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ABSTRACT 

This paper presents DSGE Nash, a toolkit to solve for pure strategy Nash equilibria of global 
games in general equilibrium macroeconomic models. Although primarily designed to solve 
for Nash equilibria in DSGE models, the toolkit encompasses a broad range of options 
including solutions up to the third order, multiple players/strategies, the use of user-defined 
objective functions and the possibility of matching empirical moments and IRFs. When only 
one player is selected, the problem is re-framed as a standard optimal policy problem. We 
apply the algorithm to an open-economy model where a commodity importing country and 
a monopolistic commodity producer compete on the commodities market with barriers to 
entry. If the commodity price becomes relevant in production, the central bank in the 
commodity importing economy deviates from the first best policy to act strategically. In 
particular, the monetary authority tolerates relatively higher commodity price volatility to 
ease barriers to entry in commodity production and to limit the market power of the 
dominant exporter.  
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NON-TECHNICAL SUMMARY 

When individual agents choose strategically, they try to anticipate the actions of other players 
to maximise expected benefits. This behaviour might lead to outcomes that are inferior to 
what would be achieved via coordination, i.e. when agents maximise the global welfare of 
the economy. Studying strategic interactions allows to quantify these losses, detect the 
reasons why individual incentives might be inefficient and design policies that try to correct 
them. These mechanisms are relevant in macro models where some agents (e.g. countries) 
need to decide on the best policy to implement. However, modelling global games is 
significantly more complex in the context of macro and general equilibrium models. We 
present a new toolbox, DSGE Nash, that computes the solution of global games for a wide 
set of macroeconomic models. The toolkit envisages four main configurations that cover a 
wide range of problems. First, it can solve a Nash game between agents in general equilibrium 
models, with the model's remaining equations taken as constraints. Second, it can target a 
broad set of objective variables and it can be applied to different frameworks, including semi-
structural and agent-based models. Third, when only one player is selected, DSGE Nash re-
casts the problem into a standard optimal policy problem and solves it. Fourth, it can estimate 
models by moment or impulse response matching. All these functionalities are provided in 
an user-friendly environment that allows for the customization of both the model and the 
solution algorithm.  

As an application example, we use DSGE Nash to study an open-economy model where a 
commodity importing country and a monopolistic commodity producer compete on a 
market characterized by barriers to entry. Rising commodity prices have been recently a main 
source of supply shocks, exacerbated by the monopolistic nature of commodity production. 
Against this background, the question of how policy makers should respond to commodity 
price swings has become prominent. We find that the degree of strategic competition 
between the producer and the importing country depends on the importance of the 
commodity in consumption and production. If the commodity share is low, both players 
have a dominant strategy requiring: i) strong core inflation targeting and no reaction to the 
commodity price by the commodity importer; ii) a somewhat lower mark-up setting for the 
monopolist. When the commodity is relevant for production, the central bank cannot follow 
the first-best policy because that would allow the exporter to extract higher rents, thus 
reducing domestic welfare in the importing economy. The central bank then knowingly 
chooses an alternative rule that tolerates higher volatility in commodity prices. Barriers to 
entry are hence lowered and the exporter faces more competition. To avoid the risk of new 
competitors entering the market, the exporter reduces its mark-up, which benefits the 
importing economy and ultimately increases welfare, despite a less efficient monetary policy 
rule. 
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Figure:  Impulse responses to a positive TFP shock, commodity dependent economy 

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed by solving the 
model at second order with pruning, a computational technique used to derive impulse responses for models 
solved at higher orders. Higher order terms in the dynamic system’s solution might lead to explosive 
behaviour; pruning methods allow to eliminate those explosive paths and to derive impulse response 
functions (see for example Kim et al. (2008)). 

DSGE Nash : résolution des jeux de Nash 
dans les modèles macroéconomiques 

Avec une application à la politique monétaire optimale en cas 
de fixation monopolistique des prix des matières premières 

RÉSUMÉ 
Cet article présente « DSGE Nash », une boîte à outils permettant de résoudre des équilibres de Nash 
en stratégie pure pour des jeux globaux dans des modèles macroéconomiques en équilibre général. Bien 
qu'elle soit principalement conçue pour résoudre les équilibres de Nash dans les modèles DSGE, la 
boîte à outils englobe un large éventail d'options, y compris des solutions jusqu'au troisième ordre, des 
joueurs/stratégies multiples, l'utilisation de fonctions objectives définies par l'utilisateur et la possibilité 
de faire correspondre les moments empiriques et les IRF. Lorsqu'un seul joueur est sélectionné, le 
problème est reformulé comme un problème de politique optimale standard. Nous appliquons 
l'algorithme à un modèle d'économie ouverte dans lequel un pays importateur et un producteur 
monopolistique de matières premières sont en concurrence sur le marché des matières premières avec 
des barrières à l'entrée. Si le prix des matières premières devient pertinent dans la production, la banque 
centrale de l'économie importatrice s'écarte de la solution de premier rang en termes de politique 
économique pour agir stratégiquement. En particulier, l'autorité monétaire tolère une volatilité 
relativement plus élevée des prix des matières premières afin d'assouplir les barrières à l'entrée dans la 
production et de limiter le pouvoir de marché de l'exportateur dominant. 
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1 Introduction

“The complexity of the mathematical work needed for a complete investigation in-

creases rather rapidly, however, with increasing complexity of the game; so that

analysis of a game much more complex than the example given here might only be

feasible using approximate computational methods.” Nash (1951)

An important question in structural modelling is the determination of the “optimal pol-

icy” that is how agents or policy makers should respond to fluctuations in key macroeconomic

aggregates in order to maximize their own objective function. This question has been widely

discussed in the literature on monetary (Woodford (2003)) and fiscal (Chari et al. (1994)) pol-

icy, where the main concern is to determine the optimal response of either the central bank or

the government to inflation, output and other observable variables so to maximize households’

welfare. The solution to these problems needs to account for general equilibrium effects: the

planner’s decisions change incentives for other agents, thus altering equilibrium allocations and,

in turn, feeding back into the planner’s problem. Those second-round effects are generally large

and enter in the optimizing agent’s problem when setting the optimal policy.

The macro literature has proposed two ways to address this issue: i) “analitically”, by optimiz-

ing the planner’s objective function under the constraints given by the other equations in the

model; ii) “numerically”, by drawing values for the policy parameters and selecting those that

give the highest value of the objective function. Both these methods generally target equilibrium

allocations so to include the effect of the endogenous reaction of private agents. Moreover, in

most applications, the objective variable (typically households’ welfare if the optimizing agent is

a public authority), needs to account for changes in both the level and volatility induced by the

optimal policy (in the case of welfare, for example to consumption and labor) with the relative

importance of the two depending on the specific policy or target variable chosen. For example,

fiscal policies typically have a relevant first-order, i.e. level, impact while monetary policy affects

welfare via a smoothing of the business cycle volatility.1 These practical constrains can make

simple solution methods not feasible. For instance, linear first-order solutions of macro models

overlook the impact of volatility and, hence, cannot produce accurate metrics for policy analy-

sis. In this regard, the existing literature provides two solutions. On the one hand, Benigno and

Woodford (2012) and Benigno and Woodford (2004) show how to construct a linear-quadratic

(LQ) approximation of the policy function. Notably, their methodology allows to set up second-

1In most macro models, the equilibrium level of the policy rate depends on households’ inter-temporal prefer-
ences. Different monetary policy rules, instead, affect the way the central bank reacts to shocks, i.e. how much
and how persistently the policy rate fluctuates around its long-run level.



order accurate welfare values based on their first-order approximations. While this approach is

elegant and straightforward to implement, it is often very computationally demanding in larger

models. The modeller needs indeed to compute a representation of the welfare function that

includes the level and the interactions across all the endogenous variables. On the other hand,

the model can be directly solved at the higher-orders and the second-order accurate mean of the

objective variable can be computed via its state-space representation (Kim et al. (2008), Born

and Pfeifer (2020)). This methodology, which accounts for the expected volatility of shocks in

the stochastic steady state, has the advantage to be simple to implement once the solution of the

model is automatized. Nonetheless, computing the state-space representation of large models

at higher order can also be computationally demanding.

The quest for optimal policy is even more complicated when more than on player is involved.

This is a typical problem in international macro models where several agents (typically central

banks or governments) have to contemporaneously choose the optimal values of their policy

functions. In these settings “...it is assumed that each participant acts independently, without

collaboration or communication with any of the others” (Nash (1951)). In other terms, agents

need to optimize their own policy functions by trying to anticipate what other players would

do. They engage in a global game in pure strategies, where each player might decide to either

avoid specific strategies in anticipation of the opponents’ reaction or try to shift the costs of

certain policies to her opponents. The final outcome, namely the Nash equilibrium of the game,

is generally significantly different from the equilibrium under perfect cooperation. Clarida et al.

(2002) and Banerjee et al. (2016) tackle this issue by explicitly solving the optimal control prob-

lem for each agent, so that she chooses the welfare-maximizing parameter of the policy function

while keeping all other equations in the model as constraints to the choice problem2. The re-

sulting first order conditions are then added to the model, including the solution for all the

Lagrangian multipliers associated to the constraints, i.e. one for each player and each equation

of the model. Under this approach, numerical derivatives are computed for each agent’s policy

variable problem and then added to the set of equilibrium conditions. The whole process can

become fairly complex even in medium-sized models and it additionally requires that deriva-

tives are continuous. Non-linearities in the model or in the policy function(s), due for example

to occasionally biding constraints, cannot be accounted for by construction. Interestingly this

suggests that a game much more complex [...] might only be feasible using approximate compu-

tational methods, as anticipated by Nash (1951).

Our algorithm, DSGE Nash, solves the same problem by means of numerical methods. In par-

2Bodenstein et al. (2019) has recently developed a toolkit to compute this solution.



ticular, the toolkit solves for the Nash equilibrium in pure strategies of policy games with N

players and strategies. The solution algorithm first computes the payoff matrix of the game.

Thereafter, it efficiently solves for the Nash equilibria of the game, i.e. it uses the payoff matrix

to compute the combinations of strategies that are optimal for all players at the same time.

The deployment of numerical methods presents several advantages relative to numerical differ-

entiation and constitutes an extension of the existing toolkit for the analysis of global games

in macro models. First, in large models with more than two players, numerical solutions might

indeed be faster and more feasible than numerical differentiation. In our toolkit, the state-space

representation of the model is used to compute the stochastic steady state. Evaluating it for

different convolutions of parameters could be faster than numerically differentiate a large set

of equations, depending on the specific model under consideration. In addition, our solution

method allows to target any policy function ( including “optimal simple rules” such as the

Taylor rule or a cyclical taxation rule) or objective variable (including a LQ approximation

of the policy function, second or third moments of endogenous variables, impulse responses or

any of their convolutions). Importantly, researchers might study optimal policy games using

first-order approximation and LQ policy functions, that are significantly faster to compute nu-

merically. Moreover, this allows to go beyond standard welfare or profit targeting and include

other objectives for the planner’s strategies such as the reaction after specific shocks or the

volatility of specific variables. This could be relevant in the context of financial stability models

whose focus is not on the behaviour of the system in the steady state, but rather on the reaction

of the banking sector to tail shocks. Additionally, we can compute the Nash equilibria of the

policy game even with non-linear models or a non-continuously differentiable policy function.

Examples of non-continuously differentiable policy games are games where the central bank has

to decide across several target variables (core or headline inflation for instance) or, more gen-

erally, when there are occasionally binding constraints. An additional strength point of DSGE

Nash is that the algorithm can be applied to any model, even where a closed-form solution

is not available. Moreover, DSGE Nash goes beyond optimization by providing a toolkit for

moment (Ruge-Murcia (2012) and McFadden (1989)) and impulse response matching estima-

tion (Guerron-Quintana et al. (2017)), thus significantly reducing the barriers to entry to those

methods. Finally, our algorithm can be completely parallelized, which makes it possible to fully

exploit the capabilities of modern server machines.

DSGE Nash features the following main configurations:

• Policy equilibria in DSGE models (default): the model is solved with Dynare3,

3See Adjemian et al. (2020).



the algorithm first computes the payoff matrix via a second-order approximation and,

then, the Nash equilibria of the game. If users can provide a LQ approximation of the

objective function, options allow to solve the model at first order and use the LQ solution

to construct the payoffs matrix.

• Policy equilibria in macro models: DSGE Nash lets users define a custom-made func-

tion to compute payoffs for each draw of the policy parameters. This can be easily done by

executing the user-defined code in a dedicated .m file that substitutes the model solution

by Dynare. This allows to apply our solution algorithm to all models where strategic inter-

actions are relevant. As an example, in the next section we solve the Prisoner’s dilemma

game.

• Standard optimal policy: if only one player is selected, DSGE Nash automatically re-

casts the problem into a standard optimal policy problem. In this case the toolkit com-

putes the value of parameters that maximize the objective function of the player. Even

in this case, the baseline target is a second-order solution of the model through Dynare,

but users can deploy any other user-defined code to compute the objective function.

• Matching empirical moments: the same set of algorithms used to compute the Nash

equilibrium and optimal policies can be applied to the calibration of models by matching

empirical data. Given the option, DSGE Nash can compute the values of a subset of the

model’s parameters to match empirical moments4 or empirical impulse responses. User

can specify the order of approximation at which model-generated moments or IRFs are

computed as well as different weighting schemes in case of moment matching. These

methods can be helpful when the size of the model prevents the efficient estimation with

time series methods at higher-order.

Although our purpose is similar to that of Bodenstein et al. (2019), we depart from the latter

in five respects. First, Bodenstein et al. (2019) solve for the Nash equilibrium by computing the

numerical derivatives of the objective function of each player with all the other equations in the

model and other agents’ policy functions acting as constraints. DSGE Nash, on the other hand,

uses simulated methods to fill up each player’s payoff matrix and then finds the Nash equilibria

of the game. Each approach presents benefits and costs. Computing numerical derivatives has

the advantage of finding a closed-form solution for the policy problem. However, it can be very

resource intensive, especially in large models with many variables. Moreover, Bodenstein et al.

(2019)’s approach requires to add all the Lagrangian multipliers to the set of endogenous vari-

4See Ruge-Murcia (2012).



ables, which could rapidly increase the number of equations included in the model, especially

in frameworks that involve multiple players, thus making it hard to find a solution (especially

at higher orders). Conversely, our methodology does not require to add equations to the model

and relies on simulated methods to compute payoffs for each combination of strategies. This

can also be computational intensive for large models, but there are methods to address the

dimensionality problem and the entire procedure is parallelizable. Second, our toolkit is more

flexible in handling non-linear models, objective and policy functions. We allow agents to target

anything that can be derived from a model, such as the volatility of specific variables or the re-

sponse to a specific shock. This greatly extends possible applications of DSGE Nash. Related to

this, by allowing for user-defined objective functions our toolkit can be easily adapted to models

with non-linearities such as occasionally binding constraints which are becoming increasingly

popular in the literature (e.g., Holden (2019) and Cuba-Borda et al. (2019)) or problems for

which the objective function is not differentiable. Fourth, players’ payoffs can be computed also

for non-DSGE models or models not solved by Dynare. This last feature further enlarges the

potential applications of our algorithm to models with heterogeneous agents or ABMs. Fifth,

our toolkit goes beyond Nash games. For example, it re-writes the problem into a standard

optimal policy problem if only one player is selected and allows to calibrate models via mo-

ment or impulse response matching, thus significantly reducing the barriers for researchers to

approach this type of analysis. All in all, our toolkit differs considerably from Bodenstein et al.

(2019) despite being motivated by the need to address similar research questions. We believe

indeed that the two toolkits complement each other as they offer different solutions to the same

problem. Depending on the specific research question and the practical difficulties faced, either

of the two could be the most efficient solution and researchers can choose the one that best fits

their needs case by case.

Against this backdrop, we provide a concrete example by applying DSGE Nash to the analysis of

the strategic interactions between two agents, a commodity importer and a dominant commod-

ity exporter, that compete on a commodity market featuring barriers to entry. If commodities

account for a low share of the importer’s consumption/production baskets, both players have

a dominant strategy that requires strong core inflation targeting and no reaction to the com-

modity price on the part of the commodity importer5 and a somewhat lower mark-up setting

for the exporter. The problem becomes more complicated if commodities are relevant (30%) in

the importer’s economy. In that case the importer’s central bank cannot follow the “first-best”

policy because that would allow the exporter to extract higher rents. To avoid this scenario,

5See Blanchard and Gaĺı (2007) and Filardo et al. (2020).



the central bank chooses an alternative rule that tolerates higher commodity prices and eases

the entrance of new producers. To avoid the risk of new competitors entering the market, the

exporter keeps the commodity price low, which benefits the importing economy and ultimately

increases welfare, despite a less efficient monetary policy rule. This example highlights the

importance of strategic interactions. The key element that allows for higher welfare is not the

efficiency of the policy rule chosen, but the “discipline” imposed on the commodity exporter.

The remainder of the paper is structured as follows: Section 2 presents the strategic interaction

problem in macro models and describe our solution algorithms; Section 3 applies our algorithm

to a macro model of commodity prices where strategic interactions between commodity pro-

ducers and consumers are important and policy functions are non-linear; Section 4 summarises

the findings and concludes; Appendix C provides a user guide to our toolkit.

2 The Nash problem

In many macro models, agents are assumed to act rationally in that they optimize individual

objectives by taking the decisions of other agents as given. What if agents acted also strate-

gically? Would the equilibrium and the dynamics of the model change if agents strategically

reacted to other agents’ actions?

This question is particularly relevant when studying policy implementation. Consider for ex-

ample the problem of two central banks that optimize their respective policy functions. As

countries are connected by real and financial linkages, the central bank’s choices in one econ-

omy would affect welfare in the other one, and vice versa. As a result, optimal domestic welfare

can only be achieved by explicitly accounting for and reacting to the optimal policy in the foreign

country. A similar problem arises when considering the taxation of global externalities: domes-

tic policy makers (e.g., the government) might wait for their foreign counterparts to move first

and impose a tax, so to reap the full benefits of a reduction in the externality without bearing

any direct cost. Strategic competition between players might prevent from reaching the social

optimum, see Ferrari and Pagliari (2021) for an example related to climate policies. Strategic

dynamics play also an important role when the social planner and private agents interact in

pricing setting. Absent perfect competition, indeed, the former might threaten a policy response

to prevent producers from exploiting their market power and extracting excessively high rents.

For instance, it has been documented that strategic interactions can explain the recovery path

of the US economy after the Great Depression (Cole and Ohanian (2004)).

In these and other similar contexts, each agent internalizes the opponents’ reaction functions

into their optimization problem. Finding the solution under strategic interactions necessarily



requires to solve for the Nash equilibrium (equilibria) of the game played by agents, where all

the other equations of the model act as constraints. The solution consists of identifying the

best-response function of each player to all other players’ strategies. The intersection(s) across

all these functions is (are) the Nash equilibrium (equilibria) of the game (Dutta (1999)). No-

tably, the Nash equilibrium of the game might not lead to the optimal solution from a global

standpoint. Agent-specific incentives or lack of credibility of players’ commitment, in fact,

might allow individual incentives to dominate the optimal equilibrium from a “social” perspec-

tive. This is a typical problem in models where agents need to coordinate on policies related

to public goods that are non-excludable and non-rivalrous in consumption. More recently, such

problems have been studied for the “consumption” of a typical non-excludable and non-rivalrous

good: the environment.

2.1 Intuition

This section provides a simple example of the intuition underlying our solution method, which

we deem useful to better understand the algorithm described in Section 2.2.

Consider one of most well-known static game, i.e. the prisoners’ dilemma (Lacey (2008)) where

two criminals (P1 and P2) need to decide whether to confess the crime they committed (Ci) or

to remain silent (Si).
6 If they both confess, {C1, C2}, they will be both sentenced to 5 years of

prison. If they both stay silent, {S1, S2}, the persecutors will not have a full account of their

deeds and they will be sentenced to just 2 years of prison each. If only one of them confesses

{C1, S2}, she will be able to shift the blame to her associated and will be set free, while the

other prisoner will be severely punished with a 10-year prison sentence. Each player, therefore,

has two pure strategies {Ci, Si} with payoff matrix as reported in Table 1.

The cooperative solution, {S1, S2}, maximizes the joint welfare of the criminals, as they would

only face 2 years of prison each, 4 in total. However, individual’s incentives and the lack of

a credible commitment might prevent the players from reaching that solution. Each criminal

knows that if she stays silent, her opponent will have the incentive to confess. The final payoff

of that ending would be 10 years for the “silent” criminal and 0 for the “confessing” one, which

is clearly worse from the perspective of the player who decides to stay silent. On the other

hand, by confessing she will serve the least amount of years in prison independently on whether

the other criminal will confess (5 instead of 10) or stays silent (0 instead of 2). Each prisoner

knows this and endogenously decides to confess, independently of what the other will do. The

Nash equilibrium of the game is then {C1, C2}, thus each will serve 5 years of prison, 10 in total,

6i ∈ {1, 2}.



Table 1: The prisoner’s dilemma

P2

C2 S2

P1
C1 ( 5, 5) ( 0,10)

S1 (10, 0) (2,2)

Notes: payoffs for each players are reported in parentheses. Values underlined in blue (red) represent the optimal
response of P1 (P2) for a given strategy of the other player. The Nash equilibrium is given by the intersection of
the best response functions, i.e. when both values in the payoff matrix are underlined. This game is solved with
DSGE Nash, the code is provided in the PrisonersDilemma.m example.

much more than the “cooperative” scenario. This popular game gives the basic intuition as to

why the equilibrium under strategic behaviour might be completely different from the optimal

solution of a “global planner”. In macro models, without credible commitments, countries

face the same trade-off. They expect that other players might deviate from the social optimal

strategy if individual incentives are strong enough, i.e. if by deviating they can seize sufficiently

high gains. Because of that, inefficient equilibria are often reached.7

This simple game is also useful to highlight the mechanics behind the identification of a Nash

equilibrium. A strategy vector σ = {si}Ni=1 is an equilibrium iff it contains strategies that are

optimal for all players i = 1, . . . , N at the same time. In other terms, the strategy sj ∈ σ needs

to be optimal for player j given the strategies played by all the other players, s−j ∈ σ. If this is

the case, player j has no incentive to play anything else than sj when the other N − 1 players

play s−j . If this holds for all the N participants in the game, then σ is a Nash equilibrium.

Computing all the possible Nash equilibria in the game requires the identification of each player

j’s best response to any combination of the other players’ strategies (s−j). The vector of Nash

equilibria is given by the intersection(s) across the players’ best response functions. Strategies in

the intersection(s) are, indeed, optimal for all players at once, given the actions of other players.

In the prisoners’ dilemma example, P1’s best response to both C2 and S2 is playing C1. The

vector of best response strategies for P1 is therefore: V1 = {(C1, C2) ; (C1, S1)}. With a similar

logic, the vector of best responses for P2 is V2 = {(C1, C2) ; (S1, C2)}. The only intersection

between the two vectors, {C1, C2}, is the Nash equilibrium of the game. The same logic can be

applied to computing pure-strategy equilibria in more complex games.

7These problems have been extensively studied for example in the course of arms race games, see Baliga and
Sjöström (2004).



2.2 Solution algorithm

Consider now the general problem of player i who wants to maximise the objective variable W

with respect to the instrument vector τi, conditional on the response of other players −i and a

set of constraints. In a structural model, such constrains are typically the structural equations

and the shock processes. W can be any outcome of the model. Although in most applications

W is the steady-state of some endogenous variables, our toolkit allows for any output of the

model to be used as objective, including steady-state volatility or impulse responses.

Player i’s problem can be written more formally as:

max
τi

E0(Wi)|τ−i

s.t. E0(Ω(xt+1, xt, xt−1, ηt)) = 0,

(2.1)

where x and η are vectors of endogenous variables and shocks respectively and Ω(·) defines the

policy function of the model which acts as constraint. Given a specific draw of the instrument of

player i (τi) and the instruments of her opponents (τ−i), the problem in Equation (2.1) can be

solved by first computing the model equilibrium as informed by Ω(·) and, then, by extracting the

corresponding E(Wi)|τ=(τi,τ−i). The Nash equilibrium (equilibria) of the game is (are) given by

the intersection(s) across the optimal response functions of the players, i.e. the intersection(s)

across the sequences of strategies {τ} = {τi|τ−i}Ni=1 that solve Equation (2.1) for each player i.

After obtaining a value of the objective E(Wi) for each i and each combination of strategies

τ = (τi, τ−i), the Nash game is solved as follows:

1. for each combination of opponent’s strategies, τ−i, we compute the optimal response of

i, i.e. the value of τi that maximises the objective E(Wi) given τ−i and E0(Ω(·)). This

is the optimal response of i to the strategies of the other players (−i) given the model’s

constraints;

2. we repeat the previous step for all combinations of strategies τ−i and collect the optimal

responses of i in the vector ~τ∗i | − i, which is the optimal response function of player i to

each τ−i;

3. we construct the vector of strategies T ∗i that matches the optimal response of i ( ~τ∗i | − i)

with the strategies of other players −i for which ~τ∗i | − i is the best response, i.e. T ∗i =

{(τ∗i , τ−i)j}Sj=1 where j ∈ [1, S] is the sequence of possible strategy combinations by players

−i. In the Prisoner’s dilemma these vectors would be T ∗1 = {(C1, C2), (C1, S2)} and

T ∗2 = {(C1, C2), (S1, C2)};



4. we repeat steps (1)-(3) for each i = 1, . . . , N player;8

5. the Nash equilibria of the game are given by the intersections of the vectors T ∗i , i =

1, . . . , N

Steps (1) to (5) become computationally heavier the higher the number of players. We exploit

an important property of T ∗i , reported in Lemma 2.1, to solve the problem more efficiently.

Lemma 2.1. All Nash equilibria are contained in the best response vector of one player.

Proof. The best response vector of player i is defined as T ∗i = {(s∗i , s−i)j}Sj=1, with j ∈ [1, S]

begin the possible combinations of strategies by player i (si) and strategies of other players −i

(s−i).

If the vector σ = {si}Ni=1 is a Nash equilibrium, by definition, s∗i ∈ σ and s∗i ∈ T ∗i . Since σ is

a Nash equilibrium of the game, s−i ∈ σ are also equilibrium strategies for the other players;

therefore (s∗i , s−i) ∈ σ and (s∗i , s−i) ∈ T ∗i , because given s−i player i optimally chooses strategy

s∗i .

Consider now the case of one hypothetical Nash equilibrium, (s′i, s
∗
−i), that does not belong to

T ∗i . If s′i 6∈ T ∗i then there is another strategy for i that gives higher payoffs to player i given s∗−i.

If that is true, i will not play s′i in response to s∗−i. But then (s′i, s
∗
−i) is not a Nash equilibrium

because i has incentives to deviate from s′i. This reasoning is symmetric and applies to −i

players as well. If si is indeed a Nash equilibrium of the game, (si, s−i) ∈ σ must belong to T ∗i
as si is both a best response and a Nash equilibrium strategy.

From Lemma 2.1 it follows that it is not necessary to repeat all steps (1)-(5) for each player,

but one can simply look at the best response function of one player and check whether there is

a specific vector of strategies that is optimal for all players at the same time. As players might

have vector of strategies with different dimensions, one can strategically choose to consider only

the vector of best responses with the shortest length. DSGE Nash relies on a grid search across

strategy parameters values to populate the pay-off matrix.

2.3 Single player case & matching of empirical data

The same computational tools developed to find the Nash equilibria of policy games can be

easily adapted to a single player setting or to calibrate key parameters of the model by matching

empirical moments, see Ruge-Murcia (2012). DSGE Nash allows for both configurations and the

algorithms are briefly presented in this section.

8In practice DSGE Nash solves the model over a grid of possible strategies for each player, which is supplied
by the user.



Single player. When there is only one player, the game collapses to a standard optimal policy

exercise, see Woodford (1999) and Sbordone et al. (2010). As only one agent (i) optimally

chooses, the vector of constraints τ−i is empty and the optimal problem in Equation (2.1) boils

down to:

max
τi

E0(Wi)

s.t. E0(Ω(xt+1, xt, xt−1, ηt)) = 0.

(2.2)

Therefore, there are no strategic interactions and the single player chooses policy parameters

in order to maximize the objective function E(Wi). This problem can be solved numerically as

in Born and Pfeifer (2020) as follows:

1. draw a value for the policy parameters τi;

2. solve the model conditional on the draw of τi and the constraint E0(Ω(·)) to compute the

objective E(Wi);

3. repeat the steps (1)-(2) until a maximum is reached. Maximisation can be achieved with

a search algorithm or by finding the highest objective E(Wi) over a grid of possible values

selected for τi.
9

Matching empirical data. DSGE models can be calibrated to match empirical moments

of key economic variables or impulse responses from empirical models. Matching empirical

moments is a popular estimation tool for DSGE models and is particularly useful when time

series methods are not feasible. That is the case, for example, of large models solved at higher

orders, that cannot be estimated via standard Bayesian or frequentist approaches because of

the long time needed to compute the likelihood function. Ruge-Murcia (2012), in particular,

shows that moment matching can deliver accurate parameter estimates of non-linear models.10

Our algorithm, however, allows to perform a simple matching of empirical time series. Given a

subset of the model’s parameters, θ, DSGE Nash searches for values that minimize the distance

between empirical (se) and model generated moments (sm). Formally:

min
θ

(se − sm)′W(se − sm), (2.3)

9DSGE Nash allows for both options. The choice between the two depends on the practical implementation.
Minimization algorithms might converge to a local minimum for problems with high non-linearities in the gradient
relative to τi. In those cases a grid search algorithm should be preferred.

10The reader can refer to Fernández-Villaverde and Guerrón-Quintana (2020) for a comprehensive overview of
these estimation methods.



where W is a weight matrix. se can include the volatility of endogenous variables, their corre-

lations or some target mean values.11

Equation (2.3) can be also used to calibrate deep parameters by impulse responses (IRFs)

matching. In this case, parameters are selected such that model-implied IRFs match those

of an empirical model, usually computed via VARs or local projections. Instead of single mo-

ments, IRFs matching minimizes the squared cumulative distance between the empirical and the

model-based IRFs. In other terms, when impulse response matching is selected, sm ≡ {ymε,k}Kk=0

and se ≡ {yeε,k}Kk=0 with yeε,k being the empirical IRF of variable y to shock ε at horizon k and

ymε,k the model-based equivalent.

Both minimization problems are solved as follows:

1. draw a value for the parameter vector θ;

2. solve the model and compute model-based moments (or impulse responses);

3. compute the distance between model-based and empirical moments and update the draw;12

Equation (2.3) can be solved by standard minimization algorithms13 or by grid search. DSGE

Nash uses the former approach, by allowing the user to select specific minimization algorithms.

Final considerations. Our solution algorithm relies on the definition of an objective variable

Wi or model’s moments sm. In the standard setting of DSGE Nash, these variables are derived

from the solution (at any order) of a DSGE model solved using Dynare. However, users can

compute them in alternative ways by providing the relevant calculations in an editable .m14

file, which replaces the call of Dynare in the toolkit. In this way it is possible to target non-

standard outcomes of the solution provided by Dynare and to use alternative solution algorithms

or modelling frameworks. Details on how to invoke the alternative solution files and examples

are provided in Appendix C. Similarly, DSGE Nash allows for different numerical minimization

algorithms and options for populating the payoff matrix, for example by excluding specific

draws of the parameters. This is particularly useful when the players’ policy function is non-

continuous along all its dimensions. Consider, for instance, the problem of a central bank that

needs to strategically choose to respond to either core (φcore) or headline (φhead) inflation. This

condition can be simply implemented by excluding all draws for which both φcore > 0 and

11The targets of highest interest are typically the volatility of inflation rates and output components, their
correlation, the mean of spreads and consumption to output ratios.

12In the case of IRFs matching, the distance se − sm is the cumulative distance over the impulse response
horizon.

13See Sims (1999) and Nocedal et al. (2014).
14See the option userdefinedfunction.m in the Appendix.



φhead > 0. Appendix C describes how to set alternative algorithms and how to specify those

exclusion conditions.

3 Application to an open-economy model with commodity price

competition

We use the toolkit to analyze the strategic interactions between two countries, an oil importer

and an oil monopolistic exporter, within an open economy model with fringe commodity produc-

ers.15 Rising commodity prices have been recently a main source of supply shocks, exacerbated

by the monopolistic nature of commodity production. Against this background, the question of

how policy makers should responds to commodity price swings has once again become promi-

nent. To answer this question, however, it is crucial to understand how agents strategically

interact: a monopolistic commodity producer will not rise prices to the point of forcing cen-

tral banks to hike rates to counter inflation, thus inducing a contraction of demand and a

fall of profits. Additionally, commodity producers will avoid excessively high prices to keep

fringe competitors out of the market. This concern is particularly relevant in the oil market

where monopolists are threatened by shale oil producers that enter the market only if prices

are sufficiently high, see Kilian (2016). Commodity importing countries, instead, are tempted

to compress commodity prices to keep production costs low. This policy reduces competition

in commodity production, allowing exporters that enjoy lower production costs to consolidate

their dominant position. We try to analyse this fundamental trade-off through the lens of our

model.

In particular, we investigate how central banks and dominant commodity exporters should

calibrate their policies in an environment of strategic interactions. Specifically, commodity pro-

ducers have monopoly power because they control the supply of a scarce resource that is used

by consumers and firms in other countries. They leverage on such monopoly power by setting

the price mark-up on the commodity in order to maximize individual objectives (i.e. profits).

Central banks in the commodity-importing block, instead, set monetary policy to maximise

households’ welfare. These agents, the central bank and the commodity monopolist have di-

verging objectives, but their choices affect each other. For example, an higher mark-up implies

higher commodity prices and domestic inflation, which in turn triggers a tighter monetary pol-

icy, thus leading to a lower welfare. Meanwhile, a tighter monetary policy reduces demand,

15As discussed more in details later, fringe producers produce commodities as well, but have higher costs than
the monopolistic country. For this reason, they engage in production only if the price of the commodity is higher
than a threshold.



including for the commodity, which dampens the exporter’s profits. Moreover, if the prevail-

ing commodity price is sufficiently high, more fringe producers enter the market, reducing the

market power and the profits of the dominant exporter. The dominant exporter might then act

preemptively, by avoiding excessively high mark-ups to block the entrance of fringe producers.

We use our DSGE Nash to solve the strategic game between the central bank and the commodity

exporters, a task made complicated by the presence of relevant non-linear features. We find

that that there are two possible configurations for the final equilibrium, which depend on the

central bank’s tolerance for inflation and on the relevance of commodities in production.

3.1 The model

Our baseline framework is built on Nakov and Pescatori (2010) and Filardo et al. (2020).16 There

are three blocks: a monopolistic commodity-exporter country (CEC), a commodity-importer

country (CIC) and a fringe of commodity producers (CF) that supply commodity in perfect

competition only if commodity prices are sufficiently high. The underlying assumption is that

the CF has higher production costs relative to the CEC, but can flexibly increase or reduce

production. Therefore, CF starts producing only when the commodity price is sufficiently high,

while they stop production when the price falls below a specific threshold. These assumptions

are inspired to the oil market and the rise of shale oil production.17 As detailed in Filardo

et al. (2020), households in the CIC consume the commodity and final consumption goods,

supply labor to firms and save through one-period safe assets. First order conditions for the

household’s problem are:

1 = β
Rt
πt+1

exp
(
eCt+1

)
exp

(
eCt
) Ct
Ct+1

wt = CtL
ν
t

CY,t = (1− γ)
Pt
PY,t

Ct

MQ,t = γ
Pt
PQ,t

Ct

(3.1)

where C is aggregate18 consumption, L labor supply, eC a preference shock, R the nominal

interest rate, π headline inflation, w the real wage, CY consumption of domestic goods, MQ

16For brevity we report in this section only the main equilibrium conditions. The full model is described in
Appendix B.

17See Bjørnland et al. (2021), Farrokhi (2020) and Kilian (2017).
18Domestic goods and commodities are bundled together into final consumption through the aggregator Ct =

(CY,t)
1−γ (MQ,t)

γ . Notice also that the marginal utility of consumption, which is equal to the Lagrangian
multiplier associated to household’s problem, is also equal to 1

Ct
.



commodity demand by households, P the CPI price index19, PY the price of consumption goods

and PQ the commodity price. β is the discount factor, ν defines the elasticity of labor supply

and γ ∈ (0, 1) is the share of commodity in the consumption basket. Aggregate consumption

then depends on preferences, γ, and the relative prices of commodities and consumption goods,

PY and PQ. If the price of the commodity increases, households re-balance between commodity

and consumption goods but there is a dead-weight loss (due to income and substitution effects)

in aggregate consumption, which in turn leads to welfare losses.

Firms in the CIC use a production technology that combines labor and the commodity as

follows: Yt = exp (At) (Lt)
1−α (MY,t)

α. First order conditions for the firm’s problem are:

MCt =
W 1−α
t PαQ,t

exp (At)(1− α)1−ααα

Lt = (1− α)
MCt
wt

Yt

MY,t = α
MCt
PQ,t

Yt

(3.2)

where MC is the marginal cost of production, Y total output, A a total factor productivity

shock and MY is the commodity demand in production. In addition, α ∈ (0, 1) is the share of

commodity in the production function. If the commodity price increases, firms substitute the

commodity with labor in the production function, which pushes marginal costs and prices up.

Final prices are set by monopolistic firms with some degree of market power. We follow the

Calvo formalism and allow these firms to update their prices only with probability 1 − θ, see

Calvo (1983). Aggregate prices can be written in the following recursive form:

Dt =
Yt
Ct

+ θβEt

(
πε−1
core,t+1Dt+1

)
Nt =

Yt
Ct

ε

ε− 1
MCt

Yt
Ct

+ θβEt

(
πε−1
core,t+1Nt+1

)
θπε−1

core,t+1 = 1− (1− θ)
(
Nt
Dt

)1−ε

∆t = (1− θ)
(
Nt
Dt

)ε
+ θ∆t−1π

ε
core,t,

(3.3)

where πcore,t =
PY,t
PY,t−1

is core inflation, ∆ is the price dispersion term and ε the elasticity of

substitution across different varieties of consumer goods. Total commodity demand Mt is the

sum of the commodity used in consumption and production:

Mt =MY,t +MC,t (3.4)

19As implied by the consumption aggregator, the CPI index is defined as Pt = (PY,t)
1−γ (PQ,t)

γ .



Monetary policy follows a Taylor rule:

Rt =
1

β
(Πcore,t)

φcore (Πhead,t)
φhead (Πcom,t)

φcom

(
Yt
Yt−1

)φY
exp eRt (3.5)

In this model a higher commodity price PQ entails an income loss for consumers and higher costs

of production for firms that in turn increase the price of consumption goods. The combined

effects of the two is detrimental for welfare, whose reduction might be exacerbated by the

monetary policy reaction function. If the central bank follows a strong inflation target, in fact,

it will aggressively react to reduce inflation after a commodity price shock triggering a further

contraction of output and consumption. However, the commodity exporter is not indifferent

to these dynamics. If commodity prices increase and the central bank in the CIC raises rates,

demand for the commodity will fall, thus reducing profits.

Turning to commodity production, CEC exports the commodity to the CIC and imports final

consumption goods from the latter. The CEC sets the commodity price as a mark-up on the

marginal cost in order to maximise profits:

PQ,t = ΨtZ
−1
t (3.6)

where Z is the marginal cost of production that is assumed to be exogenous.20. The mark-up Ψt

depends on the supply of commodity from the dominant producer (Mcec) and from the fringe

(Mcf ):

Ψt = ψt

(
1 +
Mcec

t

2Mcf
t

)
(3.7)

where ψ is a policy parameter for the commodity producer to set the mark-up level. In the

baseline calibration of the model ψ is constant and equal to 1. Profits for the CEC are:

Πt =Mcec
t

(
ΨtPQ,t − Z−1

t

)
. (3.8)

Under the assumption of perfect markets, the real exchange rate s is defined as the ratio of

marginal utility of consumption between the CIC and the CEC. We assume that commodity

prices are expressed in the currency of the CIC, which is consistent with commodity markets

being largely settled in one single currency, namely the US dollar. We implicitly also assume

that the fringe production is equally traded in the currency of the importer. Because of these

assumptions, an appreciation of the CIC currency has ambiguous effects. On the one hand, it

increases the value of profits of the commodity exporter, while, on the other hand, it reduces

20The marginal cost follows the process: Zt = (Zss)
1−ρz (Zt−1)ρz εzt , with εzt ∼ N (0, σz).



the purchasing power of consumers in the CEC that consume goods produced by the CIC.

The commodity-fringe production is composed by atomistic producers with i.i.d. volatility

around the marginal cost of production (ωi) uniformly distributed in the interval [a, b]. These

producers enter the market if the commodity price is higher than a threshold ¯PQ,t.
21 Defining

the mass of fringe producers active in period t as Ωt, the total supply of the fringe is:

Mcf
t = ΩtPQ,tZtdi (3.9)

The model’s equilibrium conditions can be compactly written as:

EtΩ(xt−1, xt, xt+1, ηt) = 0 (3.10)

with x and η being the vectors of endogenous variables and shocks respectively, while Ω(•) is

the policy function. Parameters are calibrated as reported in Table 2.

From the CEC’s viewpoint, increasing the mark-up ψ has opposite effects. On the one hand,

higher ψ increases the commodity price, leading to higher expected profits. However, on the

other hand, higher commodity prices lead to higher inflation in the CIC, less commodity demand

and a depreciation of the domestic currency. Moreover, the higher is the commodity price the

more fringe producers enter the market and the lower is the monopoly power of the dominant

exporter, see Equation (3.7). Hence, it is not clear a priori whether it is preferable for the CEC

to set a high or a low ψ. From the prospective of the CIC, instead, a higher mark-up implies

tighter monetary policy and, then, lower welfare. Policy makers in the CIC, therefore, would

prefer an equilibrium with a low commodity price, which can be achieved either through a low

value of the mark-up parameter ψ or a large share of fringe producers. When commodity prices

are higher, instead, the central bank in the CIC is forced to tighten the policy rate to lower

inflation. This, in turn, appreciates the exchange rate, increases the cost of imports for the CEC

and reduces commodity demand. As anticipated, as profits for the CEC are expressed in the

CIC currency, the effects of an exchange rate appreciation are not clear ex ante. Nonetheless,

the monetary policy channel, i.e. higher rates in response to higher commodity price, might

work as a “discipline mechanism” limiting the incentive for the CEC to use its monopoly power

for two reasons: i) imports of consumption goods for the exporter become more expensive;

ii) the contraction of the CIC economy might reduce the extensive margin of profits for the

commodity producer.

21We assume that the threshold is time-varying and exogenous to capture volatility and time-variation in the
cost function of these firms.



Table 2: Calibration

Parameter Description Value Parameter Description Value

ψss Commodity Markup 1 ρZ AR com. supply 0.5
γ Commodity share in CPI 0.1 ρA AR TFP 0.95
α Commodity share in production 0.1 ρC AR cons. preference 0.5
ν Labor elasticity 0.5 ρR AR mon. policy 0.5
ε Elasticity of substitution 7.67 ρΩ AR fringe supply size 0.5
β Discount factor 0.99 σZ Std com. supply 0.01
θ Calvo pricing 0.75 σA Std TFP 0.01

φhead Reaction to headline inflation 0.00 σC Std cons. preference 0.01
φcore Reaction to core inflation 1.50 σΩ Std fringe supply 0.01
φcom Reaction to commodity inflation 0.00 σR Std mon. policy 0.01
φy Reaction to output growth 0.00

Notes: parameter values are taken from Nakov and Pescatori (2010) and Filardo et al. (2020). χ is calibrated
to normalize labor supply to one in the steady state. Values for ψss, φhead, φcore, φcom, φy refer to the baseline
calibration without optimal policy.

3.2 The policy game

In this model the CIC’s central bank and the commodity monopolist have different -and

conflicting- objectives. The central bank seeks to set monetary policy, i.e. choose the parame-

ters φhead, φcore, φcom, φy, to maximize households’ welfare, whereas the commodity-exporter’s

objective is to extract the highest rent from its monopoly position. Their objectives are con-

flicting because higher monopoly prices are associated to lower consumption and higher goods

prices,that’s to say lower welfare in the CIC. At the same time, changes in monetary policy

influence aggregate demand and, as a result, the CEC’s profits through the extensive margin.

The optimal actions of both players depend on each other and also on the production decisions

of the fringe. For example, an excessively high level of ψ will induce the central bank to rise

rates, thus eventually reducing profits. General equilibrium effects will matter as well. Both

policies have an impact on the price of the commodity which in turn defines the number of

fringe producers that enter the market and, as a result, the market power of the CEC.

In our model both players act strategically, taking into account the other player’s reaction and

general equilibrium constraints, and most importantly the supply of fringe producers.

Formally, the exporter’s game is defined as:

max
Γ

Et(Πt) | Φ∗

s.t. EtΩ(xt−1, xt, xt+1, ηt) = 0

ψt = ψss

(
PQ,t
PQ,t−1

)ψQ ( Yt
Yt−1

)ψY
,

(3.11)



where Φ∗ = {φ∗head, φ∗core, φ∗com, φ∗Y } is the optimal strategy of the central bank conditional on

the strategy of the CEC, i.e. Γ = {ψss, ψQ, ψY }. CEC’s strategy involves the choice of three

parameters: the steady state mark-up, ψss, the sensitivity of the mark-up to output, ψY , and

commodity price (ψQ) fluctuations. We allow the exporter to both set the deterministic steady

state of the commodity price above the efficient allocation in this model, i.e. ψss = 1, and

to react to the business cycle volatility. Given this, the exporter can also directly change the

volatility component of PQ in the stochastic steady state of the model. Specifically, she might

increase (decrease) the mark-up in periods of high (low) demand -to reap the benefits of less

elastic commodity consumption in the CIC- or change the mark-up when commodity prices

rise (fall) to keep out the fringe production or sustain aggregate demand for the commodity

at a global level -thus preserving its intensive margin. To discipline the model’s outcome, we

constrain these parameters as follows: ψss ≥ 0.4, ψQ ∈ [−2, 2], ψY ∈ [−2, 2].

The CIC’s central bank chooses the parameters of Equation (3.5) by solving:

max
Φ

Et(Wt) | Γ∗

s.t. EtΩ(xt−1, xt, xt+1, ηt) = 0.

(3.12)

where the strategy vector is Φ = {φhead, φcore, φcom, φY }. Moreover we let the central bank

choose the price variable to target, specifically whether to respond to core or headline inflation.

This choice has strategic implications because headline inflation reacts immediately to fluctua-

tions in commodity prices, proportionally to the share of commodities in consumption. It also

introduces a source of non-linearity in the game because the reaction function of the central

bank has kinks around φhead = 0 or φcore = 0. We also allow the central bank to directly react

to commodity prices. Filardo et al. (2020) show that, absent strategic interactions, it is not

optimal to directly react to commodity price fluctuations, i.e. φcom = 0. However, that might

change when accounting for strategic interactions. One strategy for the central bank could be

to credibly threaten to rise the policy rate in response to stronger commodity prices to impose

discipline, i.e. limit the monopoly power, on the dominant commodity exporter. However, the

threat might not be credible in general equilibrium because of time inconsistency, i.e. when

commodity prices actually rise, the central bank might have the incentives to lower policy rates

instead of enforcing its threat. The central bank then faces a trade-off between a more accom-

modative monetary policy stance, entailing higher welfare and commodity prices, and a tighter

monetary policy, with lower welfare is lower and reduced mark-ups on the part of the CEC.

Such trade-off is not linear because the price of commodities has second- and third-round effects

on welfare, as commodities are both consumed by households and used in production. When



defining the strategies of the central bank, we additionally impose that the Taylor principle

holds and constrain the parameters of the policy rule, in line with standard practice in the

DSGE literature: φcore ∈ [0, 2.5], φhead ∈ [0, 2.5], φcom ∈ [0, 2], φy ∈ [0, 2].22

Finally we consider two calibrations of the model, one where commodities account for a small

share of production and consumption (i.e. α = γ = 0.1) and a second in which commodities

are more relevant (α = γ = 0.3). In this way we can study how the Nash equilibrium changes

when the importance of commodities in the economy increases. We name these two calibrations

“commodity independent” and “commodity intensive” respectively.

We use DSGE Nash to compute both the solution of the Nash game between the two countries

and the optimal parameters when each problem is solved independently, i.e. by setting the pa-

rameters of the other country as in Table 2 and excluding strategic interactions. The outcome

variables, welfare and profits, are computed based on a second-order simulation of the model

with pruning, see Born and Pfeifer (2020).

Table 3: Optimal parameter under individual policies and Nash game, commodity independent
economy (α = γ = 0.1)

Variable Baseline Optimal Optimal Nash game
Markup Mon. policy

(1) (2) (3) (4)

φhead 0.00 0.00 0.00 0.00
φcore 1.50 1.50 2.40 2.40
φcom 0.00 0.00 0.00 0.00
φY 0.00 0.00 0.00 0.00
ψss 1.00 0.90 1.00 0.90
ψQ 0.00 0.00 0.00 0.00
ψY 0.00 -0.10 0.00 -0.10

E(W) -122.20 -121.35 -122.12 -121.27
ξ×100 0.00 0.85 0.08 0.93
E(Π)×100 4.43 4.44 4.45 4.46
E(C) 0.55 0.56 0.55 0.56
E(PQ) 2.26 2.18 2.26 2.18
E(R)×4 3.84 3.84 3.96 3.96

Notes: optimal policy parameters from the individual optimization of the commodity exporter (column 2), the
commodity importer (column 3) and the solution of the Nash game (column 4). Welfare and profits are computed
based on a second-order solution of the model with pruning. In this calibration of the model, commodities account
for 10% of production and consumption in the steady state. Interest rates are annualized. The consumption equiv-
alent is computed relative to the baseline calibration of the model as ξ = exp

[
(1− β)E

(
Wpolicy −Wbaseline

)]
−1.

When the share of commodity in consumption and production is relatively small, both the

commodity exporter and the commodity importer have a dominant strategy: the central bank

implements classic inflation targeting (φcore = 2.4), while the commodity exporter applies a

mild mark-down to the commodity price (ψss < 1) and weakly reacts to changes in output.

22The constrains on the Taylor rule parameters (φcore + φhead + φcom + φy > 1 and φcore > 0 | φhead > 0) are
imposed using the exclusion condition option. See Appendix C for a description of this option.



Since this is a dominant strategy, it is optimal not only under the Nash equilibrium, (blue

line in Figure 1), but also when policies are decided independently (black line and red dots

in Figure 1), see columns (2)-(4) of Table 3. In particular, the dominant commodity exporter

finds optimal to slightly cut the price of the commodity to keep the fringe out of the market

as much as possible. By setting a low ψss, indeed, the CEC prevents the fringe from reducing

the leader’s market power and, in the equilibrium, obtains higher profits than in the alternative

scenario of an higher ψss. In other terms, the lower commodity prices are compensated by the

higher share of commodity supplied by the dominant exporter. If ψss was instead higher, more

fringe competitors could engage in production and they would eventually erode profits on the

intensive (quantities) margin, see E(Π) in Table 3. Such competition eventually benefits the

commodity importer. Under the optimal policy for the CEC, in fact, welfare in the importing

country increases. This happens because commodity prices are lower and that has positive

effects on consumption and production. Optimal monetary policy also increases welfare through

a tighter reaction to inflation. It is also worth noticing that, when commodities are relatively

less important in the domestic economy, the central bank finds it optimal to follow a standard

inflation targeting rule. Notably, optimal policy implies a somewhat tighter reaction to inflation,

with a rise in policy rates by 12 basis points (bps) on average, see Table 3. However, gains in

terms of welfare are mainly driven by the competition in commodity production. Comparing

column (2) and column (4) in Table 3, indeed, highlights that only 0.08 out of 0.93 gains in

consumption equivalents are due to monetary policy. These results depend on the calibration of

α and γ. When commodity prices are relative less important for inflation and output, commodity

demand is relatively low. That in turn implies low incentives for fringe producers and a lower

sensitivity of the commodity price to demand changes. In this environment, the CEC finds it

optimal to reduce the mark-up relatively more to substantially increase its commodity supply.

Nonetheless, welfare improves because the commodity is 4% cheaper while consumption23 is 2%

higher. At the same time, given the limited role played by the commodities in the economy,

the central bank can afford to “look though” commodity prices and focus on domestic variables

(inflation), see Blanchard and Gaĺı (2007) and Blanchard and Gaĺı (2007).

Figure 1 reports the impulse response functions, at second order, for a total factor productivity

shock under the three calibrations of Table 3. As the equilibrium is in dominant strategies,

impulse responses for domestic variables under optimal monetary policy and under the Nash

equilibrium are relatively similar, i.e. each agent would choose the same strategy independently

of the actions of the others. This also reflects the relatively lower weight of the commodity

23Recall that the commodity is part of the consumption aggregator.



in consumption and production, i.e. commodity price developments have reduced impact on

domestic variables, because commodity demand is limited. Notably, under the optimal mark-

up policy -and with monetary policy at its baseline calibration- the commodity price reacts by

about 10% less to a TFP shock. In this scenario, monetary policy -which is not optimal- is

less effective in smoothing business cycle fluctuations, which results in somewhat lower output

and consumption after the shock. From the standpoint of the dominant exporter, this reduces

demand for the commodity, whose price falls in spite of a negative ψY .

Figure 1: Impulse responses to a positive TFP shock, commodity independent economy

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed by solving the model
at second order with pruning.

Figure 2 reports impulse responses to a monetary policy shock in the importing economy.

Differences across policy regimes are similar to those discussed for a TFP shock. Impulse

responses profiles under optimal monetary policy and the Nash equilibrium are similar for the

CIC because the central bank has a dominant strategy. As regards monetary policy shocks,

relevant discrepancies emerge when the central bank does not behave optimally. In this case,

the monetary authority tolerates higher inflation rates, which entails an amplification of the

monetary policy impact on prices. This has consequences for the dominant exporter that

instead behaves strategically. Under this scenario, contractionary (expansionary) monetary

policy shocks generate larger fluctuations in domestic variables, which in turn decrease (increase)

the commodity demand to a larger extent. As a result, the dominant exporter is forced to raise



(drop) more the commodity price -in the order of 30%- so to keep the fringe out of the market.

Notice also that consumption, and consequently output, are more volatile soon after the initial

shock when the monetary policy rule is not optimized. For this reason, they bounce faster back

to equilibrium after the initial, larger, fall. This also explains why the commodity exporter

is forced to first increase and then decrease ψ (bottom-left panel of Figure 2). Figure A.1

and Figure A.2 in the Appendix A report impulse responses for a preference shock and a

commodity price shock respectively. Results are broadly similar to those discussed for the

previous shocks. The more marked differences are due to the limited stabilization of the economy

through monetary policy after a preference shock, which in this model affects the inter-temporal

discount factor, i.e. the choice between consumption and saving.

Figure 2: Impulse responses to a tightening monetary policy shock, commodity independent
economy

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed by solving the model
at second order with pruning.

We now consider the case of an economy that relies more on commodities, i.e. where the

commodity’s weight in production and consumption is around 30%. This scenario (Table 4)

is strikingly different from the case of a commodity independent economy. First, and most

importantly, the central bank does not have a dominant strategy. In other terms, due to

the high weight of commodities in the economy, it is forced to adopt a sub-optimal monetary

policy strategy which implies a lower-than-desired sensitivity to the commodity price. In other



terms, absent the reaction of the commodity exporter, the central bank would opt for a more

hawkish stance. Second, as the commodity is now an important component of production and

consumption baskets, it becomes optimal to target headline rather than core inflation. Third,

the commodity exporter plays the same strategy, with a low steady-state mark-up (ψss = 0.5)

and a strong reaction to output and the commodity price (ψQ = ψY = −0.5) under both the

optimal mark-up and the Nash equilibrium. In the optimal mark-up case (column (2)) the

stronger demand in the importing country generates price pressures in the commodity market.

As the price goes up, more fringe producers enter the market, thus eroding the market power

of the CEC. Anticipating this, the dominant exporter seeks to block the entrance of fringe

producers by reducing its mark-up upfront. Along the same reasoning, the CEC also adjusts

prices more aggressively. Since demand is high, the lower mark-up has limited effects on profits,

that remain higher than in the previous scenario. This happens because the price reduction

(10%) is more than compensated by significantly larger market shares for the dominant exporter.

As a result, profits increase by 4%.

In the Nash equilibrium, the central bank has to deviate from its optimal strategy. In particular,

the reaction to commodity prices is 60% lower compared to optimal monetary policy (columns

(3) and (4) in Table 4). A strong reaction to the commodity price, indeed, would reduce

domestic demand, as higher rates compress demand for all goods, including the commodity,

and limit the entrance of new commodity producers. This strategy, with higher φcom as in

column (3), benefits the commodity producer that could increase the mark-up by exploiting

the preemptive effect of the central bank’s policies on the fringe. In other terms, the central

bank would contribute to constraint the entrance into the commodity market to the benefit of

the dominant producer, who could eventually extract a higher rent. This scenario, however,

would reduce significantly welfare in the domestic economy.24 For this reason, the central bank

internalizes the reaction of the monopoly exporter and lowers its sensitivity to commodity prices,

i.e. it tolerates higher commodity price inflation. By doing this, the dominant exporter cannot

rise the mark-up because the higher price, not compensated by a stronger policy response,

would attract more new entrants and reduce its market power and production share. These

dynamics are an example of strategic interactions. The central bank knows that its opponent

would take advantage of an excessively hawkish policy stance. It then prevents that scenario

by trading a less efficient monetary policy, which implies somewhat stronger price fluctuations

and some degree of welfare losses, against a low commodity mark-up, which generates welfare

24This does not hold under the optimal mark-up policy scenario because the central bank’s reaction is still
based on calibrated parameters (column (3) of Table 4). In that case, the central bank targets core inflation,
which reacts significantly less to commodity prices. It follows that the central bank’s choices have less impact on
commodity markets and on the entrance of new fringe producers.



gains. Similarly, the dominant exporter knows that if she increases the mark-up under the Nash

equilibrium, the less aggressive policy stance would induce more fringe producers to enter the

market, thus eroding her profits. For this reason, she optimally chooses to set the mark-up to a

very low level. Under the Nash equilibrium, welfare is significantly higher than in the optimal

monetary policy case, by about 17.64 in consumption equivalent terms. This is due to the fact

that the central bank is able to contain the rise in commodity prices.

Table 4: Optimal parameter under individual policies and Nash game, commodity dependent
economy (α = γ = 0.3)

Variable Baseline Optimal Optimal Nash game
Markup Mon. policy

(1) (2) (3) (4)

φhead 0.00 0.00 2.40 2.40
φcore 1.50 1.50 0.00 0.00
φcom 0.00 0.00 2.00 1.20
φY 0.00 0.00 0.00 0.00
ψss 1.00 0.50 1.00 0.50
ψQ 0.00 -0.50 0.00 -0.50
ψY 0.00 -0.50 0.00 -0.50

E(W) -292.33 -276.09 -292.21 -275.99
ξ×100 0.00 17.63 0.11 17.75
E(Π)×100 8.98 9.37 8.99 9.37
E(C) 0.17 0.19 0.17 0.19
E(PQ) 3.18 2.85 3.18 2.85
E(R)×4 3.80 4.00 3.80 4.00

Notes: optimal policy parameters from the individual optimization of the commodity exporter (column 2), the
commodity importer (column 3) and the solution of the Nash game (column 4). Welfare and profits are computed
based on a second-order solution of the model with pruning. In this calibration of the model, commodities account
for 30% of production and consumption in the steady state. Interest rates are annualized. The consumption equiv-
alent is computed relative to the baseline calibration of the model as ξ = exp

[
(1− β)E

(
Wpolicy −Wbaseline

)]
−1.

Impulse responses in this scenario are also markedly different. Consider a positive TFP shock in

the domestic economy. When the dominant commodity exporter optimally sets the policy rule

(red dots in Figure 3) the business cycle in the domestic economy is significantly more volatile.

Although inflation is higher, the central bank eases the policy rate. This happens because in

the baseline calibration the central bank targets core inflation but the commodity price has a

strong weight in the production and consumption baskets. For similar reasons, the commodity

price increases, because more commodity is demanded, in particular by firms. The CEC reacts

by lowering the mark-up, to keep fringe competitors out of the market, but this action does not

limit the commodity price increase, that rises about 3 times more than in the Nash equilibrium.

This sharp surge leads to higher inflation, despite the lower cost of production. When the

central bank, instead, acts optimally and keeps the policy rule to its baseline calibration, shocks

have lower effects on the domestic business cycle and inflation drops after a positive TFP shock,



in line with standard theory. This is due to the more limited demand for the commodity, which

contains the price increase, especially on impact (Figure 3).

When both players act strategically, the central bank is able to get very close to the optimal

policy allocation by reducing its sensitivity to price fluctuations. Notably, the central bank

reacts by around 60% less to commodity price changes. In this equilibrium, the monetary

authority is forced to accept higher inflation to prevent a rise in the mark-up, which would

reduce households’ welfare. Specifically, should the central bank sterilize commodity price

changes, demand would shrink and fringe producers would be kept out of the market. If the

role of fringe producers was limited, the dominant exporter could rise the mark-up and extract

a higher rent, because competitors would have relatively weaker incentives to enter. This rent

is a cost for consumers and firms in the importing economy and, hence, reduces welfare. All

in all, under strategic interactions, if the monetary authority sets the policy rule as in column

(3) of Table 4, the exporter will deviate from its original strategy by increasing the mark-up.

That being said, policy makers in the CIC anticipate this strategic behavior and lower φcom in

advance. As a consequence, the dominant exporter finds it optimal to keep the mark-up low so

to prevent more fringe producers from entering the market.

A similar logic applies when considering a monetary policy shock (Figure 4). In this case business

cycle volatility is higher under the optimal mark-up policy and the commodity price fluctuates

more. By tolerating stronger commodity price fluctuations the central bank is able to reduce

the market power of the dominant exporter and impulse responses are close to the optimal

monetary policy case. Figure A.3 and Figure A.4 in the Appendix A reports the responses to

preference and commodity price shocks.

4 Conclusion

This paper presents DSGE Nash, a toolkit designed to solve global games and optimal policy

problems in macroeconomic models. When considering strategic interactions, i.e. when agents

engage in a “game”, the resulting equilibria are generally different from those attained under

cooperation. This in turn has relevant implications for policy evaluation and normative sugges-

tions.

We propose an algorithm based on numerical methods that detects pure strategy Nash equilib-

ria in policy games involving N players and strategies. In other terms, it solves a global game

across a model’s agents. Besides some practical advantages (e.g. speed, flexibility in the choice

of objective function), the toolkit envisages four main configurations that allow its application

to a wide range of problems. First, it can be used to solve a Nash game involving some of the



Figure 3: Impulse responses to a positive TFP shock, commodity dependent economy

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed by solving the model
at second order with pruning.

agents of the model, where the remaining structural equations are taken as constraints. Second,

it can target a wide range of variables, policy functions (i.e. Taylor rules, tax rules, capital

constraints...) and be applied to different classes of macro models. Third, when only one player

is selected, DSGE Nash re-casts the problem into a standard optimal policy problem and solves

it. Fourth, it can estimate models by moment or by impulse response matching. These last two

applications leverage on the similarity between the algorithms used to solve the Nash game and

to estimate the model. All these functionalities are provided in an user-friendly environment

and allow for a great deal of customization of the model or the solution algorithm.

We provide a practical example of how to use DSGE Nash in the context of an open-economy

model where a commodity importing country and a monopolist compete on the commodities

market, that is characterized by barriers to the entrance for new producers. We find that the

degree of strategic competition between the two agents depends on the importance of the com-

modity in consumption and production. If the commodity accounts for a low share of these

baskets, both players have a dominant strategy that implies strong core inflation targeting and

no reaction to the commodity price for the commodity importer, as in Blanchard and Gaĺı (2007)

and Filardo et al. (2020), and a somewhat lower mark-up setting for the monopolist. Since the

commodity price has a reduced impact on the importing economy, the interactions between the



Figure 4: Impulse responses to a tightening monetary policy shock, commodity dependent
economy

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed by solving the model
at second order with pruning.

two players are limited and relatively simple. The problem becomes more complicated when

the commodity is important in the importer’s economy. In that case, the central bank cannot

follow the “first-best” policy because that would allow the exporter to extract higher rents

with detrimental effects on welfare in the commodity-importing economy. The central banks

anticipates this scenario and chooses an alternative rule that tolerates higher commodity prices.

Because of that, it gets easier to enter the commodity market and the exporter faces more

competition. To avoid having new competitors, the exporter keeps the commodity price low,

which benefits the importing economy and ultimately increases welfare, despite a less efficient

monetary policy rule. This example highlights the importance of strategic interactions. The

key element that allows for higher welfare is not the efficiency of the policy rule chosen, but

rather the “discipline” imposed onto the commodity exporter, which limits her willingness to

increase the rent.

In conclusion, DSGE Nash provides an handy tool to address these types of policy questions

also in frameworks other than DSGE models. Users can indeed feed the algorithm with any

custom-made policy function. The code will then compute payoffs for each policy parameter

and evaluate the outcomes for each players under different strategies. Moreover, the same set



of algorithms used to compute the Nash equilibrium and optimal policies can be applied to

the calibration of models by matching empirical data. These features will hopefully lower the

barriers to entry to the computational analysis of macro models. Further developments could

include the extension to mixed-strategy equilibria.
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A Figures

Figure A.1: Impulse responses to a positive preference shock, commodity independent economy

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed
solving the model at second order with pruning.



Figure A.2: Impulse responses to a positive commodity price shock, commodity independent
economy

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed
solving the model at second order with pruning.

Figure A.3: Impulse responses to a positive preference shock, commodity dependent economy

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed
solving the model at second order with pruning.



Figure A.4: Impulse responses to a positive commodity price shock, commodity dependent
economy

Notes: impulse responses for the parametrization reported in Table 3. IRFs are computed
solving the model at second order with pruning.



B The model

The model closely follows Nakov and Pescatori (2010) and Filardo et al. (2020). In the

commodity-importing economy, consumers maximize the stream of discounted expected util-

ity. The period utility function depends on consumption (C), labor (L) and an exogenous

preference shock (eC):

Ut = exp eCt ln(Ct)−
L1+ν
t

ν
, (B.1)

with aggregate consumption combining consumption of goods (CY ) and commodities (MQ):

Ct = (CY,t)
1−γ (MQ,t)

γ . Households are subject to a budget constraint. Sources of funds are

returns on risk-free bonds (B) held between period t−1 and t, the wage bill (WL) and revenues

from firms (Γ). Uses of funds are taxes (T ), consumption and purchase of new safe assets. The

representative household’s budget constraint is:

Ct = PQ,tMQ,t + PY,tCY,t = WtLt +RtBt−1 −Bt + Γt − Tt (B.2)

First order conditions (where wt = Wt
Pt

is the real wage) are:

1 = β
Rt
πt+1

exp
(
eCt+1

)
exp

(
eCt
) Ct
Ct+1

wt = CtL
ν
t

CY,t = (1− γ)
Pt
PY,t

Ct

MQ,t = γ
Pt
PQ,t

Ct

(B.3)

with the Lagrangian multiplier associated to the problem being λt = 1
Ct

. Substituting the first

order conditions into the consumption aggregator allows to define the aggregate price index (P )

as:

Pt = (PY,t)
1−γ (PQ,t)

γ (B.4)

Perfect competitive firms produce intermediate output by combining labor and commodity

(MY ). They choose the share of commodity and labor in production to maximize profits subject

the production function Yt = exp (At) (Lt)
1−α (MY,t)

α, where A is a total factor productivity

shock. Period-profits are given by:

Πf
t = P ft Yt −WtLt −MY,tPQ,t (B.5)



First order conditions imply:

MCt =
W 1−α
t Qαt

exp (At)(1− α)1−ααα

Lt = (1− α)
MCt
wt

Yt

MY,t = α
MCt
PQ,t

Yt

(B.6)

where MC is the real marginal cost. Because of perfect competition P f = MC.

Intermediates goods are sold to retailers which bundle them and sell aggregate final goods to

consumers (in both countries). Retailers hold some degree of market power and hence set final

prices above the marginal cost. They can however reset prices only with probability 1−θ. Their

objective function is:

Et

∞∑
k=0

θkβk
Ct
Ct+k

PY,t
PY,t+k

[1− τPY,t − PtMCt]

(
PY,t
Pt

)−ε
Yt (B.7)

where ε is the elasticity of substitution of consumption, τ a steady-state tax and βk Ct
Ct+k

the

stochastic discount factor. First order conditions determine price setting. They can be written

in recursive form as:

Dt =
Yt
Ct

+ θβEt

(
πε−1
core,t+1Dt+1

)
Nt =

Yt
Ct

ε

ε− 1
MCt

Yt
Ct

+ θβEt

(
πε−1
core,t+1Nt+1

)
θπε−1

core,t+1 = 1− (1− θ)
(
Nt
Dt

)1−ε

∆t = (1− θ)
(
Nt
Dt

)ε
+ θ∆t−1π

ε
core,t

(B.8)

Each fringe producer i, instead, produces with the technology:

Mcf
t (i) = Ztω(i) (B.9)

where ω(i) is an idiosyncratic component and 1
ω(i) is assumed to have a uniform distribution,

F
(

1
ω(i)

)
, in the interval from a to b. Profits (recall that prices are globally set in the currency

of the commodity-importing economy) for each fringe producer are:

PQ,tMcf
t (i)−

PY,t
Pt

Mcf
t (i)

ω(i)Zt
(B.10)

Assuming that the total mass of competitive fringe countries is Ωt, the aggregate amount of the



commodity produced by the competitive fringe is given by:

Mcf
t =

∫ Ωt

0
Mcf

t (i)d(i) = ΩtF (PQ,tZt) (B.11)

which can be further simplified into Mcf
t = PQ,tZtΩt. Moreover, the fringe mass follows an

AR(1) process: Ωt = ρΩΩt−1 + εΩ
t . The utility function of households in the dominant com-

modity exporting country is:

Et

∞∑
t=0

βt lnCcect . (B.12)

We assume that households’ revenues in the CEC are equal to profits from commodity trade.

In other terms their budget constraint is:

Pit =Mcec
t

(
ΨtPQ,t − Z−1

t

)
= PCt C

cec
t . (B.13)

The dominant exporter maximises Equation (B.12) subject to Equation (B.13), the global

commodity demand (MY,t +MQ,t =Mcec
t +Mcf

t ) and Equation (B.11) (i.e., by internalizing

the supply of the fringe). The resulting first order condition is:

PQ,t = ΨtZ
−1
t (B.14)

with Ψt = ψt

(
1 +

Mcec
t

2Mcf
t

)
.



C User Manual

C.1 Presentation

This note presents DSGE Nash, a toolkit, written in Matlab, to compute the Nash equilibrium,

in pure strategies, of strategic games in macro models. Strategies are entered in grids which

DSGE Nash loops over to solve the model.

The toolkit default options are based on Dynare and on the standard optimal policy problem

in DSGE models: users should give the name of one objective variable and one set of policy

parameters per player. The algorithm solves the model at second order and uses the second-

order steady state of the objective variables as payoff.

The user, however, is free to specify any custom function as objective. This allows: i) to use a

first order solution and a LQ approximation to compute the objective functions; ii) players to

target any objective, such as volatilities or impulse response functions; iii) to use any model as

input (e.g., non-DSGE models or DSGE models solved without using Dynare) as long as they

entail one objective function value per player. When only one player is selected, the toolkit

solves the standard optimal policy problem.

Also note that Dynare should be version 4.6 or later for DSGE Nash to work.

To install DSGE Nash simply add the folder dsge nash file to the Matlab path. The package

is available -and continiously updated- on the authors’ websites: Massimo Ferrari Minesso,

Maria Sole Pagliari.

DSGE Nash is available as free software, under the GNU General Public License version 3. The

toolbox comes as it is. We assume no responsibility whatsoever for its use by third parties and

make no guarantees, implicit or explicit, about its quality, reliability, or any other characteristic.

We would appreciate acknowledgment by citation of the working paper presenting DSGE Nash

whenever the software is used. We extensively tested the toolbox prior to its public release.

Users may inform the authors via email of potential problems with the routines when they

emerge.

C.2 Preliminaries

There are two preliminary steps to take before using DSGE Nash:

1. If a Dynare mod file is used, users should end it with the stoch simul() command, where

the option order should be included, so to ensure that the correct order of approximation

is set in DSGE Nash.

https://sites.google.com/view/massimo-minesso-ferrari/home
https://sites.google.com/site/mariasolepagliari


2. If Dynare is not used at all or the computation of the objective function requires other

calculations, users should include them in the user defined function.m. In this file any

calculations can be made, provided that the file assigns a value to the players’ objective

function.

3. The policy parameters need to appear in the mod file or in the user defined objective

calculations. Similarly, the objective functions should be assigned a value.

Hint: models used in DSGE Nash could be “optimized” to increase computation speed. One

way is to substitute redundant equations. For example, when writing the recursive welfare func-

tion, Wt = Ut + βEt(Wt+1), user should directly replace Ut and remove it from the endogenous

variables.

Hint: several Dynare options should also be used. Pruning should be selected at higher solution

orders. Output should not be printed on screen (noprint) and graphs not created (nograph).

Generally speaking, autoregressive coefficients (AR=0), impulse responses (irf=0) and simula-

tions (periods=0) are not needed, unless explicitly required in the user-defined function. When

targeting second-order steady state, the final line of the mod file should look like:

stoch simul(order=2,pruning,IRF=0,AR=0,nograph,noprint);.

DSGE Nash is executed by running dsge nash(useroptions), where useroptions is a structure

that contains all the settings needed to run the toolkit. If useroptions is empty, the toolkit

will ask users to input the settings through the terminal.

C.3 Example files

There are 7 example files for DSGE Nash:

1. PrisonersDilemma.m solves the classic Prisoners’ Dilemma game with DSGE Nash. It uses

the userdefined options to set up the payoff matrix of the Prisoners’ Dilemma game.

2. EXAMPLE1.m solves the game proposed in the companion paper to DSGE Nash with paral-

lelization.

3. EXAMPLE2.m solves the game under the userdefined options, where the objectives of

players are the volatilities of some endogenous variables as computed by Dynare.

4. EXAMPLE3.m solves the optimal policy problem without strategic interactions for the central

bank of the model proposed in the companion paper to DSGE Nash. The solution is found

through a grid search.



5. EXAMPLE3bis.m solves the optimal policy problem without strategic interactions for the

dominant commodity exporter of the model proposed in the companion paper to DSGE

Nash. The solution is found through a minimization algorithm.

6. EXAMPLE4.m runs moment matching with DSGE Nash.

7. EXAMPLE4.m runs IRFs matching with DSGE Nash.

C.4 Settings for policy games based on second order stochastic steady state

of DSGE models

In the default setting of DSGE Nash the second-order mean of endogenous variables is taken

as objective. In a nutshell, the algorithm solves the model for a given combination of policy

parameters and extracts the second-order mean of the target variables from the oo .mean struc-

ture generated by Dynare. An example of the default settings is available in the example file

EXAMPLE1.m. Here follows a list of settings:

• modname: a string with the mod file name

• usedynare: =1 if Dynare is used to solve the model, 0 otherwise

• nplayers: number of players

• parallel: =1 to parallelize computations, 0 otherwise. The number of workers in the

parallel pool should be set in the Matlab preferences

• userdefined: =0 if the objective is given by the second-order means of Dynare, =1 if a

user-defined function is used to compute the objective

• ovveridedynare: =1 to change the default Dynare settings with user-defined settings; 0

otherwise

• user-defined options:

− pruning =0/1 to use pruning;

− irf=0 for no IRFs;

− ar=0 for no AR coefficients;

− nograph=1 for no graphs;

− noprint=1 for not outputing on screen Dynare calculations;

− periods=0 for no simulations.



• objname: a cell array containing the names of the objective variables for each player, e.g.

example {‘OBJ1’;‘OBJ2’}

• instname: a cell array with the list of instruments for each player, e.g. instname{1,1}

={‘INST1 1’,‘INST2 1’} for the first player and instname{2,1}={‘INST1 2’} for the

second player

• grid: grid of values for each parameter, e.g. grid{1,1}(1,1)={[0:0.2:4]} and grid{1,1}(1,2)={[0:0.2:4]}

for the first player and grid{2,1}(1,1)={[0:0.05:0.8]} for the second player

• exclusion condition: a cell array containing conditions for the parameters whereby the

model is not solved and NaN are reported for all players’ payoffs. For example, this option

can be used to solve the model only under the Taylor principle. Each condition should

be stated in a different row of the cell array as a logical condition in text format, e.g

exclusion condition{1,:}=[‘PHI HEAD+PHI COMM+PHI CORE+PHI Y<1’]; makes sure

that only models with the Taylor principle are considered. A second condition could be

added as exclusion condition{2,:}=[‘[(PHI HEAD>0) + (PHI CORE>0)]==2’]. No-

tice that Matlab cannot process multiple logical statements in the same line. For this

reason, conditions requiring more than one logical statement (as in the previous example)

should be written as sums of the single logical statements. If the condition is a logical

“and” (i.e. all statements need to be simultaneously true), this sum should equal the

number of conditions. If the condition is a logical “or” (i.e. only one of the conditions

should be true) the sum should be equal to 1. The same logic applies to different types

of logical statements. For example, if at least one condition should hold the sum should

be larger than 1 and so on.

DSGE Nash performs a grid search to fill the payoff matrix, i.e. to compute the payoff of each

player given a specific combination of strategies. Notice that when a player can choose more than

one instrument, a strategy for that player is given by a value for each of his instruments. When

using the option exclusion condition, the algorithm automatically excludes any irrelevant

convolution of parameters, i.e. not satisfying the restrictions.

Hint: adding some exclusion condition reduces the computation time of the code as ir-

relevant convolutions of parameters are excluded. These conditions are checked both in the

preamble of the code when strategies are listed and at each iteration of the algorithm. Too

many conditions in exclusion condition, therefore, might slow down computations because

of the excessive evaluation of logical conditions imputed as strings at each iteration of the

algorithm.



C.5 Settings for policy games based on other user-defined objective functions

Instead of setting as objective the second-order mean of endogenous variables (the standard

choice in optimal policy problems), users can decide to compute themselves the objective variable

for some of the players. Examples of target variables include: the volatility of variables, specific

impulse responses, the LQ approximation of endogenous variables if available.25

These user-defined target variables should be computed in user defined function.m. As an

example, in EXAMPLE2.m the objective is a weighted average of inflation and output volatility.

Settings are identical to the previous case with the exception of:

• userdefined: =1

• simlist: a cell array of variables that Dynare needs to simulate the user-defined cal-

culations. By default DSGE Nash simulates only the players’ target variables. If users

choose a user-defined simulation and need to simulate a set of variables from the model,

they should list them in this field. For example simlist = {‘NY’;‘NPI’;‘NPE’} . To

simulate all variables in the model use simlist = { }

• if IRFs need to be computed, then irf>0; if data simulations are needed periods>0

• if users do not want to use Dynare at all, they should put all the computations required

to get the value of the objective variables in the file user defined function.m and select

usedynare=0

Hint: if second order solutions are not needed, users should end the mod file by setting

stoch simul(order=1).

C.6 Settings for simple optimal policy exercise

If only one player is selected, DSGE Nash re-casts the problem as an optimal policy problem.

The code computes the value of parameters that maximise the value of the objective variables.

This is the standard welfare-optimization exercise. EXAMPLE3.m provides an example using this

option. In addition to the baseline options, users need to provide:

• usemin: =1 if users want to use a minimization algorithm to solve the policy problem

(in this case the min and max values of the parameters’ grid are use as bounds for the

optimizer); =0 if users want to use a grid search

25This has the advantage of solving the model at first order only, thus making computations significantly faster.



• minoptions: options for the optimizer; users can set any options available in Matlab. De-

fault is optimset(‘Algorithm’,‘interior-point’,‘AlwaysHonorConstraints’,‘bounds’,

‘TolFun’, 1e-5,‘TolX’, 1e-5,‘MaxFunEvals’,100000000,‘MaxIter’,100000000,

‘PlotFcns’,@optimplotfval)

Hint: also in this case users can compute themselves the target variable by using user-

defined computations either based on the Dynare output (userdefined=1, usedynare=1) or

not (userdefined=1, usedynare=0).

Hint: in case the optimizer is used, users can specify ranges for each policy variable using the

grid option. The maximum and minimum value for each grid will be used as boundaries.

C.7 Settings for IRFs or moment matching

DSGE Nash allows to perform impulse response functions or moment matching based on the

impulse responses or moments set by Dynare. Users can specify the options for the IRFs or

moment computations using DSGE Nash options or directly into the Dynare file. Moreover, users

need to store in the working directory a mat file containing the moments or IRFs to match.

Both matching algorithms make use of a Newton-based minimization of the distance between

the empirical and model-generated data. Options for the algorithms can be specified through

minoptions. The initial values are taken from the mod file calibration. Examples of moment

and IRFs matching are provided in EXAMPLE4.m and EXAMPLE5.m respectively.

IRFs matching

Users need to save empirical IRFs to be matched with the model-generated IRFs in a Matlab

file located in the current working directory. Empirical IRFs should be named exactly as the

IRFs generated by the model, i.e. variablename shockname. Additional options needed for

IRFs matching are the following:

• irfmatch: =1 this option starts the IRF matching algorithm

• matchname: a string array containing the name of the file with the empirical IRFs

• irf list: a cell array containing the list of the IRFs to be matched, as produced and

stored by Dynare in the oo .irfs structure. Example: irf list = {‘Y ea’;‘pi ea’;‘C ea’}

Hint: users can use DSGE Nash options suche as irf, nomoments, periods to override Dynare

options, but it is simpler to just set them in the users’ mod file.

Hint: users should restrict the length of the IRFs only to the maximum horizon considered in

the empirical exercise. While this is done automatically by DSGE Nash, it makes computations



faster when higher order expansions with pruning are used.

Moments matching

Users need to save empirical moments to be matched with model-generated data in a Matlab

file located in the current working directory. DSGE Nash allows to match both volatilities and

averages. Users should list the names of the variables whose volatility should be matched via the

option matchname std. The empirical variance covariance matrix of all the variables listed in

matchname std should be stored in the Matlab file and called VCOV. The option momentweight

allows to target only a subsample of cross-correlations of the listed variables. Similarly, users

should list the names of the variables whose average is targeted with the option matchname mean.

The empirical means of those variables should be stored in the Matlab file in the vector AVG.

Additional options needed for moments matching are the following:

• momentmatch: =1 this options jump starts the moment matching algorithm

• matchname: a string array containing the name of the file with the empirical IRFs

• matchname std: a cell array containing the list of the variables whose variance or corre-

lation is to be targeted

• momentweight: a squared matrix to select which moments of the variables listed in

matchname std are to be considered. It should have the same dimensions as the em-

pirical variance covariance matrix VCOV. A 0 indicates that the moment is not to be

considered while a 1 indicates that it should be targeted. It can also be used to assign

weights to different moments by using numbers between 0 and 1

• matchname mean: a cell array containing the list of the variables whose mean is targeted

• momentweight mean: vector used to assign weights to different means. If all variables

should have the same weight fill in with ones.

Hint: users can target both volatilities and averages at the same time. In case of moments

matching it is best practice to suppress the computations of IRFs and simulations.

Hint: options nomoments should be set to 0, otherwise no moments of endogenous variables

will be computed.

C.8 Output

In the case of a policy game, all Nash equilibria are printed on screen, i.e. the set of equilibrium

strategies and players’ payoffs. In case a simple optimal policy exercise is run, the output



will consist of the optimal parameter values. In case of IRFs or moment matching, matched

parameters and matching statistics are stored in the output file.

Results are stored in the current working directory. OutputGridSearch.mat contains the grid

search output (i.e. the payoff matrix). Each player’s optimal response function (i.e. the best

response given a specific combination of other players’ strategies, which are called O RES1,

O RES2...) is stored in OptimalResponseFunctions.mat. N OUT.mat is a structure containing

the DSGE Nash output.

C.9 Options

Here follows a list of all options that can be specified in the structure dsge nash(useroptions).

• ar: length of AR cofficients [default: =0]

• exclusion condition: a cell array containing conditions for the parameters whereby the

model is not solved and NaN are reported for all players’ payoffs. Each condition should be

a different logical statement in the form of a text string. Check the manual for instructions

on how to cast these statements.

• instname: cell array with names of instruments for each player

• irf: IRFs length [default: =0]

• irfmatch: =1 to start the IRFs matching algorithm

• irf list: a cell array containing a list of the IRFs to be matched. In this list IRFs

should be named using the Dynare convention variablename shockname; empirical IRFs

in matchname should have the same name

• keepout: =1 to keep all simulation results in the final structure, =0 otherwise

• matchname: string containing the name of the Matlab file where empirical IRFs or mo-

ments are stored

• matchname mean: a cell array containing the list of the variables whose mean is targeted

by the matching algorithm. Such list should use the same names as in Dynare

• matchname std: a cell array containing the list of the variables whose variance or corre-

lation is targeted by the matching algorithm. Such list should use the same names as in

Dynare



• minoptions: optimizer options [default: optimset(‘Algorithm’,‘interior-point’,

‘AlwaysHonorConstraints’,‘bounds’,‘TolFun’, 1e-5,‘TolX’, 1e-5,‘MaxFunEvals’,

100000000,‘MaxIter’,100000000,‘PlotFcns’,@optimplotfval) ]

• modname: string indicating the Dynare mod file name

• momentmatch: =1 to start the moment marching algorithm

• momentweight: a squared matrix to select which moments of the variables listed in

matchname std are to be considered. It should have the same dimension of the empirical

variance covariance matrix VCOV. A 0 indicates that the moment is not to be considered

while a 1 indicates that it should be targeted. It can also be used to assign weights to

different moments by using numbers between 0 and 1

• momentweight mean: vector used to assign weights to different means in the moment

matching algorithm. If all variables should have the same weight fill in with ones

• nograph: no graph option [default: =1]

• nomoments: suppresses computantion of endogenous variables moments by Dynare [de-

fault: =0]

• noprint: no graph print [default: =1]

• nplayers: number of players

• objname: cell array containing the names of the objective variables of each player

• ovveridedynare: =1 to override Dynare options, =0 (default) otherwise

• parallel: =1 to parallelize computations, =0 (default) otherwise

• pruning: =1 (default) for pruning, =0 otherwise

• seed: random number seed [default: =1999]

• simlist: a cell array of variables to be Dynare needs to simulate for the user-defined

calculations

• usedynare: =1 (default) to use Dynare to solve the model, =0 otherwise. In this

case the model solution and the assignment of objective variables needs to be done in

user defined function.m



• usemin: =1 (default) to use a minimization algorithm when single-player optimal policy,

=0 for grid search

• userdefined: =1 if the objective variables are computed manually based on the Dynare

ouput in the file user defined function.m, =0 (default) otherwise
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