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ABSTRACT 

 The paper assesses the impact of adding information on financial cycles on the output gap 
estimates for eight advanced economies using two unobserved components models: a 
reduced form extended Hodrick-Prescott filter, and a standard semi-structural unobserved 
components model. To complement these models, a semi-structural vector autoregression 
model is proposed in which only supply shocks are identified. The accuracy of the output 
gap estimates is assessed based on their performance in predicting recessions. The models 
with financial variables generally produce more accurate output gap estimates at the expense 
of increased real-time volatility. While the extended Hodrick-Prescott filter is particularly 
appealing for its real-time stability, it lags behind the two semi-structural models in terms of 
forecasting performance. The vector autoregression model augmented with financial 
variables features the best in-sample forecasting performance, and it has similar real-time 
prediction capabilities to the semi-structural unobserved components model. Overall, 
financial cycles appear to be relevant in Japan, Spain, the UK, and – to a lesser extent – in 
the US and in France, while they are relatively muted in Canada, Germany, and Italy. 
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NON-TECHNICAL SUMMARY 

Potential output has been traditionally defined as the maximum level of economic activity 
attainable without triggering inflation and, in the same context, as the output linked to the 
level of employment that results in a non accelerating rate of inflation (Okun (1962)). The 
observed empirical regularity between output fluctuation and the cyclical pattern of inflation 
or unemployment has been for a long time the key ingredients in a large variety of models 
aiming to estimate the potential growth and the output gap. However, historical evidence 
suggests that unsustainable developments in the financial and housing sectors can generate 
large imbalances in the economy even if inflation and unemployment are low and stable (see 
e.g. White (2006); Hume and Sentance (2009); Schularick and Taylor (2012); Jordà et al. 
(2013)). 

The paper assesses the impact of adding information on financial cycles on the output gap 
estimates for eight advanced economies using two unobserved components models: a 
reduced form extended Hodrick-Prescott filter, and a standard semi-structural unobserved 
components model. To complement these models, a semi-structural vector autoregression 
model is proposed in which only supply shocks are identified. The model is a modified 
version of Blanchard and Quah (1989) in which we exploit a wider set of information by 
using several (business and financial) cycle indicators without imposing further restrictions. 
The main idea is that since the potential growth builds upon supply shocks only, one set of 
constraints, stating that only supply shocks have permanent effects on the level of GDP in 
the long-run, is enough to recover the trend. We formally show that further restrictions are 
not needed as the different demand shocks are not interpreted and do not need to be 
separately identified.  

The overall picture underlines the importance of taking financial variables into account when 
assessing the cyclical position of the economy. Independently of the model considered, the 
model augmented with financial variables proves to be consistently more effective in 
identifying unsustainable economic growth paths and in predicting recessions both in-sample 
and out-of-sample. In Spain, the United Kingdom and (to a much lesser extent) the United 
States, the credit and house prices boom in the run-up to the Great Recession is clearly 
identified, as well as a previous boom-bust in the United Kingdom during the 1980s-90s. 

In Japan both credit and house prices booms at the turn of the 1990s led to the well-studied 
and prolonged crisis (the “Lost Decade”). In France the models signal a house prices boom 
during the 2000s, but there is no sign of a credit boom during the estimation period. Finally, 
the financial cycles appear relatively muted in Canada, Germany and Italy. 
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Output gap estimates - France 

 
Notes: This figure displays the output gap estimates for the extended HP filter (graph on the left), the semi-
structural UCM (middle) and the semi-structural VAR (right) for France. In each case, the baseline output gap 
(red) is shown along with the output gaps estimated with the addition of credit (blue), house prices (green) or 
both credit and house prices (black). 

Sources: BIS, OECD, Authors' calculations. 
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RÉSUMÉ 

Ce document de travail évalue comment prendre en compte les cycles financiers dans l’estimation 
de l’écart de production pour huit économies avancées à l’aide de deux modèles à composantes 
inobservables: un filtre Hodrick-Prescott élargi et un modèle semi-structurel. Pour compléter ces 
modèles, nous proposons un modèle semi-structurel à vecteur autorégressif dans lequel seuls les 
chocs d’offre sont identifiés. La qualité de l’estimation de l’écart de production est évaluée à travers 
sa performance à prévoir les récessions. Les modèles avec variables financières produisent 
généralement des estimations de l’écart de production plus performantes au détriment d’une 

volatilité accrue en temps réel. Alors que le filtre Hodrick-Prescott élargi apparaît particulièrement 
attractif pour sa stabilité en temps réel, sa performance de prédiction est plus faible que celle des 
deux modèles semi-structurels. Le modèle à vecteur autorégressif augmenté avec des variables 
financières présente les meilleures performances de prévision ex-post et des performances 
similaires au modèle semi-structurel à composantes inobservables en temps réel. Dans l’ensemble, 
les cycles financiers apparaissent importants au Japon, en Espagne, au Royaume Uni et, dans une 
moindre mesure, aux Etats-Unis et en France, alors qu’ils sont relativement contenus au Canada, 

en Allemagne et en Italie.   
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1 Introduction

Potential output has been traditionally defined as the maximum level of economic activity attainable
without triggering inflation and, in the same context, as the output linked to the level of employment
that results in a nonaccelerating rate of inflation (Okun (1962)). The observed empirical regularity
between output fluctuation and the cyclical pattern of inflation or unemployment has been for a long
time the key ingredients in a large variety of statistical filters, reduced form and general equilibrium
models aiming to estimate the potential growth and the output gap. In such models, financial factors
are either completely ignored or when included, their roles are limited to amplify the persistence of the
shocks by slowing down somewhat the return of the economy to its steady state path (see e.g. Kiyotaki
and Moore (1997); Bernanke et al. (1999); Woodford (2003)). However, historical evidence suggests
that unsustainable developments in the financial and housing sectors can generate large imbalances
in the economy even if inflation and unemployment are low and stable (see e.g. White (2006); Hume
and Sentance (2009); Schularick and Taylor (2012); Jordà et al. (2013)).

The present paper is closely related to the recent empirical literature that extends traditional stat-
istical output gap estimation techniques by incorporating financial cycle information. We start by con-
ceptually and empirically comparing the performance of two types of popular unobserved components
models (UCMs) in extracting both demand-driven traditional business cycles and financial cycles.
The first UCM follows a novel “reduced form” approach pioneered by Borio et al. (2017) to estimate
the “finance-neutral” output gap. In the “extended Hodrick-Prescott (HP)” model, pre-transformed
financial cycle indicators are directly incorporated as additional covariates into the state-space repres-
entation of the univariate HP filter (model A)1. The second UCM is a simple semi-structural model
featuring a Phillips curve, an Okun’s law, a stochastic process relating output gap to capacity utilisa-
tion, and a separate block that relates financial cycles to the output gap (model B). Both the reduced
form and the semi-structural UCMs augmented with financial variables are gaining increasing pop-
ularity2, however, their relative advantages and limitations have not yet been empirically assessed.

To complement these previous models, we propose a new “semi-structural vector autoregression
(VAR)” model with long-run restrictions (model C). The model is a modified version of Blanchard
and Quah (1989) in which we exploit a wider set of information by using several (business and

1We also estimate a more flexible representation of this model, allowing for serial correlation of the output gap and
introducing shocks to the level of the trend. However, the results from these two versions are very similar in all aspects.
In other words, the additional flexibility of the dynamic multivariate filter compared to extended HP has very limited
practical relevance. The results from this alternative specification are reported in Appendix B.

2Following Borio et al. (2017), several subsequent papers adopt the same (or very similar) methodology to recover
the “sustainable growth” and the “finance-neutral output gap” (see e.g. Anvari et al. (2014); Odor and Kucserova (2014);
Felipe et al. (2015); Krupkina et al. (2015); Maliszewski and Zhang (2015); Berger et al. (2015); Alberola-Ila et al.
(2016); Amador-Torres et al. (2016); Grintzalis et al. (2017)). Bernhofer et al. (2014) adopt a more general statistical
filtering technique proposed by Harvey and Jaeger (1993) to estimate the finance neutral output gap for several advanced
and emerging EU countries. However, the basic concept of the method remains the same: financial cycle indicators are
directly incorporated into output gap equation to help to better explain the cyclical movements of the output. Other papers
extend the previous approach by incorporating financial information into semi-structural UCMs (see e.g. Rünstler and
Vlekke (2018); Melolinna and Tóth (2019)). Our baseline semi-structural model is mostly based on Melolinna and Tóth
(2019).
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financial) cycle indicators without imposing further restrictions. It extends the original Blanchard-
Quah model by combining two approaches. First, we include additional variables in the model and
recover potential GDP using a minimal identification requirement with one set of constraints on the
long-run effects of the shocks. The main idea is that since the potential growth builds upon supply
shocks only, one set of constraints, stating that only supply shocks have permanent effects on the level
of GDP in the long-run, is enough to recover the trend. We formally show that further restrictions
are not needed as the other structural shocks are not interpreted and do not need to be separately
identified. Furthermore, we show that the limited set of constraints used is the only one relevant
for the decomposition of the output gap into contributions of the observables (see Andrle (2013)
for a general explanation of the decomposition technique). With a different objective, similar semi-
structural VARs have been used by Bernanke and Mihov (1998), King et al. (1991) and Gali (1999).

Second, in the spirit of Borio et al. (2017), we directly include pre-transformed financial cycle in-
dicators in the model instead of estimating or imposing theory-based cointegrating relations between
GDP and the financial variables. In other words, we condition the output gap estimates only upon the
short- and medium-run correlations between GDP and the indicator variables, while the fundamental,
long-run relationships between GDP and financial variables are not explicitly modelled. As with the
model of Borio et al. (2017), this “shortcut” allows us to keep the dimension of the model relatively
small. On the other hand, in contrast to Borio et al. (2017), financial cycle indicators are treated as
stochastic processes, i.e. shocks can affect the indicators without necessarily influencing the GDP.

Since the semi-structural VAR involves entirely different mechanisms to decompose the trend
from the cycle than the two other UCMs, it can provide particularly informative additional insights
compared to the other models. All the more so as the ability of the usual univariate or multivariate
statistical filters to accurately differentiate between supply and demand shocks has recently been
challenged. Coibion et al. (2018) argue that models relying on smoothing techniques gradually but
persistently respond to all kinds of shocks to the GDP. The authors show that the Blanchard and
Quah (1989) approach, which explicitly distinguishes between temporary and permanent shocks,
does not suffer from this shortcoming, and can generate real-time estimates of potential output that
are consistent with theoretical predictions much more successfully.

As a first step, we estimate the three “baseline” models for eight advanced economies – Canada
(CA), France (FR), Germany (DE), Italy (IT), Japan (JP), Spain (ES), the UK, and the US – in which
the cyclical pattern of the demand is captured by the unemployment rate, the capacity utilisation rate,
and (in the semi-structural UCM) CPI inflation. As a second step, we test the implications of adding
two additional variables that proved to be the most successful in capturing financial cycles: credit and
house prices (see e.g. the literature review by Borio (2014)). The models are evaluated along several
dimensions, such as the contribution of financial shocks to the estimated output gaps, the sensitivity of
the results to pre-treatment methods, or the real time performance of the models. Finally, the overall
accuracy of the estimated output gaps are assessed using receiver operating characteristic analysis
based on their capabilities in predicting recessions.

The overall picture underlines the importance of taking financial variables into account when
assessing the cyclical position of the economy. Independently of the model considered, the model
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augmented with financial variables proves to be consistently more effective in identifying unsustain-
able economic growth paths and in predicting recessions both in-sample and out-of-sample. In ES,
the UK and (to a much lesser extent) the US, the credit and house prices boom in the run-up to the
Great Recession is clearly identified, as well as a previous boom-bust in the UK during the 1980s-90s.
In JP both credit and house prices booms at the turn of the 1990s led to the well-studied and prolonged
crisis (the “Lost Decade”). In FR the models signal a house prices boom during the 2000s, but there
is no sign of credit boom during the estimation period. Finally, the financial cycles appear relatively
muted in CA, DE and IT. At the same time, our results suggest that financial information generally
worsens the real-time stability of the models in both the short-run and the longer-run, sometimes even
for countries without clear financial cycles identified ex-post (most notably for DE). In other words,
the models with financial variables are generally more successful in signalling booms in real-time,
but future revisions of the point estimates are larger.

The models under scrutiny have different properties along several important dimensions, which
affect their practical efficiency in handling new information originating from the financial variables
and thus their resulting finance-neutral output gap estimates. The approach proposed by Borio et al.
(2017) is particularly appealing for its simplicity and real-time stability. Since the additional variables
directly enter the output gap equation as deterministic covariates, there are only a few parameters to
estimate and shocks to decompose and, as a consequence, the resulting output gap estimates are
relatively less revised when new data become available. However, the extended HP filter generally
lags behind the two semi-structural models in terms of forecasting performance, in particular when
the models are augmented with financial variables. Moreover, the reduced form approach is sensitive
to the (necessary) pre-transformation applied to the cycle indicators to make them stationary with
zero mean. Without external validation of the resulting output gap estimates, it is often hard to
choose between the different possible trend removal methods. Simply put, the extended HP filter
can be viewed as the two-step version of the more complicated, semi-structural UCM: first, possible
structural shocks to the indicator variables need to be removed; second, the correlation between the
pre-filtered cycle indicator variables and the GDP is estimated, which helps to identify the output gap.

The semi-structural UCM provides a simultaneous estimation of these two steps. The difficulty
of selecting the right pre-treatment method is therefore transformed into a difficulty of choosing the
right structure and defining suitable Bayesian prior distributions on the parameters. By imposing a
very light structure on the model and using standard prior beliefs about the parameters, the semi-
structural UCM produces, in general, more accurate finance-neutral output gaps with better early
warning capabilities than the extended HP filter. However, the results for JP and – to a lesser extent
– the US are good examples showing that solely relying on an arguably flexible and generally more
capable approach may also lead to misleading conclusions. The semi-structural UCM for these two
countries reveals significantly lower impact of financial cycles on the output gap estimates compared
to the other models. In particular, both the semi-structural VAR and the reduced form model suggest
that the Japanese finance-neutral output gap remains positive until 1998 following the asset price
bubble’s collapse in the early 1990s, whereas the output gap estimated using the semi-structural UCM
already turns to negative – even though only temporarily – in 1993. The output gap remaining positive
for a prolonged period of time after the bubble’s collapse is arguably more in line with the Japanese

3



“Lost Decade” paradigm. Similarly, the build-up of the financial bubble in the US was less forceful
before the recent financial crisis according to the semi-structural UCM than the other models imply.

By taking advantage of its distinct trend-cycle decomposition technique, the semi-structural VAR
provides valuable external validation of the results from the other models. This cross-check is partic-
ularly useful when the results from the other UCMs differ (such as for JP and the US) or the results
are particularly sensitive to the priors imposed on the parameters of the model. Moreover, the semi-
structural VAR is generally more successful in accurately capturing macroeconomic and financial
imbalances than the UCMs. The model features the best in-sample forecasting performance of reces-
sion probabilities among all three models, and it has similar real-time prediction capabilities to the
semi-structural UCM and clearly superior to the extended HP filter. At the same time, this model also
tends to react relatively more erratically to new observations included in the sample, especially when
financial cycles are taken into account. The semi-structural VAR is also sensitive to the trend removal
technique applied to the cycle indicators. However, contrary to the reduced form extended HP filter,
the implied change in the output gap estimate following a change in the pre-filtering technique is less
predictable.

In what follows, the two UCMs are briefly described (Section 2), and then the semi-structural VAR
approach is presented in more detail (Section 3). Section 4 presents the data used for the estimations,
the main estimation results, the decomposition of the output gap into the contribution of observables,
the real-time performance and the forecasting accuracy analysis of the models. Finally, Section 5
summarises the main findings and puts them into a broader perspective.

2 The unobserved components models

2.1 Extended Hodrick-Prescott filter

Our simplest model has been advanced by Borio et al. (2017). A simple UCM, a univariate smooth
trend model, which is the state-space representation of the famous HP filter, is augmented with addi-
tional variables (zt): 

yt = y?t + γ′zt + εt εt ∼ N (0, σ2
ε)

y?t = y?t−1 + gyt−1

gyt = gyt−1 + ξt ξt ∼ N
(
0, σ2

ξ

) (1)

where yt is the log of GDP, y?t is the log of the unobserved GDP trend and gyt is the stochastic
growth rate of the trend. εt and ξt are uncorrelated normally distributed random terms with variance
σ2
ε and σ2

ξ , respectively. The output gap is defined as the deviation of GDP from its sustainable path:
ŷt = yt − y?t . The parameters of the model are estimated using maximum likelihood techniques and
the gap is recovered using the Kalman filter.

A number of issues need to be addressed. To begin with, the stationarity of the business and
financial cycle indicators (vector zt) is a crucial yet in practice a rarely satisfied assumption. The
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coefficient of a non-stationary variable zt in small samples can receive a positive weight that will
transmit a trend (or a non-zero mean) to the output gap. To overcome this problem, we follow the
usual approach and pre-transform the series before plugging them into the model. A number of
academic studies researching on financial imbalances de-trend the series using a HP filter with a
smoothing parameter λ = 400, 000 (see e.g. Borio and Lowe (2002); Edge and Meisenzahl (2011);
Detken et al. (2013); Borio et al. (2014b); Anundsen et al. (2016); Bauer and Granziera (2017); and
the Basel III recommendation Committee (2010)). Consequently, only very low frequency cycles
with average length above approximately 40 years are removed, well above the usual financial cycle
frequencies.3 We follow the same procedure and de-trend the unemployment rate (ut), the credit
(crt) and the house prices (hpt) using a HP filter with the same value for λ. There is one exception:
for DE, a HP filter with a lower smoothing parameter (λ = 1600) is used to better account for the
downward trend of the unemployment rate following the introduction of the Hartz reforms. As for
the capacity utilisation (ct), we simply remove the mean. The sensitivity of the results to various
alternative low-frequency trend removal techniques will be discussed further in Sections 4.4 and 5.4

The second issue is the usual “pile-up” problem when maximum likelihood technique is em-
ployed: when the variation of trend growth rate σ2

ξ is small, the (maximum likelihood) estimate for σ2
ξ

tends to be biased toward zero and as a result, the filter smooths potential output more than is neces-
sary. The business cycle would then seem longer (Shephard (1993); Stock (1994); Stock and Watson
(1998)). To avoid this, we follow the suggestion of Borio et al. (2017) and constrain the scaling factor
λ = σ2

ε/σ
2
ξ so that the ratio of the variance of the output gap to the variance of the second differences

of the trend – i.e. var(ŷt)/σ2
ξ – is equal to 1600, the standard value for quarterly data. This is achieved

by recursively re-estimating the model until convergence.

Finally, the model suffers from two conceptual weaknesses. First, the extended HP filter might be
too restrictive. The smooth trend model in eq. 1 with the above-mentioned constraint on the scaling
factor assumes that the trend follows an integrated random walk. As such, the model does not allow
for a level shock on potential output, since it allocates all permanent shocks to the potential output as
shocks to the trend growth. Moreover, the model does not assume autocorrelation of the output gap.
However, in practice, unit root tests on real GDP rather indicate integrated processes of order 1 (i.e.
an I(1) process), rather than I(2) processes as assumed by the smooth trend model; and the output gap
estimates produced by the filter are highly autocorrelated, which contradicts the formulation of the
model (Grant and Chan (2017))..

Second and most importantly from the point of view of our exercise, the extended HP filter method
may not be compatible with filtering out financial imbalances from output to obtain sustainable output
because of the frequency discrepancy between financial and regular economic cycles. Using the usual
value for the scaling factor, the extended HP filter is designed to filter out noise at the traditional
business cycle frequency. Additional variables in zt will be significant determinant of the output

3The transfer function of the HP filter is given by (King and Rebelo (1993)): h(ω;λ) = 4λ(1− cosω)2/(1 + 4λ(1−
cosω)2). If λ = 400, 000, h(ω;λ) > 0.5 for ω > 0.04, which corresponds to about 39 years on quarterly data.

4Note that we did not seek to fully optimise the pre-treatment of the variables to achieve the most “credible” output
gap estimates. Instead, we used rather standard pre-treatment techniques to illustrate the potential benefits and pitfalls of
the different approaches.
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gap only if they can explain cyclical fluctuations at the traditional business cycle frequency (as, for
example, the unemployment and the rate of capacity utilisation). However, financial variables have
longer cycles and their correlation with GDP is expected at lower frequencies. A common business
cycle covers 8 years, whereas on average the financial cycle is considerably longer, 15-20 years (see
Claessens et al. (2012); Borio (2014); Rünstler and Vlekke (2018)).

To address these conceptual issues, we also estimate a more flexible version of the model which
(i) allows for the serial correlation of the output gap, (ii) introduces shocks to the level of the trend
and (iii) estimates the scaling factor rather than calibrates it. This model is similar in structure to the
process describing the potential output and the output gap in the semi-structural UCM (model B in
Section 2.2). It is also more in line with the assumptions used in the semi-structural VAR (model C in
Section 3), in particular regarding the integration order of the GDP series. The model is described in
details in Appendix B (“dynamic multivariate filter”, model A′). The results from these two versions
of the reduced form model are very similar: the correlation between the output gap estimates using
these two methods, with or without financial variables, is very high, that is, more than 0.89 for all
countries. In other words, the additional flexibility of the dynamic multivariate filter compared to
extended HP has very limited practical relevance. Therefore, the results of the more flexible reduced
form model are reported only in Appendix B.

2.2 Semi-structural unobserved components model

Our baseline model is similar to Melolinna and Tóth (2019), Anderton et al. (2014) (ECB), Benes
et al. (2010) (IMF), and IMF-QPM model (Ermolaev et al. (2008), following Kuttner (1994)). It is a
backward looking UCM with a Phillips curve, an Okun’s law, and a stochastic process relating output
gap to capacity utilisation. The baseline model includes four observable variables: log GDP (yt),
inflation (πt) defined as the yearly log difference of the consumer price index (CPI), unemployment
(ut) and capacity utilisation (ct).

Consequently, the model has four measurement equations with xt being the observable variable,
x?t the unobservable trend and x̂ the gap:

xt = x?t + x̂t, x = {y, π, u, c} (2)

The decomposition of output into its potential and the output gap is described by the following
three equations. The output gap is assumed to follow an AR(1) process, therefore featuring a serial
correlation and experiencing transitory shocks. Potential output is defined as an I(1) process. Its
stationary growth rate is an AR(1) revolving around its sample average. εy∗ and εgy are permanent
and temporary shocks to the potential output, respectively.

ŷt = α1ŷt−1 + εŷt

y?t = y?t−1 + gyt + εy
?

t

gyt = α2ḡ
y + (1− α2) g

y
t−1 + εgyt

(3)

6



An Okun’s law links unemployment and output gap. The unemployment gap includes a serial
correlation and is supposed to be negatively correlated to the output gap. Potential unemployment is
an I(1) process. Its first-difference follows an AR(1) process with zero mean.

ût = γ1ût−1 − γ2ŷt + εût

u?t = u?t−1 + gut + εu
?

t

gut = (1− γ3) gut−1 + εgut

(4)

An equation describing the relationship between capacity utilisation and output gap, in the spirit
of the Okun’s law, provides further identifying information. The capacity utilisation gap is assumed
to be persistent and correlated with the output gap. Potential capacity utilisation is modelled as a
driftless random walk. {

ĉt = κ1ĉt−1 + κ2ŷt + εĉt

c?t = c?t−1 + εc
?

t

(5)

A Phillips curve equation links output gap and inflation. The inflation gap is persistent (it is
modelled as an AR(1) process) and is correlated with the output gap. Potential inflation is assumed
to be a random walk without drift.

{
π̂t = β1π̂t−1 + β2ŷt−1 + επ̂t

π?t = π?t−1 + επt
(6)

The inclusion of the Phillips curve in the semi-structural model arguably provides additional in-
formation that is not present in the other models (A and C) tested. We add the Phillips curve to this
model to be consistent with other similar UCMs used in the literature. However, we equally tested the
model without the Phillips curve. Results from this model variant remain very close to our baseline
findings. Similarly, we also tested a variant of the other models with inflation as an additional control.
Our results confirm the findings of Borio et al. (2017) demonstrating that inflation “does very little to
help condition output gap estimates”. These additional results are available upon request.

The model with financial indicators corresponds to the baseline model augmented with financial
variables ft = {cr, hp}. They were added separately, before they were added together. First, a
measurement equation decomposes the log of credit (cr) and the log of house prices (hp) into a trend
and a cycle components:

ft = f ?t + f̂t, f ∈ {cr, hp} (7)

Second, the trend-cycle decomposition of ft is similar to that for output. The financial variable
gap is linked to the output gap and is persistent. The trend of the financial variable is defined as I(1).
Its stationary growth rate is an AR(1) process revolving around the sample average of f .
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f̂t = φ1f̂t−1 + φ2ŷt + εf̂t

f ?t = f ?t−1 + gft + εf
?

t

gft = φ3ḡ
f + (1− φ3)g

f
t−1 + εgft

(8)

The model is estimated using a diffuse Kalman filter (Rosenberg (1973); De Jong (1991)) and
Bayesian techniques.5 Shocks are assumed to follow an inverse gamma function with infinite vari-
ance. The AR(1) parameters follow a beta distribution with prior mode 0.6 and prior variance of 0.25.
The rest of the priors follow gamma, beta or normal distributions. Details are presented in Appendix
C.

3 Semi-structural VAR with long-run restrictions

Building on the seminal article by Blanchard and Quah (1989), we impose long-run restrictions to
disentangle shocks to the trend influencing GDP in the long-term from shocks to the cycle with no in-
fluence on long-term GDP. We extend the original Blanchard-Quah model in two ways. First, instead
of relying on two variables (GDP and an indicator of the business cycle such as the unemployment
rate) and one long-run restriction (only the supply shock has a permanent effect on the level of GDP),
we exploit a wider set of information by using several cycle indicators without imposing further re-
strictions. To avoid a fragile identification of all shocks through various long-run, short-run and/or
sign restrictions, Blanchard and Quah (1989)’s original approach is used and only the same long-run
constraints are imposed: only one of the structural shocks (the supply shock) impacts the GDP in
the long run. This minimal identification requirement is sufficient to recover the supply shock, the
potential growth, and thus the output gap. The other structural shocks (for simplicity, we call them
demand shocks) are not interpreted.

Since the entire structure of the shocks is not identified, but only one of these shocks, the identific-
ation technique relates to semi-structural VARs (see Kilian and Lütkepohl (2017), Chapter 10). Sim-
ilar semi-structural VARs in which only part of the structural shocks are correctly identified were used
by, for example, Bernanke and Mihov (1998) to derive a new measure of monetary policy innovations
based on various reserve market indicators; or King et al. (1991) to identify common permanent pro-
ductivity shocks in output, consumption, and investment based on the “balanced growth” assumption.
Our approach is the closest to the higher dimension model of Gali (1999), who identify technology
shocks driving the productivity growth by using information on hours worked, money growth, infla-
tion, and interest rates. Nevertheless, use of semi-structural VAR in the empirical literature remains
scarce and, to our knowledge, it has never been used to recover the output gap.

Second, in the spirit of Borio et al. (2017), we directly include pre-treated cycle indicators in the
model. This “shortcut” is particularly convenient when non-stationary financial variables are included

5We use the IRIS Toolbox, see: J. Benes, M. K. Johnston, and S. Plotnikov, IRIS Toolbox Release 20151016 (Mac-
roeconomic modelling toolbox). The software is available at http://www.iris-toolbox.com
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in the model, since it allows us to avoid the need to estimate or impose cointegrating relationships
between GDP and the financial variables. In practice, we use the same pre-transformed series as in
our “extended HP filter” model (Section 2.1).6 However, in contrast to Borio et al. (2017), both the
business and the financial cycle indicators enter the model as stochastic processes. Consequently,
various shocks can affect the cycle indicators in the short and medium run without necessarily influ-
encing the GDP. In other words, as opposed to the extended HP filter, shocks to the indicator variables
are not necessarily directly transmitted to the output gap.

More formally and starting from the moving average (Wold) representation for the vector com-
posed of growth ∆yt and (stationary and demeaned) auxiliary variables zt (ut, ct, and in the aug-
mented model, the two financial indicators: crt and hpt), the structural shocks [ωst , ω

d
t ] need to be

recovered from the innovations εt:

[
∆yt
zt

]
= C (L) εt = A (L)ωt = A (L)

[
ωst
ωdt

]
(9)

Blanchard and Quah (1989) only use information from one macroeconomic variable beyond GDP:
in their model zt is a variable (unemployment) instead of a vector. Therefore, they separate two
shocks into a demand disturbance (ωdt ) and a supply disturbance (ωdt ). To achieve this, one constraint
is enough: the demand disturbance has no effect on GDP in the long run.

In contrast, we separate one supply shock from many other demand shocks by using several
indicator variables (zt and ωdt are column vectors with n elements). Noting A(L) =

∑∞
i=0AiL

i and
C(L) =

∑∞
i=0CiL

i, and given that C0 = I , then A0ωt = εt and Ai = CiA0. Since E(ωt) = 0,
E(ωtω

′
t) = In+1 and εtε′t = A0ωtω

′
tA
′
0, the variance-covariance matrix V (ε) is given by:

V (ε) = A0A
′
0 (10)

A(1)ωt = C(1)A0ωt is the long-term accumulated response of the GDP growth and the auxiliary
variables to the structural shocks ωt. It can therefore be imposed that only the supply shock (that we
choose as the first component of ωt) has an impact on the level of GDP in the long run:

A(1) = C(1)A0 =

[
a11 01×n

An×1 Zn×n

]
(11)

The n zeroes from the first line in eq. 11 impose that only the supply shock ωst is allowed to
impact GDP in the long-run. These are the constraints that matter to separate the supply shock from
the other shocks.We further impose n × (n − 1)/2 arbitrary constraints on the matrix Z to be able

6Blanchard and Quah (1989) also stress the necessity of some form of pre-treatment applied to the indicator series.
The authors discuss how to deal with the time trend in unemployment. They compare the results obtained with raw or
de-trended unemployment series, and show that the results obtained using either of the two series are qualitatively similar.
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to identify A0 and therefore all of the structural shocks (e.g. by imposing Z to be lower triangular),7

but crucially the potential growth (i.e. growth stemming from the supply shock only) and therefore
the output gap do not depend on these constraints. To put it differently, the constraints on Z split
the innovations between the various demand shocks, but the output gap is the same whatever the
construction of the demand shocks. For the same reason, the contribution of each variable to potential
growth does not depend on these additional restrictions set on Z: this contribution reflects the part
of the variable having an impact on long-term GDP. How the rest of this variable – the part with no
impact on long-term GDP – is split between the different demand shocks is therefore irrelevant, as
shown below.

Let’s denote
[

ωst
0n×1

]
=

[
1 01×n

0n×1 0n×n

]
ωt = Bωt. y?t is estimated by setting all structural

shocks ωdt to 0:

[
∆y?t
z?t

]
= A(L)Bωt = C(L)A0Bωt = C(L)A0BA

−1
0 εt = C(L)C(1)−1A(1)BA(1)−1C(1)εt

= C(L)C(1)−1

[
a11 01×n

An×1 Zn×n

][
1 01×n

0n×1 0n×n

][
1
a11

01×n

− 1
a11
Z−1n×nAn×1 Z−1n×n

]
C(1)εt

= C(L)C(1)−1

[
1 01×n

1
a11
An×1 0n×n

]
C(1)εt (12)

C(L) andC(1) (inverse of the VAR) depend only on reduced-form parameters of the VAR. Futher-
more, the parameters a11 andAn×1 inA(1) are identified by the equations 10 and 11 without requiring
the knowledge of Z:

A(1)A(1)′ =

[
a211 a11A

′
1×n

a11An×1 An×1A
′
1×n + Zn×nZ

′
n×n

]
= C(1)A0A

′
0C(1)′ = C(1)V (ε)C(1)′ (13)

Given that none of the matrices involved in the last line of eq. 12 depend on Z, the estimation of
potential growth ∆y?t – and that of z?t – is independent of the exact specification of Z.

We then compute the output gap ŷt as yt−y?t =
∑t

t0=1 ∆yt−
∑t

t0=1 ∆y?t−
∑t

t0=1 ∆yt −
∑t

t0=1 ∆y?t ,

with
∑t

t0=1 ∆yt −
∑t

t0=1 ∆y?t being the mean of the cumulated difference between growth and po-
tential growth. This latter term ensures that the output gap has mean zero. The output gap ŷt does not
depend on the matrix Z because neither

∑t
t0=1 ∆yt nor

∑t
t0=1 ∆y?t depends on it.

7The identification of A0 requires (n+ 1)2 constraints. Equation 10 yields (n+ 1)× (n+ 2)/2 restrictions, and the
first line of A(1) in eq. 11 imposes an additional n constraints. The remaining n × (n − 1)/2 exclusion restrictions are
placed on the matrix Z.
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Finally, note that the contribution of one variable to the output gap is therefore simply the cumulat-
ive difference between its contribution to growth and its contribution to potential growth. Replacing
εt with C(L)−1 [∆yt, zt]

′ in eq. 12, it can be seen that the decomposition of the output gap into the
observables does not depend on the matrix Z either.

This semi-structural VAR has some appealing advantages: it imposes a very light structure on the
data, thus “lets the data speak”. In particular, since we do not need to identify all structural shocks, the
identifying assumption requires only minimal restrictions. Although the series must be stationary and
must therefore be transformed before the estimation (we perform the same pre-transformation as in
the reduced-form models), the auxiliary variables are still treated as stochastic processes. Finally the
estimation is straightforward: we use the Full Information Maximum Likelihood (FIML) procedure
and the scoring method described in Amisano and Giannini (1997).

4 Results

4.1 Data source

We use quarterly and seasonally adjusted data for eight advanced economies: CA, FR, DE, IT, JP,
ES, the UK and the US. We took the longest publicly available series for each country. Start dates
range from 1968q4 to 1985q1 depending on the country, while the end date is always 2016q4.8 Gross
domestic product, consumer price index and the rate of capacity utilisation are obtained from the
OECD Main Indicators database. The unemployment rate comes from the OECD Economic Outlook
database. Total credit to the non-financial sector comes from the BIS total credit statistics database.
Real house prices are calculated using house prices from national sources, BIS Residential Property
Price database and the Consumer Price Index from the OECD.9 The credit and house prices series
were seasonally adjusted. Further details on the data can be found in the Appendix.

4.2 Main results

Figure 1 shows, for each country and each model, the estimated output gaps without financial in-
formation (baseline, red line), and augmented with credit (blue line), house prices (green line) or
both (black line). The differences between the augmented and the baseline models are the impacts
of introducing financial cycle indicators into the models on the output gap estimates. As shown in
more detail in the next section, these differences – with some exceptions outlined in the paper – are
highly correlated with the contributions of the financial variables to the output gap. Therefore, the
differences in the output gap estimates with and without financial variables can safely be interpreted
as signs of financial imbalances not reflected in the baseline output gaps. We start by discussing and

8The estimation period begins in 1968q4 for IT, 1970q1 for CA, DE and the US, 1976q1 for FR, 1976q1 for ES,
1978q1 for JP and 1985q1 for the UK.

9To get longer time series, we use other data sources for the rate of capacity utilisation for CA and JP. See Appendix
A for details.
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comparing the results obtained using the two UCMs, then we turn our attention to the semi-structural
VAR and show how it shapes our understanding of financial cycles and their interactions with GDP.

The graphs clearly show that the baseline output gap estimates from the two UCMs are close
to each other for all countries.10 The models generally produce economically plausible output gap
estimates. The economic downturn starting with the 2007-08 financial crisis – and further aggravated
by the subsequent debt crisis for IT and ES – appears as the worst crisis in our sample for most
countries. The only exception is CA, for which it turned out to be relatively benign, especially so in
comparison with its severe crisis in the 1980s.

Adding financial information generally drives the two UCMs’ output gap estimates apart. Most
notably, the UCMs seem to use the additional information provided by the financial variables differ-
ently in the case of JP: the extended HP filter reveals a significantly higher and more prolonged impact
of the Japanese financial bubble of the 1990s than the semi-structural UCM. The former model sug-
gests that the finance-neutral output gap remains positive until 1998, whereas the latter model already
indicates – even though only temporarily – a negative output gap in 1993.

The results from the UCMs are also divergent for the UK: while the semi-structural UCM clearly
shows the impact of both credit and housing bubbles in the late 1980s and in the 2000s, the extended
HP filter only signals the effects of house prices cycles. Similarly, the extended HP filter points
towards a somewhat more important role of housing bubbles in FR and credit bubbles in DE during
the years preceding the crisis.

Turning to the semi-structural VAR, results show no sign of systematic differences between this
model and the UCMs that could be summarized in a single, clear message. Instead, the example of
the 8 countries illustrate distinct cases, highlighting specific features of the semi-structural VAR and
diverse aspects of its contribution to the overall picture.

Although the baseline semi-structural VAR draws a similar picture than the UCMs for most coun-
tries, there are also some marked differences. In particular, the model indicates a higher pre-crisis
output gap compared to the other baseline models for FR and ES. Conversely, the semi-structural
VAR without financial variables seems to be unable to pick up the high volatility in output around the
outbreak of the crisis in the UK and it generates relatively less informative high frequency output gap
fluctuations for DE.

The model with financial variables reinforces the findings from the extended HP filter and some-
what contradicts the findings from the semi-structural UCM in the case of JP and (to a lesser extent)
the US. More precisely, both the semi-structural VAR and the reduced form model suggest that the
Japanese finance-neutral output gap remains positive for a prolonged period of time after the asset
price bubble’s collapse in the early 1990s, more in line with the Japanese “Lost Decade” paradigm.
Similarly, the build-up of the financial imbalances in the US before 2007 seems to be more forceful
than the semi-structural UCM implies.

10The correlation between the output gaps from the extended HP filter and the semi-structural UCM exceeds 0.82 for
all countries.
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On the other hand, the semi-structural VAR gives credit to the semi-structural UCM in the case of
the UK, suggesting that both credit and house prices cycles have been important sources of macroeco-
nomic fluctuations in the country. Finally, the semi-structural VAR gives a similar general picture on
CA and IT to the other models, showing no clear sign of impact of financial cycles on GDP. The only
country for which the semi-structural VAR provides less credible or informative output gap estimates
compared to the other models, either with or without financial variables, is DE.

An overall picture emerges from the results of all the models combined. Our findings are in line
with previous work that documents the exceptional resilience of the Canadian economy in the midst
of the global financial crisis (Bordo et al. (2015); Haltom (2013)). The financial cycles appear to be
relatively muted in DE (as in Rünstler and Vlekke (2018)) and in IT as well. The models signal a
house prices boom in FR during the 2000s. Both credit and house prices boom in JP at the turn of the
1990s, leading to a well-studied prolonged crisis (see e.g. Bayoumi (2001)). In the US, the credit and
house prices boom in the run-up to the Great Recession is clearly visible. Corroborating the findings
of Rünstler and Vlekke (2018), our results indicate that ES and the UK have suffered from the largest
and the longest financial cycles.

Figure 1: Output gap estimates
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(g) UK
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Notes: Figures 1(a) to 1(h) display the output gap estimates for the extended HP filter (graph on the left), the semi-
structural UCM (middle) and the semi-structural VAR (right) for each country. In each case the baseline output gap (red)
is shown along with the output gaps estimated with the addition of credit (blue), house prices (green) or both credit and
house prices (black).
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4.3 Decomposition of the output gap into the contribution of observables

Changes in the output gap estimates triggered by the introduction of financial variables do not neces-
sarily signal financial imbalances. For instance, the parameters of the model might change with a new
variable in the model. As a result, the estimated output gap might change even if the direct influence
of the variable on the GDP is limited or, inversely, the new output gap might be close to the baseline
estimate even if the influence of the variable is important.

To assess the direct influence of the financial variables on the output gap, we decompose the gap
estimates into the contribution of each variable. All of the models considered can be formulated
as linear filters: the output gap can be written as a moving average of the observables. Therefore,
the output gap can be decomposed exactly into the contribution of each observable. It is different
from the more widely used shock decomposition: the contributions of the observables assess the
influence of the variables themselves – not their shocks – on the estimated output gap. The technique
is described in Andrle (2013). Section 3 gives additional details about the methodology applied to the
semi-structural VAR.

For each country and each model, we compare the contribution of credit (in the model with only
credit), house prices (in the model with only house prices), or from both credit and house prices (in the
model with both financial variables), with respectively the “credit deviation” (difference between the
output gap from the model with only credit and the baseline output gap), the “house prices deviation”,
and the “credit and house prices deviation” (difference between the output gap from the model with
both credit and house prices and the baseline output gap). Figure 2 describes the correlations for each
country and model between these deviations from the baseline estimates and the contributions of the
financial variables.

These correlations are generally very high, especially for the UCMs. The extremely low correl-
ations that appear for the credit for CA and FR and for the house prices for IT in the case of the
semi-structural VAR can be disregarded: the variables have virtually no influence on the output gap,
so their contribution is close to 0, which makes the correlation rather meaningless (see Figures 1(a),
(b) and (d)). On the other hand, the low correlation of the contribution of house prices and the house
price deviation (as defined in the previous paragraph) for the semi-structural VAR for FR indicates
that the baseline model is relatively less robust to the introduction of house prices and, therefore, the
results should be interpreted with more caution. The same problem arises to a much lesser extent with
the introduction of house prices into the semi-structural VAR model for ES and JP.

Overall, measuring the deviations from the baseline for the large majority of the countries and
models is roughly equivalent to computing the contribution of the financial variable(s) to the output
gap estimates. The differences between the augmented and the baseline estimates can therefore be
interpreted as signs of financial imbalances not reflected in the baseline output gaps. For example, if
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the introduction of credit translates into a (much) higher output gap, the contribution from credit will
be positive (and large). Both measures point to the same (large) credit boom.11

Figure 2: Correlation between deviations from the baseline and the contributions of financial variables
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Notes: For each model and each country, we plot the correlation between (1) the contribution
of credit (“cr”, in the model with only credit), house prices (“hp”, in the model with only house
prices), or from both credit and house prices (“cr&hp”, in the model with both financial vari-
ables) and (2) the respective “credit deviation” (difference between the output gap from the model
with only credit and the baseline output gap), “house prices deviation”, and “credit and house
prices deviation”. The correlation measures below 0.8 are labelled with the country code.

4.4 Sensitivity of the results to pre-treatment methods

The sensitivity of the results to the pre-transformation technique applied to the cycle indicators is
tested by re-estimating both the extended HP filter and the semi-structural VAR with alternative pre-
treatment methods. Instead of relying on HP-filtered variables, we de-trend each element of zt (both
the business cycle and financial cycle indicators) by regressing out the second or third order polyno-
mial trend. As a third alternative, we feed the models with the cyclical part of the indicator variables
obtained from the semi-structural UCM (ût, ĉt, ĉrt, ĥpt).

11The visual inspection of the graphs comparing the contribution of each financial variable and the deviation in the
output gap due to the inclusion of the financial variable into the model confirms this finding. These graphs are not
presented in this paper for brevity reasons, but are available from the authors upon request.
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Table 1 presents the standardized mean deviations (SMDs) of the input variables and the resulting
finance-neutral output gap estimates with respect to the reference model with HP-filtered indicators.
More precisely, we compute the average deviations as

∑M
m=1

∑T
t=t0

1
M(T−t0+1)

|zmit−zref.
it |

σref.
i

, with zmit are
the indicator variables from the alternative pre-treatment method m = {1, ...,M} of country i and
zref.
it are the reference HP-filtered indicators with standard deviations σref.

i . SMDs of the corresponding
output gaps are calculated in a similar way.

All countries and all alternative pre-filtering methods combined, the SMD of the estimated output
gap with respect to the reference model (HP-filtered indicators) is 24 per cent of the overall standard
deviation of the output gaps for the extended HP model and 50 per cent for the semi-structural VAR.
These numbers correspond to an average deviation of 0.5 percentage points and 1.2 percentage points
for the respective models. That is, the semi-structural VAR is more sensitive to the input indicators
than the extended HP model.

The order of magnitude of the SMDs of the output gaps is in accordance with the SMDs of the
indicator variables. On average, with an overall SMD of 0.58, the unemployment gap is the most
affected by the choice of the pre-treatment method. This is especially true for DE, the country for
which a lower smoothing parameter is used in the reference model in order to account better for the
relatively rapid changes in the structural unemployment rate following the Hartz reforms (see Section
2.1). At the other extreme, the least impacted variable is the capacity utilisation.

The first two columns of Table 2 attempt to explain the differences in the results obtained using
various pre-treatment methods by differences in cycle indicators using a simple linear model. We
pool all countries and all pre-treatment methods (de-trended by second or third order polynomials;
and the cycle indicators from the semi-structural UCM), we calculate the differences with respect to
our reference method and regress the output gap differences on differences in the indicator measures
using ordinary least squares. As shown in the first column, for the extended HP model, 66 per cent
of the variation in the estimated output gaps can be explained by the variations in input indicators.
These results indicate that the cycle indicators directly transmit to the estimated output gap to a large
extent. This is not the case for the semi-structural VAR: while the model is also sensitive to the pre-
treatment method applied, the change in the resulting output gap estimates is much less predictable.
These results hold true when more lags are added to the model: even with 10 lags, the adjusted R2 is
0.68 in the case of the extended HP model and 0.02 in the case of the semi-structural VAR. When the
parameters of the explanatory variables are allowed to vary by country, the adjusted R2 increases to
0.93 for the extended HP model and to 0.33 for the semi-structural VAR.12

12These additional results are not presented in the paper, but are available from the authors upon request.
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Table 1: Standardised mean deviations w.r.t. the model with HP-filtered indicators

ût ĉt ĉrt ĥpt ŷextended HP
t ŷsemi-struct. VAR

t

Canada 0.35 0.20 0.53 0.28 0.25 0.31
France 0.40 0.12 0.11 0.21 0.12 0.20
Germany 1.71 0.20 0.37 0.42 0.31 0.75
Italy 0.35 0.26 0.38 0.28 0.16 0.50
Japan 0.77 0.23 0.41 0.32 0.49 0.63
Spain 0.28 0.17 0.25 0.31 0.15 0.60
UK 0.45 0.23 0.62 0.21 0.27 0.94
US 0.28 0.21 0.27 0.26 0.18 0.22

Total 0.58 0.20 0.37 0.29 0.24 0.50

Notes: This table shows the standardised mean deviations (SMDs) of the indicator variables (first
four columns) and the resulting finance-neutral output gap estimates (last two columns) with
respect to the reference model with HP-filtered indicators. See the text for the exact definition
of the SMD measures. In the reference model, the cycle indicators are HP-filtered with λ =

400, 000. The alternative pre-treatment methods are: de-trended indicators by second or third
order polynomials; and the gap of indicator variables obtained from the semi-structural UCM.

Table 2: The impact of alternative pre-filtering methods on the resulting output gap estimates

extended HP semi-struct. VAR extended HP semi-struct. VAR
(1) (2) (3) (4)

Reference model (ref.)
HP-filtered
indicators

HP-filtered
indicators

semi-struct.
UCM

semi-struct.
UCM

adjusted R2 0.66 0.01 0.41 0.15
Nb. of obs. 4101 4020 4101 4020

ût − ûref.
t

-0.24***
(0.014)

-0.11**
(0.044)

-0.76***
(0.027)

-0.76***
(0.042)

ĉt − ĉref.
t

0.46***
(0.014)

-0.06**
(0.028)

0.07***
(0.013)

-0.27***
(0.021)

ĉrt − ĉrref.
t

0.01***
(0.002)

-0.04***
(0.007)

0.04***
(0.003)

0.02***
(0.005)

ĥpt − ĥp
ref.
t

0.06***
(0.002)

0.04***
(0.007)

0.07***
(0.003)

0.07***
(0.005)

Notes: This table presents the results from a pooled ordinary least squares estimation in which the differences in
output gaps are regressed on differences in the indicator measures. The reference model is the one with HP-filtered
cycle indicators (the first two columns) or the semi-structural UCM (the last two columns). Other models
considered: de-trended indicators by second or third order polynomials.
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A similar conclusion is reached when the output gap estimates of the semi-structural UCM are set
as a reference. The same exercise as before is repeated in column 3 and 4 of Table 2, but the differ-
ences are calculated with respect to the semi-structural UCM. The alternative pre-treatment methods
considered are: HP-filtered indicators with λ = 400, 000; and de-trended indicators by second or third
order polynomials. These simple linear models lead to an adjusted R2 of 41 per cent for the extended
HP and 15 per cent for the semi-structural VAR. That is, the closer the cycle indicators are to the
results of the semi-structural UCM, the closer the estimated gaps with the extended HP model will be
to the output gap estimates of the semi-structural UCM. Crucially, the differences and similarities of
these two UCMs depend on the pre-treatment method applied to the auxiliary variables. This is much
less true for the semi-structural VAR.

4.5 Real time performance

To assess the real-time performance of the models, we compute the average revision of the output gap

as
∑T

t=t0
1

T−t0+1

|ŷt′it−ŷtit|
σi

, with ŷtit and ŷt′it being the output gaps of country i at date t for a given model
estimated with data respectively up to date t or t′ ∈ {t+1 year, t+3 years}, σi the standard deviation
of the baseline extended HP filter, t0 the first date used for the exercise (2000 was chosen so that the
models are stabilised for all countries) and T is the last usable date (2015 for t′ = t+ 1 year or 2013
for t′ = t+ 3).13

To meaningfully compare different models (with possibly very different output gap volatility),
the revisions are normalised using the standard deviation of the most simple model, the extended
HP filter in its baseline specification. This ensures that for example a 1 point revision in the output
gap translates into the same standardised revision independently of the model or the set of variables
included in the model. Furthermore, this normalisation neutralises the volatility of each country’s
cycle – FR’s cycle is much less volatile than ES’s, for instance – which allows comparisons between
countries.

Figure 3 shows the standardised average errors (SAE) made at a 1-year horizon (dots at the be-
ginning of the arrows) and at a 3-year horizon (tip of the arrows) for the baseline model (“baseline”)
and the model augmented with financial variables (“w/ fin. variables”). The colours of the arrows
correspond to different models: the extended HP filter (blue, model A), the semi-structural UCM
(green, model B) and the semi-structural VAR (orange, model C). A 45-degree dashed line is added
to each plot. For comparison, the grey arrows indicate the SAE made at a 1-year horizon and at a
3-year horizon by a simple univariate HP filter (obviously, this model only has a baseline version).

Although there is no overall best performing model, the extended HP filter generally performs
relatively well in terms of revision. It is the model the least revised both at the 1-year and 3-year

13As we use only the latest available vintage of the data, this exercise is more accurately called pseudo real-time. A
real-time exercise would only use data available at the moment of the estimation. So the part of the revisions coming
from the revisions to the data itself is disregarded. Yet Orphanides and Norden (2002) shows that the “the revision of
published data is not the primary source of revisions in measured output gaps; the bulk of the problem is due to the
pervasive unreliability of end-of-sample estimates of the trend in output.”
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horizon in half of the countries (FR, IT, JP and UK), independently of the presence or absence of
financial variables. The extended HP filter augmented with financial variables is particularly stable
compared to the other models with financial cycle indicators: it is consistently the least revised model
at the 1-year horizon, and it is also the least revised after 3 years for 6 out of 8 countries.

The semi structural models are generally less stable than the reduced form model. When financial
variables are added to the models, the semi-structural UCM usually outperforms the semi-structural
VAR in terms of stability, while the baseline results are more mixed. With financial variables, the
semi-structural VAR appears to be particularly unstable for JP, the UK, ES, and (at the 3-year horizon)
for IT. For the rest, the semi-structural VAR features revisions in the range of the other models.

Figure 3: Output gap revisions 1 and 3 years ahead
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Notes: This figure shows the standardised average errors (SAE) for each model and each country made at a 1-year horizon
(dots at the beginning of the arrows) and at a 3-year horizon (tip of the arrows) for the baseline model (“baseline”) and
the model augmented with financial variables (“w/ fin. variables”). The colours of the arrows correspond to different
models: the extended HP filter (blue, model A), the semi-structural UCM (green, model B) and the semi-structural VAR
(orange, model C). A 45-degree dashed line is added to each plot. If, for example, the dot (tip of the arrow) is above the
45-degree dashed line, it means that the model augmented with financial variables is less stable in real-time 1 year (3
years) ahead than the baseline model; if the arrow is inclined more than 45 degrees from the horizontal, it means that
the model augmented with financial variables is more revised between 1 and 3 years ahead than the baseline model. For
comparison, the grey arrows indicate the SAE made at a 1-year horizon and at a 3-year horizon by a simple (univariate)
HP filter (obviously, this model has only a baseline version).
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Apart from a few exceptions, financial information worsens the real-time stability of the models.
Figure 3 shows that for almost all models and countries, the revision is higher at both the 1-year and
the 3-year horizon with financial variables than in the baseline specification (the arrows are almost
always above the 45-degree lines).14

This seems to contradict some of the previous results, in particular the conclusion of Borio et al.
(2017), Grintzalis et al. (2017) and Melolinna and Tóth (2019). The reason for the discrepancy of
the results is twofold. First, in the first two papers the authors use the ex-post gaps for each model
for normalisation, i.e. they compute a revision relative to the model and set of variables. In contrast,
the revision measure presented in this paper is absolute, expressed as a percentage of the standard
deviation of the baseline extended HP filter. Given that the output gaps are generally more volatile
with financial variables than without, the relative revision would appear to be smaller with financial
variables than without even if the absolute revisions are the same. This normalisation choice matters
considerably: using the standard deviation of each model and set of variables, we also find on average
smaller relative revisions with financial variables than without.

Second, Borio et al. (2017) and Grintzalis et al. (2017) do not assess the impact on real-time
performance of the additional information from financial variables to business cycle variables, but
instead compare an HP filter with a model with credit and house prices only – without unemployment
or capacity utilisation to account for usual business cycles. Yet Borio et al. (2014a) also shows that
(i) the HP filter involves huge revisions, (ii) using unemployment alone entails the smallest revisions
in the output gap, and (iii) adding credit and house prices growth to unemployment generates larger
revisions. These conclusions are perfectly in line with our results: Figure 3 reveals that the baseline
extended HP filter is more stable than the traditional HP filter (grey arrow). The only exception is the
extended HP filter for IT, which generates relatively high revisions at the 3-year horizon.

Figure 4 assesses the performance of the various models before and during the Great Recession
for the four countries for which financial imbalances are identified ex-post (Figure 1 shows that these
countries are FR, ES, the US, and the UK). For each of these countries, we plot the real-time estimates
for the different models, with or without financial variables. Each line shows the output gap as
estimated using data up to date t ∈ [2007, 2009, 2011, 2013, 2015] and on the whole sample (red
line).

Revisions are significant for all models and countries around the crisis, at times when new in-
formation is not in line with previous developments and thus shines a new light on the present and
recent past. This is equally true for models on average less revised (extended HP) and more revised
(semi-structural VAR), and for models with or without financial variables.

14There are only two exceptions: for FR, adding financial variables to the semi-structural models seems to improve the
real-time stability of the models at the 3-year horizon; and for CA even though financial cycles do not seem to play a
major role, the stability of the semi-structural UCM is improved at the 3-year horizon. For the other countries, financial
information worsens the real-time stability of the models or only marginally improves it.
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Nevertheless, the fact that the models with financial variables do not carry small revisions during
the crisis does not mean that they do not carry any useful information. A robust real-time performance
is an advantage, but the ability to signal (possible) unsustainable economic developments in real-
time – despite the relatively large subsequent revisions – is an equally important aspect to take into
consideration. As the figures show, the inclusion of financial variables consistently leads to larger
output gaps as estimated before the crisis (2007, or 2006 for the US): although adding financial
variables does not lead to more precise output gap estimates before or during a crisis in terms of
future revisions, on average it does provide a clearer real-time signal for booms and busts. The only
exception is the UK, the country for which our estimation sample starting at 1985q1 is likely to be
insufficient for identifying financial cycles and capturing their impact on GDP when only the pre-
crisis period is taken into account. But even in this case, the models with financial variables adjust
the subsequent output gap estimates more aggressively in response to new data for the crisis period.

Finally, the figures below suggest that the semi-structural VAR model is, on average, more suc-
cessful in capturing the pre-crisis overheating: for the last year before the crisis, it either indicates the
largest output gap (baseline estimate for FR and US; and finance-neutral estimate for FR and ES) or
similar imbalances to the other models.

Figure 4: Real-time estimates
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Notes: Figures 4(a) to 4(d) show the real-time estimates of the extended HP filter (left), the semi-structural UCM (middle)
and the semi-structural VAR (right). The graphs in the top row correspond to the baseline model and those in the bottom
row to the models augmented with credit and house prices. Each line shows the output gap as estimated using data up to
date t ∈ [2007, 2009, 2011, 2013, 2015] and on the whole sample (red line). For the US, since the crisis started earlier
than in the other countries, the first estimate corresponds to 2006 instead of 2007 (purple line).

4.6 Receiver operating characteristic analysis

The accuracy of the estimated output gaps and the models’ early warning capabilities in real-time are
assessed using receiver operating characteristic (ROC) analysis. The performance of each model (ex-
tended HP, semi-structural UCM and semi-structural VAR) and model variant (baseline and extended
with financial variables) is assessed based on how accurately the estimated output gap can predict
recessions.

The core of the analysis is a probit equation that relates the probability of country i being in
recession (Rit = 1) to the estimated output gap h quarters earlier (ŷmi,t−h) obtained from the model
m. As in Section 4.5, the output gaps are normalised using the standard deviation of the baseline
extended HP filter. Recession is defined as two consecutive quarters of negative seasonally adjusted
GDP growth. We exclude “mild recessions” from the analysis, defined as a recession which lasts less
than a year and results in a drop in GDP of less than 1 per cent. 10 such “mild” recession periods
are identified. In total, we identify 33 recession periods which last between 2 and 11 quarters. The
highest number of recession periods is in DE, while FR and the UK each experienced only 2 recession
periods in our sample. The full list of recession periods are provided in Appendix D.

By definition, Rit follows an autoregressive process. Therefore, the probit model also includes
the lagged values of the state of the economy (

∑L
l=1 ρlRi,t−l). Due to the low number of recession
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periods in some of the countries, no reliable and robust estimate can be obtained separately for each
country. Hence, we estimate the following dynamic probit model for the panel of the eight countries:

Pr (Rit = 1|Ri,t−1, . . . , Ri,t−l, ŷi,t−h) = Φ

(
L∑
l=1

ρlRi,t−l + δŷmi,t−h

)
(14)

where Φ is is the cumulative distribution function of the standard normal distribution.15

Using the estimated probit equation, we first predict the probability of being in recession condi-
tional on Ri,t−l = 0, l ∈ {1, ..., L}. The predicted conditional probabilities are then used to estimate
the ROC curve. For a number of different candidate probability threshold values between 0 and 1, the
ROC curve plots the fraction of “true positive” events (recessions that are correctly identified by the
model for a given threshold, a.k.a. sensitivity) against the fraction of “false positive” events (predicted
recessions that did not occur, a.k.a. 1 – specificity). The Area Under the ROC Curve (AUC) is the
integral of the ROC curve, which provides a comparable aggregate metric that quantifies the overall
accuracy of the prediction by taking into account both true and false signals. See Pepe (2003) for a
general review of the ROC methodology.

The main difficulty of the analysis is that the performance of the estimated output gap as a leading
indicator for recession cannot be clearly separated from the forecasting performance of the probit
model. In particular, the optimal lag structure of eq. 14 may vary by country and by model. All
models and countries considered, the distance between the date of entry into recession and the closest
peak in the estimated output gap ranges between -1 and 29 quarters, with an average of 8.3 and a
standard deviation of 6 quarters (see Appendix E for the definition of our distance measure and the
histogram of the distances).

Instead of relying on a single probit specification, we therefore analyse a large number of altern-
ative probit models with different lag selection criterion. First, for each output gap estimate ŷmit , the
optimal lag h and the order of the autoregressive process L are selected based on the criterion that
maximises the AUC.16 Second, we re-estimate the probit equations and the corresponding AUCs us-
ing the same lag structure for all models. For example, if the optimal h in the previous exercise turn
out to be 5, 11 and 12 for the various models, we repeat the same exercise and compare the AUCs
obtained from the same probit specification for each ŷmit with h equal to 5, 11, and then 12. Third, we
estimate a distributed lag model by replacing δŷmi,t−h at the right-hand side of eq. 14 by

∑H
j=h δj ŷ

m
it−j .

The optimal minimum (h) and maximum (H) lags are the ones that maximise the resulting AUC.
Finally, instead of maximising the AUC, we used the Bayesian Information Criterion (BIC) or the
Akaike Information Criterion (AIC) to select the optimal h and L.

The first row (a) of Table 3 presents the average AUCs obtained from these probit model spe-
cifications. The corresponding standard errors are calculated as (CV C ′)1/2,where C is a 1 × k row

15We estimate eq. 14 as a simple pooled panel probit model. A dynamic random effects probit with unobserved
heterogeneity, estimated as proposed by Wooldridge (2005), yields very similar results.

16h is allowed to vary between 1 and 16 quarters, and L between 1 and 4 quarters. We used these boundary conditions
for all other selection criteria as well. The optimal h and L are always lower than the upper bounds.
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vector with elements 1/k, k is the number of estimated probit specifications for a given model m,
and V is the variance-covariance matrix of the estimated AUCs calculated as described in DeLong
et al. (1988). To test the differences between the average AUCs, we use a 1 × 2k contrast matrix
C = (1, ..., 1,−1, ...,−1). The first k elements with a value of 1 correspond to the vector of AUCs of
a given model m, while the remaining k elements with a value of -1 correspond to the AUCs of an-
other model to which the first one is confronted. The method for performing a test of significance for
a given contrast matrix is described in detail in DeLong et al. (1988). Intuitively, the contrast matrix
previously defined tests whether the sum of the AUCs obtained for the model m minus the sum of
the AUCs obtained for another model is significantly different from zero. In row (b) of Table 3, we
compare, for each model, the baseline specification with the model with financial variables. In rows
(c) and (d), the AUCs obtained for the extended HP, the semi-structural UCM and the semi-structural
VAR are compared, separately for the baseline model and the model with financial variables.

The second block of the table (rows e–h) presents the results for the real-time output gap estimates
(see Section 4.5). Using the probit model estimated on the full sample, we first predict the conditional
probability of being in recession with the output gap estimated on the sample up to 2000q4. For each
subsequent year t ∈ {2001, ..., 2016}, we predict the same probability using the output gap obtained
from the model estimated until t. We then compute the AUCs using the resulting real-time predictions.

Finally, the bottom panel (B) of Table 3 repeats the same exercise as before on the restricted
sample of four countries with visible impact of financial cycles before the Great Recession: FR, ES,
the UK and the US (see Section 4.5).

Overall, results reveal that, for each model, the average AUCs obtained from the models with
financial variables are significantly higher than the corresponding AUCs of the baseline models. The
only exception is the real-time forecast using the extended HP for the panel of eight countries (in
row e, and the corresponding test in row f): although the model with financial variables yields higher
AUC than the baseline model, the difference is not statistically significant. The difference between
the AUCs is systematically higher for the restricted sample. The largest difference is obtained for the
real-time forecast using the the semi-structural VAR on the restricted sample (see rows m and n).

We arrive to the same conclusion when each of the probit specification and estimation sample
are separately assessed. In the vast majority of the cases, adding financial variables improves the
forecasting performance of the models. Out of the 96 model comparisons (16 probit specifications
× 3 models, in-sample and real-time forecasting performance), the models with financial variables
yield higher AUCs in 93 cases, out of which 68 are significant at the 5% level and an additional 7 are
significant at the 10% level. There are only 3 cases in which the baseline AUCs are higher than those
with the financial variables, and the difference is significant in 1 case only. On the restricted sample,
the superiority of the model with financial variables is even more obvious: out of the 54 comparison
tests performed, the AUCs with financial variables are significantly higher at the 5% level than the
baseline model in 52 cases; it is higher at the 10% significance level in 1 case; and it is higher, but the
difference is not statistically significant in 1 case. Together with the tests performed on the average
AUCs presented in Table 3, these results provide robust evidence that financial variables enhance the
models’ forecasting performance.
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Table 3: Receiver operating characteristic (ROC) analysis

extended HP semi−struct. UCM semi−struct. VAR

baseline w/ fin. vars. baseline w/ fin. vars. baseline w/ fin. vars.

(A) Full sample

(a) AUC (in-sample) 0.63 0.65 0.58 0.69 0.69 0.73
(0.019) (0.020) (0.022) (0.024) (0.018) (0.018)

(b) diff. w.r.t. 0.02** 0.11*** 0.03**
baseline (p = 0.037) (p < 0.001) (p = 0.037)

(c) diff. w.r.t. -0.05*** 0.04** 0.07*** 0.08***
extended HP (p < 0.001) (p = 0.037) (p < 0.001) (p < 0.001)

(d) diff. w.r.t. semi− 0.11*** 0.04*
struct. UCM (p < 0.001) (p = 0.075)

(e) AUC (real-time) 0.58 0.60 0.61 0.69 0.60 0.67
(0.020) (0.023) (0.023) (0.025) (0.021) (0.022)

(f) diff. w.r.t. 0.02 0.08*** 0.07***
baseline (p = 0.253) (p < 0.001) (p = 0.004)

(g) diff. w.r.t. 0.03** 0.09*** 0.02 0.07***
extended HP (p = 0.049) (p < 0.001) (p = 0.379) (p = 0.001)

(h) diff. w.r.t. -0.01 -0.03
semi−struct. UCM (p = 0.442) (p = 0.145)

(B) Restricted sample (four countries)

(i) AUC (in-sample) 0.68 0.74 0.66 0.78 0.72 0.85
(0.031) (0.034) (0.042) (0.031) (0.030) (0.018)

(j) diff. w.r.t. 0.06*** 0.12*** 0.13***
baseline (p < 0.001) (p < 0.001) (p < 0.001)

(k) diff. w.r.t. -0.03 0.04** 0.04 0.11***
extended HP (p = 0.139) (p = 0.024) (p = 0.305) (p = 0.001)

(l) diff. w.r.t. semi− 0.06 0.07**
struct. UCM (p = 0.185) (p = 0.018)

(m) AUC (real-time) 0.64 0.68 0.70 0.83 0.65 0.83
(0.034) (0.037) (0.039) (0.023) (0.035) (0.018)

(n) diff. w.r.t. 0.05*** 0.13*** 0.18***
baseline (p < 0.001) (p < 0.001) (p < 0.001)

(o) diff. w.r.t. 0.06*** 0.15*** 0.02 0.15***
extended HP (p < 0.001) (p < 0.001) (p = 0.502) (p < 0.001)

(p) diff. w.r.t. -0.05* 0.00
semi−struct. UCM (p = 0.073) (p = 0.969)

Notes: Row (a) presents the average AUCs obtained from a set of probit model specifications. Row (b) compares, for each
model, the baseline specification with the model with financial variables. In rows (c) and (d), the AUCs obtained for the
various models are compared. The second block of the table (rows e–h) presents the results for the real-time output gap
estimates. The bottom panel (B) shows the same results for a restricted sample of four countries: FR, ES, the UK and the
US. See the text for more details. 28



In terms of model comparison, results are more mixed. When financial variables are added to the
models, both semi-structural models seem to significantly outperform the extended HP filter (see the
tests in rows c, g, k and o). Comparing the two semi-structural models with financial variables, the
VAR seems to have an edge over the UCM in terms of in-sample forecasting accuracy (see rows d
and l), but there is no significant difference in their forecasting performance in real-time (rows h and
p). No clear message emerges for the baseline specifications.

These results are consistent with the conclusions drawn from the comparison of the results of
each probit specification and estimation sample. In about 28 per cent of the cases (9 out of 32),
the differences between the AUCs for the three models with financial variables are not statistically
significant.17 The semi-structural UCM has either the highest or not significantly different from the
highest AUC in 21 out of the remaining 23 cases. The same number for the semi-structural UCM is 15,
while there is only one case in which the extended HP shares the first place with the semi-structural
VAR. To put it differently, when financial variables are included in the models, the semi-structural
VAR significantly falls behind the best performing model in 2 cases only. The semi-structural UCM
is the close second with 8 such cases, while the extended HP filter lags behind the best performing
model in 22 cases.

At last, we also repeat the same exercise using an alternative, more flexible dependent variable in
the probit equation 14. Instead of predicting the probability of being in recession exactly h periods
ahead,Rit is defined as being in recession during a one-year interval between t and t+3. The resulting
AUCs are systematically higher with this more flexible recession definition. Overall, all our previous
conclusions hold true even when the more flexible probit is considered.

5 Discussion and conclusion

This paper estimates the sustainable growth and the finance-neutral output gap for eight advanced
economies: CA, FR, DE, IT, JP, ES, the UK and the US. We test the implications of incorporating
financial cycle indicators into various signal extraction models. As a first step, we estimate three
“baseline” models: (A) a reduced form “extended HP filter”, advanced by Borio et al. (2017), in which
business and financial cycle indicators are directly incorporated into the state-space representation of
the HP filter as deterministic covariates; (B) a simple semi-structural UCM featuring a Phillips curve,
an Okun’s law and a stochastic process relating output gap to capacity utilisation; and (C) a new
approach, a multivariate semi-structural VAR with long-run restrictions à la Blanchard and Quah
(1989) in which only one of the several structural shocks (the supply shock) is recovered. Usual
business cycles are captured in these models by the unemployment rate, the capacity utilisation rate
and (in the semi-structural model) CPI inflation. As a second step, the implications of adding data on
credit and on house prices to capture financial cycles are tested.

The three models have different properties along several important dimensions. The comparison
of the two UCMs (models A and B) assesses the practical advantages and the potential pitfalls of

17This includes the cases in which no clear winner can be identified, e.g. when A>B, A=C and B=C).
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treating the cycle indicator variables as deterministic (as in model A) compared to modelling them as
stochastic processes (as in model B). On the one hand, the reduced form extended HP filter is partic-
ularly appealing for its simplicity and real-time stability. Indeed, there are only a limited number of
parameters to estimate, the identification of the model is quite straightforward and, as a consequence,
the model exhibits relatively stable output gap estimates in terms of real-time revisions. With finan-
cial variables, this model is particularly stable compared to the other models: it is the least revised
model at the 1-year horizon for all countries considered, and it is also the least revised after 3 years
for 6 out of 8 countries.

On the other hand, this approach requires accurate and readily available cycle indicators to achieve
unbiased output gap estimates. Since “pure” business or financial cycle indicators unaffected by
structural changes are in practice almost never available, some form of pre-transformation should
be applied to the auxiliary variables before feeding them into the model. A variety of alternative
stationary-inducing transformations can be employed. For example, if the time series is supposed
to be trend stationary, de-trending the data by regressing out a – linear or higher order, depending
on properties of the time series – time trend is a valid approach. A different procedure involves
detrending the data by filtering out very low frequency signals, but still allowing the trend to slowly
evolve following a stochastic process. In principle, any pre-transformation is valid if it leads to
stationary time series. The difficulty is to select the best approach that results in the most accurate
cycle indicator.18

Results suggest that the choice of the pre-treatment method is very important. If the pre-transformed
indicator does not accurately capture the cyclical pattern of the variable at the relevant frequency
range, the variable plugged into the model can either receive a positive weight and transmit the bias
to the estimated output gap, or with a (close to) zero coefficient it cannot impact the estimated out-
put gap. For example, our results indicate that a relatively standard pre-treatment of the business
and financial cycle indicators using a HP filter with smoothing parameter (λ) of 400,000 leads to a
likely under-estimation of the importance of credit cycles in the UK. In fact, this approach can be
viewed as a two step procedure, in which possible structural shocks to the indicator variables are first
removed before their impact on the cyclical pattern of GDP is assessed. By re-estimating the model
for all countries using various alternative trend removal techniques, we show that close to half of the
differences in the output gap estimates compared to the semi-structural UCM can be explained by
the differences between the pre-treated cycle indicators and the cyclical parts of the same indicator
estimated using the semi-structural UCM.

Since the semi-structural UCM allows for stochastic shocks to the trend of business cycle indic-
ators and financial variables, the model can be viewed as the simultaneous estimation of these two
steps. However, this flexibility is not without a price. Although the method does not require pre-
transforming the business and financial cycle indicators, it does require introducing potentially strong
prior judgements by choosing the structure of the model and by defining Bayesian prior distributions

18In a broader sense, the seasonal adjustment applied to original series is also a form of pre-transformation. While the
seasonal adjustment filters out signals at the yearly frequency, de-trending the series (either by regressing out a determin-
istic trend or by applying a filter) removes very low frequency signals.
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on the parameters. To illustrate the benefits and potential shortcomings of this approach, this paper
presents a simple yet widely used UCM with very light structure and standard Bayesian prior beliefs
about the parameters. While the baseline output gap estimates are generally close to those obtained
using the extended HP filter, there are several examples showing that the two UCMs use the additional
information provided by the financial variables differently. For example, the cases of JP and – to a
lesser extent – the US illustrate how different approaches trigger different results and give a warning
that relying on a more flexible approach may also lead to misleading conclusions. More in line with
the Japanese “Lost Decade” paradigm, the extended HP filter reveals a significantly higher and more
prolonged impact of the Japanese financial bubble of the 1990s than the semi-structural UCM. Sim-
ilarly, the reduced form model seems to better able to signal the “overheating” of the US economy
before the global financial crisis than the semi-structural UCM.

The proposed semi-structural VAR addresses the difficulty of estimating the unobserved output
gap from a different angle. Similarly to the bivariate Blanchard and Quah (1989) model, the beauty
of this approach is that the identifying assumption perfectly matches with the definition of potential
growth: only the (supply) shocks to the trend have permanent effects on GDP. In contrast to the ori-
ginal model, we exploit a wider set of information by using several (both regular business and finan-
cial) cycle indicators without imposing further restrictions. Since the model uses different identifying
assumptions to recover the output gap, it can provide very informative insights in addition to the other
UCM-based models – especially so since the two UCMs share the same basic structure. In the same
way, it is also an ideal candidate for external validation of the UCMs’ results. For example, the model
reinforces the findings from the extended HP filter for JP and the US, while it rather gives credit to
the semi-structural UCM in the case of the UK. As with the extended HP filter, one drawback of the
semi-structural VAR is that the model is sensitive to the pre-treatment method applied to the auxiliary
variables. However, compared to the reduced form UCM approach, the change in the resulting output
gap estimates is much less predictable.

Both in terms of model used or the sets of variables incorporated in the models, our results high-
light a possible trade-off between accurately disentangling short-term and long-term (sustainable)
economic dynamics and the real-time stability of the output gap estimates. The deterioration of
the real-time stability of the model with financial variables (compared to the model which already
includes relevant business cycle indicators, such as unemployment and capacity utilisation) is a com-
mon feature of all approaches. The increased (absolute) revisions is typical both in the short-run and
the longer-run, sometimes even for countries without clear financial cycles identified ex-post (most
importantly for DE).

Although the stability of a model is an important aspect – since a model substantially revised
when new data becomes available is of limited use for policy analysis –, relatively large revisions
do not necessarily preclude the usefulness of the model.19 On the contrary: the models with finan-
cial variables included generally prove to be more successful in identifying unsustainable economic
developments both ex-post and in real-time. By assessing the three models’ forecasting perform-

19To give an extreme example, an unrealistic rigid model such as ŷt = πt − 2 is admittedly never revised, yet its poor
accuracy makes it irrelevant.
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ance, the paper shows that including financial variables significantly improves the models’ accuracy
in predicting recessions. This is also true when real-time output gap estimates are used, in particular
for the countries in which large pre-crisis imbalances are identified ex-post. For these countries, the
models with financial variables consistently indicate larger pre-crisis (positive) output gap already
before the outbreak of the crisis. To put it into policy perspective, credit and house prices in ES, for
example, would have signalled a much larger boom before the 2008-09 crisis and could have helped
the authorities to mitigate its impact.

In a similar vein, the trade-off between accuracy and real-time stability is also apparent when the
various models are compared. While the semi structural models are generally less stable than the
reduced form model, especially when financial variables are added to the models, they also seem to
better capture the increase in macroeconomic and financial imbalances and to more accurately predict
future recessions. Our proposed semi-structural VAR augmented with financial variables performs
particularly well in terms of predicting power: it features the best in-sample forecasting performance
of recession probabilities among all three models, and it has similar real-time prediction capabilities
to the semi-structural UCM and clearly superior to the extended HP filter.

This brings us to the following more general conclusions. First, financial information should
be taken into account when assessing the cyclical position of the economy. For most countries,
there is already enough data and variability to estimate the interaction between financial cycles and
GDP. Obviously, there is no guarantee that the models augmented with financial variables would
accurately capture the build-up of imbalances coming from other sources. Moreover, even if the
source is identified, it may not be possible to empirically assess its impact on GDP if the sample does
not cover a sufficient number of cycles for this source. Nevertheless, the real-time results for the
UK suggest that it is still beneficial to incorporate relevant information into the model after the burst
of the bubble: the model may be quicker to adjust the subsequent output gap estimates as new data
points become available.

Second, given the large uncertainty surrounding output gap estimates, as also illustrated by our
results, relying on a single model (or a few closely related models that can be seen as model variants)
is hardly enough to draw robust conclusions. In this regard, the proposed semi-structural VAR is an
ideal complement of the more widely used UCM approaches. This paper does not propose a statistical
method for weighting the different results. Instead, in order to avoid policy mistakes caused by, for
example, false and short-lived signals of the more flexible approaches or, inversely, by failing to
consider relevant information hidden (smoothed out) by the more stable models, it is sensible to
monitor the results obtained from several methods.

Obviously, this paper does not cover all possible methods, not even within the UCM-based statist-
ical filtering family. The comparison of the two UCMs presented in the paper illustrate one particu-
larly relevant aspect of the methods, namely the implications of treating the (financial) cycle indicator
variables as deterministic compared to modelling them as stochastic processes. Moreover, results
from an alternative reduced form approach (model A′, the “dynamic multivariate filter”, presented
in Appendix B) suggest that the exact formulation of the reduced form model is of limited practical
relevance. Yet, the possibilities of adjusting the semi-structural UCM by imposing more structure
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on it are endless. Furthermore, by imposing the full general equilibrium structure of the model, we
arrive at a second class of methods: the structural approaches (see e.g. the classification of Mishkin
(2007)). In this approach, potential output is the “frictionless” part of GDP. Finally, according to the
classification of Mishkin (2007), a separate class of methods is dedicated to the “production function”
approach. However, from the methodological point of view this approach is not a trend-cycle decom-
position technique per se: the input factors need to be decomposed – individually or simultaneously –
before recovering the potential growth and the output gap. These trend-cycle decompositions are usu-
ally carried out using simple univariate or small multivariate UCMs, but a semi-structural model with
an additional restriction given by the production function relating the different (trend) input factors
to (trend) GDP can, in principle, also be considered. Whether or not these additional restrictions are
helpful to recover the finance-neutral output gap is ultimately an empirical question. We leave this
for future research.
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Appendix

A Data sources

Table 4: Data sources

Variable Main sources Other sources

Total Gross Domestic Product in
Constant Prices

OECD, "Main Economic Indicators -
complete database", Main Economic
Indicators (database),
http://dx.doi.org/10.1787/data-00052-en

For Canada, Germany, Spain, Italy and
Japan: GDP is computed with GDP growth
rate from the OECD (Sources : Leading
Indicators OECD: Reference Series: Gross
Domestic Product).
For the United States and the United
Kingdom, GDP is in chained 2000 National
Currency Units.

Consumer Price Index of All
Items ; Index 2010

OECD, "Main Economic Indicators -
complete database", Main Economic
Indicators (database),
http://dx.doi.org/10.1787/data-00052-en

Rate of Capacity utilisation OECD, "Main Economic Indicators -
complete database", Main Economic
Indicators
(database),http://dx.doi.org/10.1787/data-
00052-en

For Canada, Industrial Capacity utilisation
rates are from Statistics Canada.
For Japan, data are “Operating Ratio index”
from “Indices of Industrial Production,
Ministry of Economy, Trade and Industry,
Statistics”.

Unemployment Rate ; Aged
15-74: All Persons

OECD Economic Outlook database For Germany, data are from OECD, "Main
Economic Indicators - complete database",
Main Economic Indicators
(database),http://dx.doi.org/10.1787/data-
00052-en

Total credit to private
non-financial sector, all sectors,
adjusted for breaks

BIS total credit statistics

Real Residential Property Prices;
Long Series; Index 1995

National sources, BIS Residential Property
Price database

B Dynamic multivariate filter

The model is as follows:
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ŷt = α1ŷt−1 + γ′zt + εŷt

y?t = y?t−1 + gyt + εy
?

t

gyt = α2ḡ
y + (1− α2) g

y
t−1 + εgyt

(15)

where the notations are similar as in model A (section 2.1). ḡy is calibrated as the sample average
growth rate. εŷt , ε

y?

t and εgyt are i.i.d. error terms. To achieve stationarity, we apply the same pre-
transformation technique on the additional variables zt as in the extended HP filter.

This model is arguably more flexible than the extended HP filter, but the increased number of para-
meters to be estimated makes the identification less straightforward. In particular, since the scaling
factor is now estimated instead of calibrated, the “pile-up problem” becomes a major issue. To over-
come the difficulties in estimating the model, we use Bayesian techniques (see DeJong and Whiteman
(1993); Kim and Kim (2013)). The priors and the posterior estimates are presented in Table 5. Results
are shown in Figure 5.

Figure 5: Output gap estimates: dynamic multivariate filter
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ḡ
y

u
c

Pr
io

rd
en

si
ty

ty
pe

be
ta

ga
m

m
a

be
ta

ga
m

m
a

ga
m

m
a

Pr
io

r
(a

)
0.

6
(0

.2
)

0.
3

(0
.1

)
∆
y t

*
(0

.0
01

)
0.

5
(0

.3
)

0.
5

(0
.3

)
(b

)
0.

6
(0

.2
)

0.
3

(0
.1

)
∆
y t

*
(0

.0
01

)
0.

5
(0

.3
)

0.
5

(0
.3

)
Po

st
er

io
r

C
A

(a
)

0.
33

73
(0

.0
38

3)
0.

05
60

(0
.0

00
8)

0.
00

67
(0

.0
66

4)
0.

53
34

(0
.1

14
8)

0.
22

36
(0

.0
26

3)
(b

)
0.

34
18

(0
.0

38
0)

0.
05

92
(0

.0
00

8)
0.

00
67

(0
.0

67
7)

0.
47

57
(0

.1
26

7)
0.

22
28

(0
.0

26
4)

FR
(a

)
0.

67
48

(0
.0

61
3)

0.
12

49
(0

.0
00

7)
0.

00
48

(0
.1

28
6)

0.
16

91
(0

.0
98

8)
0.

08
07

(0
.0

31
6)

(b
)

0.
61

07
(0

.0
64

9)
0.

12
47

(0
.0

00
6)

0.
00

48
(0

.1
08

3)
0.

18
38

(0
.0

92
2)

0.
07

62
(0

.0
27

6)

D
E

(a
)

0.
27

93
(0

.0
13

9)
0.

03
53

(0
.0

00
9)

0.
00

51
(0

.0
83

7)
0.

37
63

(0
.1

62
8)

0.
28

50
(0

.0
38

4)
(b

)
0.

26
89

(0
.0

43
7)

0.
07

02
(0

.0
00

8)
0.

00
50

(0
.0

73
2)

0.
30

38
(0

.1
52

4)
0.

28
86

(0
.0

34
9)

IT
(a

)
0.

49
29

(0
.0

52
7)

0.
03

73
(0

.0
00

9)
0.

00
45

(0
.0

78
4)

0.
36

67
(0

.1
18

8)
0.

27
28

(0
.0

37
1)

(b
)

0.
48

58
(0

.0
12

0)
0.

01
25

(0
.0

00
9)

0.
00

44
(0

.0
70

3)
0.

33
52

(0
.1

18
3)

0.
28

37
(0

.0
36

2)

JP
(a

)
0.

44
06

(0
.0

14
1)

0.
01

77
(0

.0
00

9)
0.

00
52

(0
.0

83
5)

0.
36

67
(0

.1
98

9)
0.

12
65

(0
.0

18
2)

(b
)

0.
37

81
(0

.0
07

6)
0.

00
96

(0
.0

00
9)

0.
00

52
(0

.0
76

7)
0.

38
42

(0
.2

00
5)

0.
13

08
(0

.0
16

9)

E
S

(a
)

0.
49

47
(0

.0
28

0)
0.

04
31

(0
.0

00
8)

0.
00

52
(0

.1
09

9)
0.

36
67

(0
.0

80
9)

0.
06

47
(0

.0
26

0)
(b

)
0.

41
68

(0
.0

32
5)

0.
04

87
(0

.0
00

8)
0.

00
53

(0
.0

90
1)

0.
27

70
(0

.0
76

1)
0.

08
10

(0
.0

27
3)

U
K

(a
)

0.
66

06
(0

.0
61

5)
0.

12
34

(0
.0

00
8)

0.
00

56
(0

.1
14

1)
0.

27
58

(0
.1

47
1)

0.
08

46
(0

.0
30

9)
(b

)
0.

62
45

(0
.0

51
7)

0.
08

92
(0

.0
00

7)
0.

00
54

(0
.0

96
7)

0.
17

12
(0

.1
02

5)
0.

06
41

(0
.0

27
3)

U
S

(a
)

0.
25

52
(0

.0
83

3)
0.

20
59

(0
.0

00
6)

0.
00

68
(0

.0
87

3)
1.

38
52

(0
.2

43
6)

0.
25

86
(0

.1
55

7)
(b

)
0.

23
93

(0
.0

79
3)

0.
18

82
(0

.0
00

7)
0.

00
67

(0
.0

80
2)

1.
28

34
(0

.2
44

5)
0.

28
17

(0
.1

55
8)

N
ot

es
:

Th
is

ta
bl

e
sh

ow
s

th
e

es
tim

at
ed

pa
ra

m
et

er
s

fo
r

th
e

dy
na

m
ic

m
ul

tiv
ar

ia
te

fil
te

r
(m

od
el

A
′ )

an
d

th
ei

r
st

an
da

rd
de

vi
at

io
n

(i
n

pa
re

nt
he

se
s)

.R
ow

s
(a

)s
ho

w
th

e
es

tim
at

io
ns

of
th

e
ba

se
lin

e
m

od
el

,w
hi

le
ro

w
s

(b
)p

re
se

nt
th

e
es

tim
at

io
ns

of
th

e
m

od
el

au
gm

en
te

d
w

ith
cr

ed
it

an
d

ho
us

e
pr

ic
es

.*
∆
y t

is
th

e
co

un
tr

y-
le

ve
la

ve
ra

ge
G

D
P

gr
ow

th
ra

te
.

41



Ta
bl

e
6:

Pa
ra

m
et

er
es

tim
at

es
:d

yn
am

ic
m

ul
tiv

ar
ia

te
fil

te
r(

pa
rt

2)

m
od

el
cr

h
p

εy
?

t
εŷ t
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C Parameter estimates

For reasons of brevity reasons, only the estimated parameters of the baseline (model a) and the most
complete model with both credit and house prices included (model b) are shown. The other estimation
results are available from the authors upon request.

Table 7: Parameter estimates: extended Hodrick-Prescott filter

model u c cr hp

CA (a) -1.01 (0.10) 0.24 (0.02)
(b) -0.97 (0.11) 0.25 (0.02) 0.04 (0.03) -0.01 0.02)

FR (a) -0.63 (0.14) 0.26 (0.03)
(b) -0.48 (0.16) 0.21 (0.03) -0.01 (0.04) 0.08 (0.02)

DE (a) -1.17 (0.20) 0.32 (0.03)
(b) -0.51 (0.21) 0.38 (0.03) 0.24 (0.07) 0.06 (0.05)

IT (a) -0.89 (0.16) 0.45 (0.03)
(b) -0.66 (0.18) 0.47 (0.03) 0.01 (0.03) 0.05 (0.02)

JP (a) -1.35 (0.41) 0.16 (0.02)
(b) -0.99 (0.43) 0.15 (0.02) 0.03 (0.08) 0.22 (0.06)

ES (a) -0.60 (0.09) 0.06 (0.03)
(b) -0.53 (0.10) 0.06 (0.03) -0.05 (0.04) 0.05 (0.02)

UK (a) -1.27 (0.18) 0.15 (0.04)
(b) -1.08 (0.21) 0.08 (0.04) -0.04 (0.04) 0.08 (0.02)

US (a) -0.73 (0.15) 0.31 (0.04)
(b) -0.37 (0.17) 0.35 (0.04) 0.12 (0.04) 0.04 (0.02)

Notes: This table shows the estimated parameters for the extended HP model and their standard
deviation (in parentheses). Rows (a) show the estimations of the baseline model, while rows (b)
present the estimations of the model augmented with credit and house prices.

43



Ta
bl

e
8:

Pa
ra

m
et

er
es

tim
at

es
:s

em
i-

st
ru

ct
ur

al
m

od
el

(p
ar

t1
)

m
od

el
α
1

α
2

ḡ
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ḡ
h
p

Pr
io

rd
en

si
ty

ty
pe

be
ta

no
rm

al
be

ta
no

rm
al

be
ta

no
rm

al
Pr

io
r

(b
)

0.
1

(0
.0

5)
∆
cr
t*

(0
.0

01
)

0.
6

(0
.2

)
0.

3
(0

.2
)

0.
1

(0
.0

5)
∆
h
p t

**
(0

.0
01

)
Po

st
er

io
r

C
A

(b
)

0.
13

09
(0

.0
33

1)
0.

01
16

(0
.0

43
5)

0.
93

24
(0

.0
01

7)
0.

28
05

(0
.0

01
3)

0.
11

71
(0

.0
01

4)
0.

00
67

(0
.0

42
1)

FR
(b

)
0.

13
07

(0
.0

22
3)

0.
00

84
(0

.0
51

0)
0.

95
32

(0
.0

01
3)

0.
37

02
(0

.0
00

7)
0.

10
08

(0
.0

00
9)

0.
00

48
(0

.0
44

3)

D
E

(b
)

0.
07

78
(0

.0
20

4)
0.

00
64

(0
.0

45
6)

0.
96

24
(0

.0
01

1)
0.

16
31

(0
.0

00
7)

0.
12

35
(0

.0
00

5)
-0

.0
00

1
(0

.0
56

6)

IT
(b

)
0.

08
21

(0
.0

18
0)

0.
00

80
(0

.0
31

5)
0.

96
79

(0
.0

01
3)

0.
47

05
(0

.0
00

9)
0.

11
93

(0
.0

01
1)

0.
00

37
(0

.0
43

1)

JP
(b

)
0.

06
31

(0
.0

32
7)

0.
00

46
(0

.0
30

5)
0.

95
30

(0
.0

01
3)

0.
15

36
(0

.0
00

8)
0.

08
01

(0
.0

00
8)

-0
.0

00
2

(0
.0

63
0)

E
S

(b
)

0.
08

18
(0

.0
30

5)
0.

00
87

(0
.0

46
1)

0.
93

20
(0

.0
01

8)
0.

42
58

(0
.0

01
1)

0.
10

04
(0

.0
01

7)
0.

00
52

(0
.0

27
4)

U
K

(b
)

0.
11

31
(0

.0
34

3)
0.

01
19

(0
.0

57
6)

0.
90

89
(0

.0
02

3)
0.

49
75

(0
.0

01
5)

0.
10

99
(0

.0
01

6)
0.

00
93

(0
.0

40
6)

U
S

(b
)

0.
09

93
(0

.0
27

8)
0.

00
84

(0
.0

45
0)

0.
94

89
(0

.0
01

2)
0.

18
69

(0
.0

00
8)

0.
09

11
(0

.0
00

9)
0.

00
40

(0
.0

42
2)

N
ot

es
:

se
e

no
te

s
fr

om
Ta

bl
e

8.
*

∆
cr

t
is

th
e

co
un

tr
y-

le
ve

la
ve

ra
ge

cr
ed

it
gr

ow
th

ra
te

.*
*

∆
h
p
t

is
th

e
co

un
tr

y-
le

ve
la

ve
ra

ge
ho

us
e

pr
ic

es
gr

ow
th

ra
te

.

46



Ta
bl

e
11

:P
ar

am
et

er
es

tim
at

es
:s

em
i-

st
ru

ct
ur

al
m

od
el

(p
ar

t4
)

m
od

el
εc
∗ t

εĉ t
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D List of recessions

Recession is defined as two consecutive quarters of negative seasonally adjusted GDP growth. “Mild
recessions” are those which last less than a year and results in a drop in GDP of less than 1 per cent.
The list of recessions in our sample is (mild recessions are in parentheses):

• CA: (1980q2–1980q3), 1981q3–1982q4, 1990q2–1991q1, 2008q4–2009q2, (2015q1–2015q2)

• FR: 1992q2–1993q1, 2008q2–2009q2

• DE: 1974q4–1975q2, 1980q2–1980q4, 1982q2–1982q3, (1991q2–1992q3), 1992q2–1993q1,
1995q4–1996q1, 2002q4–2003q1, 2008q2–2009q1, (2012q4–2013q1)

• IT: 1974q4–1975q2, 1977q2–1977q3, 1982q2–1982q4, 1992q2–1993q3, (2001q2–2003q2),
(2007q3–2007q4), 2008q2–2009q2, 2011q3–2013q1

• JP: 1993q2–1993q3, 1998q1–1998q2, 2001q2–2001q4, (2007q2–2007q3), 2008q2–2009q1,
2010q4–2011q2, (2012q2–2012q3), 2014q2–2014q3

• ES: (1978q3–1979q1), (1981q1–1981q2), 1992q4–1993q2, 2008q3–2009q4, 2011q1–2013q3

• UK: 1990q3–1991q3, 2008q2–2009q2

• US: 1974q3–1975q1, 1980q2–1980q3, 1981q4–1982q1, 2008q3–2009q2

The list of recessions is consistent with general knowledge about economic and financial turmoil in
these countries in our sample. For the US, the main recessions identified by the NBER20 are listed:
the oil crisis of 1974; a relatively short recession in 1980; the recession caused by the sharp increase
in oil prices following the Iranian revolution and the tight monetary policy in the US in 1981; and the
Great Financial Crisis of 2008-2009. The NBER’s recession following the collapse of the speculative
dot-com bubble in 2001 is excluded from our analysis because it did not last 2 consecutive quarters.
As for the Euro Area countries, the financial recessions identified by Lang et al. (2019) are included
in our list. Other recessions which do not result from systemic financial crises are: the recessions in
the 1980s and the 1990s in DE; the recessions in the 1970s and the 1980s in IT; and the recession in
the 1990s in ES. All recessions listed in Lang et al. (2019) for CA, JP and the UK are also included
in our list.

E Distance between the time of entry into recession and the closest
peak

A peak in the output gap is identified if ŷit > ŷit+l,∀l ∈ {−12, ...,−1, 1, ..., 12}. The histogram of
the distances between the time of entry into recession and the closest peak is plotted in Figure 6. We

20See https://www.nber.org/cycles/.
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disregard the observations in which the entry into recession precedes the closest peak by more than
four quarters (15 cases out of the total of 204 distance measures).

Figure 6: Distance between the time of entry into recession and the closest peak (all countries and
models)
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