of size 7×3.5 km2 along with the coordinates for the centroid of the data point (longitude 

and latitude) and an index of data quality. The latter is key since the presence of snow, clouds, 

or changes in solar zenith and viewing angles can significantly alter TROPOMI’s estimations 

(Wang et al., 2020). As TROPOMI was launched only very recently, our dataset starts as of 

December 2018.  

Once the data obtained from the ESA, multiple steps are applied to clean, interpolate, correct 

for weather and seasonal factors, and aggregate raw data at a level comparable to industrial 

production statistics (i.e. country level). Those steps are shown in figure 3.  
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PMI

Month m+2

Need for more timely information

30

Industrial production

Example for Japan – March 2020

https://creodias.eu/
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Figure 3. Steps for data cleaning, interpolation, correction and aggregation 

Source: authors 

 

The first step relates to checking the overall consistency of the data and delivering a file that 

can be more easily exploited in further analysis. This is performed upon retrieving as the 

retrieval program checks for the consistency of entering files – notably whether NO2 data are 

available – and flattens the data. Based on longitude and latitude, the algorithm detects land 

areas and automatically tags as “sea” the points that are more than 30 km away from coasts. 

It also deletes observations whose quality index stands below 0.75 – as per ESA 

recommendations. Finally, based on the latitude and longitude of the data point, observations 

are merged into a single municipality (i.e. a ZIP code) using a Python package providing the 

corresponding ZIP code for any set of coordinates. Data are aggregated by computing the 

unweighted average of all corresponding observations for a ZIP code. Doing so, the program 

adds a variable counting the number of data points included in the ZIP code average. All-in-

all, from 3-4 Gb of raw data retrieved each day, we get a 10-20 Mb single csv file more easily 

exploitable thereafter. A guide to obtain the raw data, as well as a description of such data, is 

provided in Technical appendix – data and scripts can be retrieved from GitHub.6 

                                                           
6 https://github.com/thomaspical/Sentinel5 NO2 

Area

ZIP code

Country

7x3.5 km 
point 1 Eliminate maritime zones > 30 km from coasts

4 Eliminate outliers

5 Interpolate missing data

6 Correct for meteorological factors

Missing NO2 data Quality < 0.75 Outlier

Types of missing points

3 Drop ZIP code if too many missing constituents

2 Eliminate data if quality < 0.75

Aggregation by ZIP code

Aggregation by area

Aggregation by country

https://github.com/thomaspical/Sentinel5%20NO2
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3.2. Data cleaning 

The second step, at ZIP code level, relates to data cleaning and interpolation. The purpose is 

to obtain complete NO2 pollution series for all ZIP codes. First, an observation at a date t is 

removed if the number of non-missing data points for a ZIP code is too low – more precisely 

below a third of the number of constituents.7 This alleviates potential concerns over 

composition effects at ZIP code level. We then remove outliers by winsorizing at 10% for each 

ZIP code. As a result, the share of missing data – missing from start, eliminated due to poor 

quality, or removed because the ZIP code had too few non-missing data points – can be 

relatively high, around 50%. To avoid composition effects that might arise upon aggregating 

at area level, we extrapolate missing points.  

This topic is a whole literature strand in geo-physical sciences with methods ranging from 

linear extrapolation (Zhang et al., 2017) to gradient boosting (Chi et al., 2020), random forest 

(Bi et al., 2019) or neural networks (Fouladgar and Främling, 2020). Following Peng et al. 

(2020), three streams can be identified in the literature depending on whether the proposed 

method relies on: (i) external data such as ground observations, (ii) spatial correlation in the 

data, or (iii) both spatial and temporal correlations. The latter two share the idea that missing 

data can be computed as a weighted average of the measurements at surrounding 

observations. Among them, spatial “kriging” is a very popular and accurate method (Laslett, 

1994) which has been extended into the spatiotemporal dimension (e.g. Tadic et al., 2017; Shao 

et al., 2020) with “spatiotemporal kriging” considered state-of-the-art statistical methods. 

Another class of “gap-fill” algorithms, which interpolate missing data based on closest spatial 

or temporal neighbours, have also been developed (e.g. Weiss et al., 2014). 

Due to our high frequency and global coverage, interpolation faces daunting computational 

costs. “Kriging” methods are in particular impractical to large datasets due to the need to 

invert the spatial covariance matrix (Kianan et al., 2021).8 We empirically verify that the same 

goes with “gap-fill” algorithms using the R package developed by Gerber et al. (2018). As such, 

a number of papers which focus on larger scales and higher-frequency (daily or infra-daily) 

have used simpler techniques like linear interpolation or local average and have found those 

of sufficient accuracy (e.g. Noor et al., 2006; Hirabayashi and Kroll, 2017). On the other hand 

however, numerous studies – such as Yang and Hua (2018) which compares a broad range of 

interpolation methods – have shown that spatiotemporal methods yield better performances.  

To balance those considerations, we implement a K-Nearest Neighbour (KNN) algorithm that 

takes into account both the spatial and temporal dimensions. The use of KNN for geo-

                                                           
7 E.g. if a municipality fills 10 7×3.5 km2 data points, all observations for which the number of non-missing data 

points is below 4 will be excluded. 
8 While a “lattice kriging” has been developed to overcome this issue over large datasets (Nychka et al., 2015), it 

remains important when dealing with world data at daily frequency.  
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statistical interpolation has notably been proposed by Poloczek et al. (2014) which have shown 

its superior performances vs. comparable spatial methods. Under this algorithm, the value of 

a missing observation is replaced by a weighted average of its K closest neighbours.9 To 

account for temporal dependency, we introduce time as one of the dimension in our algorithm 

– meaning that two points can be “neighbours” either spatially or temporally, or a 

combination of both. In our application, spatial and temporal distance are equally weighted. 

The KNN algorithm has the advantage of a relatively low computational cost while keeping 

a spatiotemporal approach. Once this algorithm has been applied and all ZIP code series have 

been interpolated, data are aggregated at area level using a weighted average of ZIP code 

series with the weight corresponding to the maximum number of data points belonging to 

this ZIP code. 

 

3.3. Weather correction 

The third step, at area level, relates to weather normalization. Air pollution is indeed very 

sensitive to weather which not only affects the chemical process of pollutant formation, but 

also influences human polluting behaviours – making weather normalization a long-lasting 

topic in the literature (Rao and Zurbenko, 1994). The influence of weather, wind and 

temperature in particular, will often be greater than the effect of policy interventions or 

economic events thereby complicating attempts to isolate such effect (Anh et al., 1997). Alix-

Garcia and Millimet (2021) present how weather can distort the inputs of remote data to the 

extent that it can result in misleading policy conclusions. Increased heating and usage of cars 

will for example result in higher pollution during winter – a pattern clearly visible on figure 

4 (raw data in blue for the Grenoble area, France – known for experiencing large temperature 

variations over the year).  

                                                           
9 K (the number of neighbours considered) is the key hyper-parameter in KNN algorithm which needs to be set by 

the user. As is standard in the literature, the calibration is based on a 10-fold cross-validation with the optimal K 

chosen as the one which minimizes the out-of-sample RMSE on the evaluation sample. In the case of this paper, 

due to the multiplicity of locations, the computation is made over several representative areas accounting for a 

large number of ground types (seaside, mountains, plains, etc.), climates (mild, tropical, desertic, etc.), and 

economies (advanced, emerging, developing). Empirically, this approach suggests an optimal number of K=26 

neighbours. 
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We correct for weather using a random forest algorithm which allows to take into account 

non-linearities. Weather-normalization is also a whole strand of the literature in which the 

application of random forests has been pioneered by Grange and Carslaw (2018) and has then 

received a large attention due to its versatility and ease, followed by various applications and 

refinements (e.g. Vu et al., 2020). Other techniques exist, from classic linear regressions 

(Henneman et al., 2015) to non-parametric methods (Libiseller et al., 2005), gradient boosting 

(Petetin et al., 2020), or neural networks (Gardner and Dorling, 2000). We turn to random forest 

over other techniques since: (i) it makes it possible to account for non-linearities and 

interactions between meteorological variables that are well documented in the literature 

(Barmpadimos et al., 2011); (ii) compared to other machine learning algorithms, random forest 

are relatively not sensitive to the tuning of hyper-parameters (Biau and Scornet, 2016) which 

makes it highly versatile when applying it automatically to a broad range of areas,10 and (iii) 

have a rather limited computational cost. Figure 5 shows partial dependency plots that bring 

evidences of non-linearities in our case.  

                                                           
10 We therefore calibrate the hyper-parameters of the random forest (number of trees, maximum number of features 

considered for splitting a node, maximum number of levels in each decision tree) using 5-fold cross-validation on 

a few number of heterogeneous areas, and then apply those hyper-parameters to all our sample. 
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Figure 4. NO2 pollution in 2019 (Grenoble, France)

Sources: ESA, authors' calculations
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Our choice to apply weather normalization at area level – rather than at ZIP code or country 

level – results of a trade-off between computational costs, availability of weather data, and 

need to correct for weather at a granular level. Grange et al. (2018) among others have shown 

that weather normalization varies depending on the topology of the area under consideration 

(e.g. presence of mountains, forests, wind corridors, etc.) and on the location of polluting 

sources in that area. In addition, as meteorological variables can display important variations 

across regions, a robust weather normalization should be performed at local level (Liu et al., 

2020). This is however balanced by the availability of weather data that can be retrieved for a 

limited number of points over a country.11 This is also balanced by the need to keep reasonable 

computational costs – in a set-up covering the globe at daily frequency.  

At the end, weather normalization is made using for explanatory variables: humidity, 

temperature, wind speed, and wind gust. We also add day-of-week dummies for Saturday 

and Sunday – as well as on bank holidays – to account for the reduction of industrial activity 

during those days. Following Derwent et al. (1995) that showed that pollutant emissions or 

chemical processes may greatly vary by season, we also introduce monthly dummies. To a 

certain extent, this also allows for a correction of monthly seasonality in the data. We regress 

NO2 pollution over these variables and calibrate the algorithm over pre-Covid-19 

                                                           
11 For example, around 30 for France in the dataset from the World Air Quality Index (WAQI) used in our analysis 

for advanced economies, but also in the dataset from the National Oceanic and Atmospheric Administration 

(NOAA) that we use for countries and regions not covered by the WAQI. 

Figure 5. Partial dependencies plots for meteorological variables
Source: ESA, WAQI, NOAA, authors’ calculations
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observations (i.e. 2018-2019). Using the coefficients that are determined, we then apply this 

procedure for 2020 and 2021 observations. The weather-corrected series is the part of NO2 

pollution left unexplained by these variables, i.e. the residual of the regression. An example 

of the resulting weather-corrected series is given for the Grenoble area in figure 4 (in red). 

Further results for various areas are shown in Technical appendix. Finally, data for all areas 

are aggregated at country level through a weighted average – with weights being the total 

number of data points belonging to the area. 

 

Section 4: Nowcasting industrial production 

We now turn to whether pollution data can enhance the real-time forecasting of industrial 

production. To this aim, we build a nowcasting model using daily pollution data and compare 

its performances to two benchmarks: (i) an AR(1) model; and (ii) a model based on Purchasing 

Managers’ Index (PMIs12). PMIs are widely used in the literature to forecast industrial 

production (Bruno and Lupi, 2003; Tsuchiya, 2014) not only in advanced economies but also 

more recently in emerging markets such as Turkey (Akdag et al., 2020) or India (Herwadkar 

and Ghosh, 2020). This index is widely used as an early indicator in forecasting models (Lahiri 

and Monokroussos, 2013) as well as in policy briefs. Studies have shown that nowcasting 

models incorporating PMIs have better performances than other comparable models (Bulligan 

et al., 2010; d’Agostino and Schnatz, 2012).  

 

4.1. Comparing nowcasting performances 

We compare out-of-sample root mean squared errors (RMSE) across models and mimic a real-

time exercise for nowcasting industrial production at month m. At each day d of this month 

m, we estimate the model up to month m-1 and then forecast industrial production for month 

m using all information available at day d. For the pollution-based model, we then use daily 

pollution data available up to day d-1. In order to account for the frequency mismatch between 

daily pollution and monthly industrial production, we average pollution data over the last 31 

days.13 Industrial production and pollution are taken in log differences.14 The PMI-based 

model also relies on the latest PMI data available at day d, i.e. the PMI for month m-1. We take 

                                                           
12 This monthly index is constructed as a diffusion index on purchasing managers’ answers to how activity in their 

firms has changed this month compared to the previous one. This index covers around 40 geographies – making 

it largely appropriate for our cross-country purpose.  
13 For the sake of simplicity, we allocate 31 days for every month. For those months with fewer days, the last points 

(the 31st in most cases; the 29th, the 30th, and the 31st for February) are linearly interpolated. While some literature 

rather advises to allocate 30 days to each month (e.g. Ollech, 2018), choosing 31 days allows for not losing 

information pertaining to the last day of the month. 
14 For pollution data, this is the log difference of the average over the last 31 days relative to the average on the 31 

days beforehand (i.e. d-32 to d-63). 
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a panel approach on the 33 economies (16 advanced15 and 17 emerging16) for which pollution 

data, PMIs, and harmonized statistics for industrial production are all available. To account 

for time-invariant patterns17 such as the share of polluting industries, traffic pollution over 

cities, etc. we include country fixed effects (fi). We cluster standard errors by country. 

Formally, our panel specification for nowcasting industrial production (IPI) in countries i at 

month m using pollution data (Pol) available at a day d is the following: 

𝑑𝑙𝑜𝑔(𝐼𝑃𝐼𝑖,𝑚) = 𝛼0 + 𝛼1𝑑𝑙𝑜𝑔 (∑ 𝑃𝑜𝑙𝑖,𝑑−𝑘

31

𝑘=1

) + 𝑓𝑖 + 𝜀𝑖,𝑑 

We run these out-of-sample one-period ahead forecasts from March 2020 to December 2020. 

The results are shown in figure 6 which compares out-of-sample RMSE of PMI-based and 

pollution-based models relatively to the AR model. The model based on daily NO2 pollution 

over-performs the two benchmark models for all days of the month and displays up to a 30% 

improvement in out-of-sample RMSE compared with an AR model.  

  

                                                           
15 Advanced economies: Australia, Austria, Canada, Denmark, France, Germany, Greece, Ireland, Israel, Italy, 

Japan, New Zealand, Spain, Switzerland, the United Kingdom, and the United States. 
16 Emerging economies: Brazil, China, Colombia, Czech Republic, India, Indonesia, Kazakhstan, Korea, Malaysia, 

Mexico, Philippines, Poland, Russia, Taiwan, Thailand, Turkey, and Vietnam. 
17 Given the relatively limited timespan – our data start in December 2018 – those factors can be considered time-

invariant.  

Figure 6. Out-of-sample RMSE relative to the AR(1) model
Source: authors’ calculations
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There is clear evidence that nowcasting performances are enhanced as more daily data 

become available for the corresponding month m. A peculiarity lies however in the fact that 

performances slightly deteriorate after the 23th day, a pattern that we can’t empirically 

attribute to a particular outlier in terms of country or time period. Potential explanations 

include the fact that the first days of a month might matter more for month-on-month growth 

than the last days – in a similar way that the first quarters of the year are known to contribute 

more to the year-on-year growth rate than the last ones. Such a scheme enters in contradiction 

with our unweighted average of daily data over the last 31 days. Adopting instead a weighted 

average might therefore eliminate this peculiarity.  

We therefore consider a MIxed DAta Sampling (MIDAS) approach which allocates different 

weights to the different lags of the high frequency regressors. Following the seminal work of 

Ghysels et al. (2004), numerous papers have shown that such set-up performs better than a flat 

aggregation when dealing with a frequency mismatch between a lower-frequency dependent 

variable and a higher-frequency explanatory variable. We build on the recent advances of 

Khalaf et al. (2021) who have been the first to propose a panel-MIDAS. To allocate the weights, 

we use a beta-weighting function, introduced by Ghysels et al. (2006), as it allows for a broad 

range of shapes – which seems particularly important as our hypothesis above suggests that 

weights would be rather different for a MIDAS in the first days of the month vs. a MIDAS in 

the last days of it. Formally, the beta-weighing function g attributes a weight to lag k 

depending on two parameters θ1 and θ2  

𝑔(𝑘, 𝜃1, 𝜃2) = (
1

𝑘 + 1
)

𝜃1−1

∙ (1 −
1

𝑘 + 1
)

𝜃2−1

∑ (
1

𝑝 + 1
)

𝜃1−1

∙ (1 −
1

𝑝 + 1
)

𝜃2−1

 

𝐾

𝑝=0

⁄  

Results are visible in figure 6 where the dashed red line represents the out-of-sample RMSE 

obtained when using a MIDAS set-up for each day d of the month. Performances are even 

more greatly enhanced compared to our previous specification with accuracy gains that reach 

up to 40% relatively to the AR model. Importantly, there is no decline in performances after 

day 23. 

 

4.2. Exploring heterogeneities 

However, the literature suggests that while high-frequency data enhance forecasting 

performances during “crisis” episodes, such data are only of second order during normal 

episodes (Jardet and Meunier, 2020). Given our limited timespan, the real-time out-of-sample 

above starts only in March 2020. To test for this heterogeneity however, our sample does not 

allow to robustly break down the sample between “crisis” and “non-crisis” episodes18, we 

                                                           
18 We run this type of exercise taking the period from October 2019 until January 2020 (both included) as the “non-

crisis” period. Despite the aforementioned limits on robustness, the out-of-sample RMSE for the model with daily 
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therefore run regressions by quartile depending on how severely a country was affected by 

the Covid-19 crisis. We break down our sample based on the larger month-on-month slump 

in industrial production growth over 2020, which ranges from -47.9% (India in April 2020) to 

-0.9% (Australia in June 2020).  

Results are presented in table 1 which compares the out-of-sample RMSE for pollution-based 

(without MIDAS) and PMI-based models, relative to the AR model, across all four quartiles. 

RMSEs for the pollution-based model are averaged over all 31 days d of the month m. Gains 

are more substantial – around 40% accuracy gains relatively to the AR model – for the most 

affected countries in the first two quartiles. For countries in the 4th quartile (for which the 

maximum fall in industrial production ranges from -6.5% to -0.9%) there are no significant 

accuracy gains relative to the AR model – but there are however large accuracy gains relatively 

to the PMI-based model. These results would tend to demonstrate that the contribution of 

high-frequency data to nowcasting performances is more significant during “crisis” episodes 

with greater improvement if the crisis is harder. 

Table 1. Out-of-sample RMSE relative to the AR model 

 1st quartile 2nd quartile 3rd quartile 4th quartile 

Pollution-based 0.58 0.55 0.80 0.98 

Pollution-based (MIDAS) 0.53 0.51 0.77 1.02 

PMI-based 0.67 0.60 0.88 1.18 

Dependent variable is the month-on-month growth rate of industrial production. Explanatory variable is the month-on-

month growth rate of the moving average of weather-adjusted NO2 pollution (upper two lines) or the PMI (bottom line). 

Regressions span over Jan. 2019 to Dec. 2020 covering 33 advanced and emerging countries, with 731 daily observations 

and 24 monthly observations. 

 

Following Hu and Yao (2019), there might also exist heterogeneities depending on the stage 

of development of the country. Hu and Yao (2019) – who study night lights – linked this with 

the type of economic growth based on infrastructure spending that takes place in emerging 

economies and that produce night lights vs. the services-based economic growth in advanced 

economies. The rationale for NO2 pollution would be similar with the share of polluting 

industry being higher in emerging countries. To formally test this, we include an interaction 

term between the share of manufacturing in total value added19 and pollution. We also check 

whether there are additional heterogeneities related to the stage of development by 

introducing a dummy δi if the country is an emerging economy, which we put in a triple 

                                                           
pollution data is still better relatively to the AR model (0.74 on average over the month) and, importantly, this 

pollution-based model out-performs the PMI-based model which stands at 1.07 for the same metrics. 
19 Source: World Bank; we take the latest data point available (2017 or latter). 



17 
 

interaction with pollution and the share of manufacturing. More formally, the panel 

regression is now (with additional terms for emerging dummy in brackets): 

𝑑𝑙𝑜𝑔(𝐼𝑃𝐼𝑖,𝑚) = 𝛼0 + 𝛼1𝑑𝑙𝑜𝑔 (∑ 𝑃𝑜𝑙𝑖,𝑑−𝑘

31

𝑘=1

) + 𝛼2𝑚𝑎𝑛𝑢𝑓𝑖 ∙ 𝑑𝑙𝑜𝑔 (∑ 𝑃𝑜𝑙𝑖,𝑑−𝑘

31

𝑘=1

) 

[+ 𝛼3𝛿𝑖
𝐸𝑀𝐸 ∙ 𝑑𝑙𝑜𝑔 (∑ 𝑃𝑜𝑙𝑖,𝑑−𝑘

31

𝑘=1

) +  𝛼4𝛿𝑖
𝐸𝑀𝐸 ∙ 𝑚𝑎𝑛𝑢𝑓𝑖 ∙ 𝑑𝑙𝑜𝑔 (∑ 𝑃𝑜𝑙𝑖,𝑑−𝑘

31

𝑘=1

)] + 𝑓𝑖 + 𝜀𝑖,𝑑 

Results are provided in table 2. The interaction term is negative and significant (column 2). 

Thus, the higher the share of manufacturing in a country, the greater the elasticity of pollution 

to industrial production: this elasticity is indeed the inverse of (α1 + α2∙manufi) which becomes 

greater when the share of manufacturing is greater. In line with Hu and Yao (2019), if follows 

that the elasticity is greater in emerging countries than in advanced economies. As such, for a 

country like France with a  share of manufacturing equal to around 10% in value added, this 

elasticity is 2.8 vs. 4.5 for China where this share reaches 27%.20 Including a triple interaction 

with dummy δi accounting for the stage of development (column 3) does not yield significant 

results, suggesting that taking into account the importance of manufacturing in the economy 

is sufficient to account for differences in the means of production across countries. It finally 

should be noted that the R² obtained with pollution data (0.25) is about the same as the one 

obtained by Henderson et al. (2012) with night lights (0.21). 

 

 

 

 

 

 

 

 

 

 

 

                                                           
20 Taking the coefficient estimates from column 2 of Table 2 since the interactions with the emerging dummy is 

found non-significant in the column 3. 
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Table 2. Interactions coefficients 

 (1) (2) (3) 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
0.000 

(0.002) 

0.000 

(0.002) 

0.000 

(0.002) 

𝑑𝑙𝑜𝑔(∑ 𝑃𝑜𝑙𝑖,𝑡−𝑗

31

𝑗=1

) 
0.309*** 

(0.021) 

0.431*** 

(0.069) 

0.502*** 

(0.125) 

𝑑𝑙𝑜𝑔(∑ 𝑃𝑜𝑙𝑖,𝑡−𝑗

31

𝑗=1

) ∙ 𝑚𝑎𝑛𝑢𝑓𝑖  
-0.770* 

(0.439) 

-2.048** 

(0.920) 

𝑑𝑙𝑜𝑔(∑ 𝑃𝑜𝑙𝑖,𝑡−𝑗

31

𝑗=1

) ∙ 𝛿𝑖
𝐸𝑀𝐸    

0.164 

(0.157) 

𝑑𝑙𝑜𝑔(∑ 𝑃𝑜𝑙𝑖,𝑡−𝑗

31

𝑗=1

) ∙ 𝑚𝑎𝑛𝑢𝑓𝑖 ∙ 𝛿𝑖
𝐸𝑀𝐸    

0.517 

(1.064) 

Country fixed effects Yes Yes Yes 

Adjusted R² 0.25 0.26 0.30 

Number of countries 33 33 33 

Number of daily observations 731 731 731 

Dependent variable is the month-on-month growth rate of industrial production. Standard errors in brackets are 

clustered by country. ∗, ∗∗ and ∗∗∗ denote statistically significant coefficient estimates at respectively 10%, 5% and 

1% significance levels. Regressions over Jan. 2019 to Dec. 2020. 

 

In the end, this relationship provides a nowcasting model for industrial production across all 

countries, including those without reliable statistics. As shown above, the advantage of our 

approach for advanced and emerging economies lies in the possibility to deliver an accurate 

nowcasting of industrial production – well in advance of the publication of official statistics 

and with greater accuracy relatively to competing models. In a number of developing 

economies however, official statistics for industrial production are not available at all: the 

nowcasting provides an informative indicator for the state of industrial production in those 

regions. This approach might be also be extended at regional level, where it might provide an 

index for local industrial production. 

 

4.3. Early detecting of turning points  

Besides nowcasting, the purpose of such an indicator would also be to detect in real-time the 

turning points in economic activity. Our identification strategy relies on the detection of 

structural breaks, as such a break might indicate the transition from one state (normal state) 

to another (crisis state). The goal is to see whether daily NO2 pollution allows for a swift and 
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correct detection of turning points. Following the seminal work of Hamilton (1989),21 we use 

first a univariate Markov-switching model that assesses when data appear to be transitioning 

between two regimes.  

In line with Menezes et al. (2006), a key parameter for the real-time detection of turning points 

is the number K of consecutive periods spent in the “crisis” state after which it is appropriate 

to claim that a structural break has occurred. Fixing an appropriate K is important to minimize 

the risk of false detection – due for example to an outlier. It introduces a trade-off between 

timeliness and accuracy in the sense that a low (high) K will result in swift (lagged) detection 

but will increase (decrease) the chances of mistaking outliers with a structural break. For 

monthly industrial production data, we follow Menezes et al. (2006) that find 𝐾𝑚 = 3 months 

as the most appropriate setting. It means that it would require three consecutive months spent 

in “crisis” regime by the Markov-switching regression following month m to formally identify 

this month m as a turning point. Empirically for daily pollution data, we find that 𝐾𝑑 = 21 

days result in a lower share of false detection while still allowing for swift detection.22  

We mimic a real-time exercise to detect transition to “crisis” state throughout 2020. We first 

start by dating ex-post the turning point in the business cycle:23 the corresponding month is 

represented in grey in figure 7 and serves as reference for the real-time detection. We then 

turn to the real-time exercise: going gradually through the year, we assess whether the data 

available at each day of 2020 would have allowed a univariate Markov-switching regression 

to detect a transition to the “crisis” state (for at least K consecutive periods as defined above). 

We start using the official monthly industrial production data: for each country and at each 

data release of official statistics, we assess if the univariate Markov-switching regression 

would have transited to the “crisis” state for 𝐾𝑚 months. When using such monthly data, the 

crisis is detected around the end of month m+3 after the “true” start of the crisis – this is 

represented by the dashed black line. A similar process is performed with the daily NO2 

pollution series: for each day of 2020, we assess whether the univariate Markov-switching 

regression have detected a structural break (i.e. whether it has transited to “crisis” state for at 

least 𝐾𝑑 consecutive days). The points in figure 7 represent the date at which the daily NO2 

pollution series would have allowed for a real-time detection of this structural break.24 The 

detection generally occurs in the beginning of month m+1 – when official statistics of industrial 

production are not yet even published. This marks a significant improvement compared to 

the detection based on official monthly industrial production statistics – which occur only at 

                                                           
21 In contrast with Hamilton (1989) however, we apply a Markov-switching dynamic model rather than an AR 

model – as we deal with higher-frequency data (see Guérin and Marcellino, 2013). 
22 We choose empirically K as the number that allows to maximize a signalling ratio defined as the number of true 

positive over the sum of true positive and false positive. 
23 For this ex-post dating, we use a univariate Markov-switching regression on monthly industrial production up 

to date (as of Feb. 2021). 
24 Note that this is therefore the date d at which the Markov-switching regression first estimates the structural break 

plus K days. 
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the end of month m+3. For all countries but one,25 the detection based on daily NO2 pollution 

is swifter than the detection based on monthly official data. Finally, the distinction between 

countries starting their “crisis” state in March (red diamonds), in April (orange triangles), or 

other months (green circles) show that the detection is even swifter for countries entering in 

“crisis” state later.  

 

The main issue with performing Markov-switching regression given our limited timespan – 

data start only in Dec. 2018 – is that such a framework coerces the existence of two states. 

Before January 2020, or for countries whose industrial production has been less affected by 

the Covid-19 crisis, there are however no compelling evidence for the existence of two states. 

This results in the detection of “false positive” in multiple cases (15 of the 44 countries under 

consideration) despite fixing a high K=21. In addition, such a stringent K impairs the detection 

of turning points in some cases (3 “false negative” out of the 35 countries for which a turning 

point should have been detected) since NO2 series are rather noisy, which can prevent the 

Markov-switching framework to stabilize in the “crisis” state for more than K=21 days. 

We therefore turn to an alternative technique for the real-time detection of turning points by 

implementing the step-indicator saturation (SIS) algorithm proposed by Castle et al. (2015). 

This algorithm saturates the specification with one step dummy per day – of value 0 before 

the day and 1 afterwards – and then uses the Autometrics software (Doornik, 2009) to select 

significant step dummies. Those significant step dummies can be interpreted as an indication 

for regime changes. We combine SIS with an impulse-indicator saturation (IIS) – developed 

beforehand by Hendry et al. (2008) and based on the saturation of time dummy, of value 1 at 

                                                           
25 Namely Slovakia. 

Figure 7. Dates for real-time detection of turning points
Source: authors’ calculations

Month m Month m+1 Month m+2 Month m+3 Month m+4

Turning point in March
Key

Turning point in April Turning point in another month

Note: the point indicates at which date the daily NO2 pollution for the country under consideration would have
allowed to claim for a real-time detection of this structural break. This is therefore the date d at which the
Markov-switching regression first estimates the structural break plus K days.

General detection date 
with official monthly 
IP data
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date d and 0 otherwise – with the idea that those time dummies would detect outliers while 

step dummies would detect regime changes. A number of studies (e.g. Marczak and Proietti, 

2016) have shown Autometrics’ ability to handle such models with much less time observations 

(T) than variables (2T+1) for which it over-performs competing methods (e.g. lasso, stepwise 

regression), using a combination of expanding / contracting multiple block searches as 

described in Hendry et al. (2008), Doornik (2009) and Hendry and Doornik (2014). Compared 

to Markov-switching, this algorithm has the advantages of: (i) versatility as it does not coerce 

the regression to a number of states pre-defined by the user; and (ii) being able to detect 

regime changes among noisy data since IIS would detect outliers and distinguish them from 

regime changes.  

We again mimic the real-time exercise. The detection dates are very close to those of the 

Markov-switching model – and therefore not displayed. The main interest of this alternative 

approach lies in the fact that the rate of “false positive” (detection of a non-existent turning 

point) is significantly lower (14% vs. 34% in the Markov-switching set-up described above) 

while the rate of “false negative” (non-detection of turning point) is now 0% vs. 9% above. 

 

Conclusion 

Our paper shows how satellite data on tropospheric NO2 pollution can be retrieved, cleaned, 

interpolated and corrected for weather pattern using machine learning techniques (k-nearest 

neighbours, random forest). Turning to the econometrics perspective, we show that predictive 

models for industrial production relying on daily pollution data over-perform comparative 

standard models based on survey data (PMIs) or an AR term. While the accuracy gain is 

around 30% vs. an AR model when using a simple averaging of daily pollution data at 

monthly frequency, it can reach around 40% when building on a MIDAS set-up. We finally 

provide evidence for heterogeneities in the relationship between pollution and industrial 

production which depends on the share of manufacturing in the value added for a country.  

Policy-wise, this paper provides the basis for an alternative daily pollution-based indicator of 

industrial production. Compared with other potential statistics for industrial production, this 

indicator has the key advantages of timeliness (daily measurement vs. monthly indices for 

official statistics), global coverage (vs. official or alternative statistics often limited to a country 

of interest and with heterogeneous quality depending on a country’s characteristics), 

granularity, and free access. Evidence suggests that the contribution of high-frequency data is 

greater during “crisis” periods but only of second order during “normal” times. But evidence 

also suggests that satellite data allows for a consistent nowcasting of industrial production 

even in “normal” periods, during which the key advantage of such data might therefore be 

the ability to provide a measure of industrial production in countries where such official 

statistics are scarce, or with a shorter delay. Following Henderson et al. (2012), it might also 
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be possible for countries with existing statistics, but of low quality, to combine the official and 

the pollution-based alternative indices into a single more robust index. 

Indeed, with data starting only in December 2018, the limited timespan is arguably a key limit. 

It impairs most analyses that would focus on a particular country, a limit that we overcome 

by relying on panel regressions. Another potential key limit might lie in the uniqueness of the 

sensor. While this feature has advantages for the statistician – measurements are less prone to 

the arbitrary location of ground sensors or to idiosyncratic failures of some sensors that might 

derail local measurements, it means that in case of failure, the failure goes global and no 

reliable NO2 pollution data can be retrieved. This would remain a threat for practitioners – 

even though, as the LIBOR indicator has shown, any statistical source may be subject to 

discontinuity.  

Finally, NO2 pollution represents only a fraction of the data retrieved by satellite. Every day, 

a number of satellites measure a large range of variables that might be put into use into the 

economics field. Examples include infrared radiations (which can indicate the heat from 

industrial sites), volumetric pictures (which can detect construction sites), or even simple 

pictures (from which the number of ships in ports, or trucks in loading areas can be 

computed). A number of economic insights can further be derived from these satellite data, 

for which the advantages highlighted above would remain: high frequency, global coverage 

with no local bias, granularity, and completely free.  
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Technical appendix 

Data availability 

The raw data are available on GitHub at https://github.com/thomaspical/Sentinel5 NO2. A 

complete copy of the GitHub allows obtaining the archived csv files – one for each day – of 

pollution data which form the base data of this study.  

In addition to the archived data in a convenient format, the GitHub also includes the script 

code which would allow updating the database automatically. The program operates the steps 

defined in figure A1: it fetches the data from CREODIAS, flattens it, detects oceans based on 

latitude and longitude coordinates, eliminates data whose quality falls below the ESA-

recommended threshold of 0.75, and aggregates data so that the output file is of a reasonable 

size (10-20 Mb per day) and in a convenient format (csv) for further exploitation.  

Figure A1. Steps performed by the script 

Source: authors 

 

A daily run of this script would allow keeping the database up to date. If for various reasons 

the script cannot be executed every day, the program will also recover the missing days. In 

order to run the script the following Python packages must be installed on your machine: 

Pandas (v.1.0.3 was used in this project), Numpy (v.1.18.2), Requests (v.2.23.0), json5 (v.0.9.4), 

zipp (v.3.1.0), netCDF4 (v.1.5.3), and reverse-geocoder (v.1.5.1). 

As regards the output csv files, observations of NO2 concentration are aggregated by day and 

by city at the ZIP code level. While the raw data are provided by the ESA at a 7x3.5 km² level, 

this aggregation is vital to significantly reduce the size of the csv files. Each file (one for each 

day) is named after the day under consideration (e.g. archived_2019_12_02 relates to the NO2 

pollution data for December, 2nd 2019). Table A1 provides a description of the variables 

Missing NO2 data Quality > 0.75

Downloading 
and checking

Flattening
data

Detecting
oceans

Cleaning
data

Aggregating 
data

Data size 3-4 Gb

per day

10-20 Mb

per day

https://github.com/thomaspical/Sentinel5%20NO2
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included in the csv file. Since 7x3.5 km² observations are aggregated at ZIP code level, some 

of these variables (e.g. longitude, latitude, NO2) are in fact the average of the constituting 

observations – this is indicated in the table when this is the case. 

Table A1. Variables description 

Variable Description 

Year Year of data measurement 

Month Month of data measurement 

Week Week of data measurement 

cc_pays Country 

cc_region Region 

cc_departement 

County  

(NB: this is not available for some countries, depending on the 

domestic territorial organization) 

cc_ville City – ZIP code level 

Longitude Mean longitude of the aggregated observations 

Latitude Mean latitude of the aggregated observations 

NO2 

Mean nitrogen dioxide concentration per m3 of the 

aggregated observations 

(NB: this corresponds to the “nitrogendioxide tropospheric 

column” from ESA data, corresponding to the total air pollution 

of NO2 between the surface and the top of the troposphere) 

Quality 

Mean quality of the aggregated observations 

(NB: before aggregation, individual observations with quality 

below 0.75 are eliminated, as recommended by the ESA26) 

Hour_mean Mean hour of the aggregated observations 

Hour_std 
Standard deviation of the hour of the aggregated 

observations 

Dayofweek_mean Mean day of the week of the aggregated observations 

Dayofweek_std 

Standard deviation of the day of the week of the 

aggregated observations 

(NB: this is a data check, it should be equal to 0) 

Day_mean Mean day of the aggregated observations 

Day_std 
Standard deviation of the day of the aggregated 

observations 

                                                           
26 See https://sentinels.copernicus.eu/documents/247904/3119978/Sentinel-5P-Level-2-Input-Output-Data-

Definition  

https://sentinels.copernicus.eu/documents/247904/3119978/Sentinel-5P-Level-2-Input-Output-Data-Definition
https://sentinels.copernicus.eu/documents/247904/3119978/Sentinel-5P-Level-2-Input-Output-Data-Definition
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(NB: this is a data check, it should be equal to 0) 

Counter 

Number of individual observations that have been 

aggregated 

(NB: this provides the number of observations aggregated to 

form data at ZIP code level for this specific day. Due to data 

availability and quality, the number of observations can be 

different from one day to the other for the same ZIP code. If the 

number of constituting points is significantly lower than 

usual, this is recommended to drop the entire ZIP code to avoid 

potential composition effects) 

 

Further details on the raw data are available directly on the ESA website. More specifically, 

for this study, we relied particularly on: 

- https://doi.org/10.5270/S5P-s4ljg54: dataset specification of the TROPOMI Level 2 

Nitrogen Dioxide total column products 

- https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-

ATBD-NO2-dataproducts: ESA TROPOMI documentation 

- https://sentinels.copernicus.eu/documents/247904/2474726/Sentinel-5P-Level-2-

Product-User-Manual-Nitrogen-Dioxide: NO2 product user manual 

Individual results  

This section illustrates the resulting NO2 pollution series for some countries, once cleaned, 

interpolated, corrected for weather and seasonal patterns, and aggregated at country level – 

as described in section 3.3. Figure A2 shows examples for some key emerging countries 

(China, India) as well as for some advanced economies (Italy, Spain). The fall in NO2 pollution 

is marked following the implementation of lockdown measures across these countries. The 

slow recovery thereafter is also visible, with tentative evidence that the recovery had been 

somewhat quicker in China than in other regions, where economic activity apparently 

remained below pre-crisis level even by the end of 2020 (e.g. in Spain).  

Similar pattern can be observed for individual regions. Figure A3 shows how NO2 pollution 

has felt in some regions particularly affected by the Covid-19. The Hubei province (capital: 

Wuhan; identified as the epicentre of the pandemics) has a coincident fall in pollution as the 

lockdown is implemented (grey area). The slight lead in the decline of pollution (around mid-

January) compared with the implementation of the stringent lockdown (end-January) might 

be attributed to Chinese New Year falling on the 25 January and inducing a prolonged period 

of factory shutdowns around this date. The slight lead over the implementation of the 

lockdowns in other regions (e.g. in India) might be attributed to voluntary distancing 

spontaneously taken by the population in the context of strong virus circulation. The 

https://doi.org/10.5270/S5P-s4ljg54
https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-dataproducts
https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-dataproducts
https://sentinels.copernicus.eu/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide
https://sentinels.copernicus.eu/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide
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Lombardy region in Italy (capital: Milan; where the first large outbreak in Western Europe 

was detected) presents a similar pattern with bottom-low air pollution during the lockdown 

period. Even in regions that were severely affected only after the two aforementioned front-

runners (e.g. California or São Paulo state), the decline following the implementation of 

restrictions remains highly visible. For California, the prolonged low pollution might be 

explained by the re-imposition of stringent lockdown measures throughout 2020 – e.g. most 

indoor activities (bars, restaurants, museums, gyms) were closed again in the beginning of 

July 2020 after being able to re-open mid-May 2020. 

Figure A2. NO2 pollution level over 2019-2020 (% change, month-on-month) 

Sources: ESA, authors' calculations 
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Figure A3. NO2 pollution level over 2019-2020 (% change, month-on-month) 

Sources: ESA, authors' calculations 

 

Note: grey bars represent periods of tight lockdowns (stay-at-home orders in place) 
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