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ABSTRACT 

Motivated by empirically characterizing the relationship between financial conditions and 
downside macroeconomic risks in the euro area, I develop a regime-switching skew-normal 
model with time-varying probabilities of transitions. Using Bayesian methods, the model 
estimates show that a strong cyclical pattern emerges from the conditional skewness (a 
measure of the asymmetry of the predictive distribution), which has a tendency to rapidly 
decline to negative territory prior and during recessions. However, the inclusion of 
financial-specific information in time-varying probabilities does not help to anticipate such 
skewness nor more generally to provide advance warnings of tail risks. 
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NON-TECHNICAL SUMMARY 

Following the Great Recession, macroeconomic risks have received substantial attention from the 
profession. For example, the European Central Bank (ECB), like many central banks, communicates 
regularly in press conferences its risk perception on inflation and growth over the foreseeable future. 
The ECB's Governing Council informs whether it sees these risks as balanced, on the upside or on 
the downside. From an academic perspective, there is evidence of a negative relationship between 
financial conditions and the lower quantiles of real economic growth, suggesting that financial 
conditions have significant predictive content for downside risks to growth. 

In this paper, I introduce and develop a regime-switching model with time-varying transition 
probabilities to estimate the moments of the distribution of euro area real gross domestic product 
(GDP) growth conditional on economic and financial conditions, and to characterize business cycle 
variation in the probability distribution and time-varying risks around GDP growth. In particular, I 
focus on a non-Gaussian model based on the skew-normal distribution, and in which location, scale 
and shape parameters are allowed to vary over time according to independent two-state Markov-
switching processes. In the setup, the probability of moving between states is allowed to depend on 
economic and financial conditions. By doing so, I am able to explore the predictive content of a 
tightening of financial conditions for changes in the distribution of GDP growth over time. The 
method provides an empirical characterization of business cycle variation of risks that goes beyond 
what can be achieved through Gaussian models, and allows for the construction of informative 
measures of downside macroeconomic risks. 

By allowing asymmetric distributions across time as well as mixing probabilities, the model is able 
to reproduce well-documented evidence on time variation in the moments of the conditional 
(predictive) distribution of GDP growth, but also to fully characterize the cyclical variation in risk, 
as measured for example by the conditional skewness. Model estimates capture recurrent features 
of business cycles in modern economies like periodic shifts in the long-term mean rate of economic 
growth and the rise in volatility observed during economic downturns. Furthermore, I provide new 
evidence that, during economic downturns, the skewness of GDP growth tends to be negative, 
implying that extreme values on the left side of the mean are more likely than the extreme values of 
the same magnitude on the right side of the mean, leading to a left tail of a large negative output. 
The skewness also tends to decline in anticipations of recessions, a feature that is also observable 
for the U.S. economy. 

However, the inclusion of financial-specific information in time-varying probabilities helps poorly 
to predict different features of the GDP growth distribution, including conditional skewness. 
Indeed, the model estimates rule out any role of financial conditions in the transition probabilities 
governing location, scale and shape parameters as the mass of the posterior distributions of 
elasticities linking financial conditions to transition probabilities lie both on the positive and negative 
side. At the same time, the signals coming from financial conditions are sporadic, and in particular, 
given the limited number of transitions observed in the sample, it turns out difficult to obtain precise 
estimates of some of the parameters. Thus, when assessed its statistical performance, the model that 
incorporates an aggregate indicator of financial stress does not improve out-of-sample forecasts in 
terms of point, density and tail risks. Therefore, financial conditions cannot be seen as a warning 
signal of downside risks in GDP growth. A caveat of the analysis is the use of quarterly data, while 
financial variables are often available at higher frequency. Considering a real-time nowcasting 
exercise with high-frequency data might be more accurate to predict downside risks. 
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                  Economic and Financial Conditions in the Euro Area 
 

 
Note: The quarter-over-quarter real GDP growth rate (dotted blue line) is labeled on the left. The Composite 
Indicator of Systemic Stress (CISS) index (solid red line) is labeled on the right. CISS includes 15 raw, mainly 
market-based financial stress measures that are split equally into five categories: the financial intermediaries 
sector, money markets, equity markets, bond markets and foreign exchange markets. 
 
 

 

Conditions financières et risques de baisse 
de l’activité économique dans la zone euro 

 

RÉSUMÉ 

Cette étude développe un modèle univarié asymétrique à changements de régimes 
markoviens avec des probabilités de transition variables dans le temps afin de caractériser 
empiriquement la relation entre les conditions financières et les risques de baisse de l’activité 
économique dans la zone euro. En utilisant des méthodes bayésiennes, l’estimation du 
modèle montre que la skewness (une mesure de l’asymétrie de la distribution prédictive) 
affiche un profil cyclique, elle descend rapidement en territoire négatif avant et durant les 
récessions. Cependant, l’intégration d’informations financières dans les probabilités de 
transition n’aide pas à anticiper une telle skewness, ni de manière plus générale, à signaler à 
l’avance les risques extrêmes.  
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I. Introduction

Following the Great Recession, macroeconomic risks have received substantial attention

from the profession. For example, the European Central Bank (ECB), like many central

banks, communicates regularly in press conferences its risk perception on inflation and growth

over the foreseeable future. The ECB’s Governing Council informs whether it sees these risks

as balanced, on the upside or on the downside. From an academic perspective, the recent

seminal work by Adrian, Boyarchenko, and Giannone (2019) on U.S. data provides evidence of

a negative relationship between financial conditions and the lower quantiles of real economic

growth, suggesting that financial conditions have significant predictive content for downside

risks to growth.

In this paper, I introduce and develop a regime-switching model with time-varying transi-

tion probabilities to estimate the moments of the distribution of euro area real gross domestic

product (GDP) growth conditional on economic and financial conditions, and to characterize

business cycle variation in the probability distribution and time-varying risks around GDP

growth. In particular, I focus on a non-Gaussian model based on the skew-normal distribu-

tion developed by Azzalini (1985, 1986), and in which location, scale and shape parameters

are allowed to vary over time according to independent two-state Markov-switching processes.

In the setup, the probability of moving between states is allowed to depend on economic and

financial conditions. By doing so, I am able to explore the predictive content of a tighten-

ing of financial conditions for changes in the distribution of GDP growth over time. The

method provides an empirical characterization of business cycle variation of risks that goes

beyond what can be achieved through Gaussian models, and allows for the construction of

informative measures of downside macroeconomic risks.

By allowing asymmetric distributions across time as well as mixing probabilities, the model

is able to reproduce well-documented evidence on time variation in the moments of the

conditional (predictive) distribution of GDP growth, but also to fully characterize the cyclical

variation in risk, as measured for example by the conditional skewness. Model estimates

capture recurrent features of business cycles in modern economies like periodic shifts in the

long-term mean rate of economic growth (e.g., Hamilton, 1989) and the rise in volatility

observed during economic downturns (e.g., Justiniano and Primiceri, 2008; Liu, Waggoner,

and Zha, 2011; Jurado, Ludvigson, and Ng, 2015; Lhuissier, 2017, 2018). Furthermore, I

provide new evidence that, during economic downturns, the skewness of GDP growth tends

to be negative, implying that extreme values on the left side of the mean are more likely than

the extreme values of the same magnitude on the right side of the mean, leading to a left tail

of a large negative output. The skewness also tends to decline in anticipations of recessions,

1



2

a feature that is also observable for the U.S. economy (e.g., De Polis, Delle Monache, and

Petrella, 2020). Clearly, the skewness is procyclical. The derivation of moments for a range

of univariate Markov-switching skew-normal model is not straightforward and I extend the

methodology developed by Timmermann (2000), which initially works with Gaussian mixture

models. The skew-normal feature employed in this paper enables me to generate wider range

of coefficients of skewness and kurtosis, and therefore to better capture nonlinearities in

the entire conditional distribution of real GDP growth in the euro area with respect to the

standard Markov-switching Gaussian model.

However, the inclusion of financial-specific information in time-varying probabilities helps

poorly to predict different features of the GDP growth distribution, including conditional

skewness. Indeed, the model estimates rule out any role of financial conditions in the transi-

tion probabilities governing location, scale and shape parameters as the mass of the posterior

distributions of elasticities linking financial conditions to transition probabilities lie both on

the positive and negative side. At the same time, the signals coming from financial condi-

tions are sporadic, and in particular, given the limited number of transitions observed in the

sample, it turns out difficult to obtain precise estimates of some of the parameters. Thus,

when assessed its statistical performance, the model that incorporates an aggregate indicator

of financial stress does not improve out-of-sample forecasts in terms of point, density and tail

risks. Therefore, financial conditions cannot be seen as a warning signal of downside risks in

GDP growth.

I rely on Bayesian methods to estimate the model. More specifically, I develop a Gibbs

sampler for Bayesian inference of time series model subject to Markov shifts in location,

scale and shape parameters. The Gibbs sampling procedure can thus be seen as an extension

of Albert and Chib (1993) by allowing asymmetric shifts in the conditional distribution.

Specifically, I take advantage of the stochastic representation of skew-normal variables, which

is based on a convolution of normal and truncated-normal variables, in order to obtain

a straightforward Markov Chain Monte Carlo (MCMC) sampling sequence that involves

a 6-block Gibbs sampler for Markov-switching models, and in which one can generate in

a flexible and straightforward manner alternatively draws from full conditional posterior

distributions. By doing so, I am able to generate draws from the posterior distributions of

functions of parameters in order to fully characterize the statistical uncertainty surrounding

the estimation of the higher order moments of the growth distribution. I believe that the

Gibbs sampler developed in this paper is a promising tool to infer time variation in the

conditional distributions of any macroeconomic time series data.

Relation to other studies. This paper is related to an increasing literature that ex-

amines the relationship between financial conditions and economic activity (e.g., Gilchrist
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and Zakraj̆sek, 2012; Gertler and Gilchrist, 2018; Brunnermeier, Palia, Sastry, and Sims,

forthcoming). Adrian, Boyarchenko, and Giannone (2019) suggest that financial conditions

have significant predictive content for downside risks to growth. Following a similar approach,

Adrian, Grinberg, Liang, and Malik (2018) examine the distribution of expected GDP growth

for 11 advanced economies and find similar results. By contrast, Plagborg-Møller, Reichlin,

Ricco, and Hasenzagl (2020) report that financial variables have very limited predictive power

for the U.S. economy. Finally, Figueres and Jarociński (2020) examine the informative con-

tent of a certain numbers of financial conditions about the tail risks to output growth in the

euro area.

The major difference between my approach and the one adopted by Adrian, Boyarchenko,

and Giannone (2019) lies in the methodology itself. While the authors use a two-step quantile

approach that requires to fit a skew-t distribution to the estimated quantiles, I directly esti-

mate the time-varying parameters of a skew-normal distribution within a Markov-switching

framework, which allows great flexibility and tractability in modeling time variation in down-

side risks as a function of economic and financial conditions. Looking at U.S. data, Plagborg-

Møller, Reichlin, Ricco, and Hasenzagl (2020) and De Polis, Delle Monache, and Petrella

(2020) introduce and estimate versatile parametric skew-t densities with time-varying param-

eters as linear functions of financial predictors and past GDP growth, which favor smooth

variation in parameters of the distribution, and thus in conditional moments. By contrast, by

allowing the mixing probabilities to display time dependence, my approach is able to generate

both smooth and abrupt variations of conditional moments, a key feature of business cycle

fluctuations. For example, financial crises are well-known for hitting the economy instanta-

neously, which favors models with abrupt changes like Markov-switching models. Using a

semi-structural model subject to Markov mean and variance shifts, Caldara, Cascaldi-Garcia,

Cuba-Borda, and Loria (2020) investigate the role of the financial and real conditions to pre-

dict tail risks in the U.S. economy.

From a methodological point of view, I propose a Markov-switching model with time-

varying location, scale and shape parameters, and mixing weights to forecast the entire

distribution of GDP growth. In the literature, time-varying asymmetry has been, in the

first place, modelled through the generalized autoregressive conditional heteroskedasticity

(GARCH) models. Notable examples include Harvey and Siddique (1999), Jondeau and

Rockinger (2003), and Christoffersen, Heston, and Jacobs (2006). The deterministic behav-

ior of such systems lead, however, to limited implications. Feunou and Tédongap (2012) and

Iseringhausen (2018) go a step further by modelling time-varying skewness as stochastic by

extending the standard stochastic volatility model. Nakajima (2013) introduces a Markov-

switching framework as an alternative to modelling stochastically asymmetry. While my
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specification remains nested into his framework, I am able to capture a wider range of co-

efficients of skewness since, not only the shape parameter is allowed to vary over time, but

also the location and scale parameters of the distribution, of which the times of changes

are stochastically independent. Most importantly, unlike Nakajima (2013)’s approach, I in-

corporate time-varying transition probabilities of transitions between regimes to assess the

potential role of financial conditions in helping to predict time variation in moments of the

GDP growth distribution.

The paper is organised as follows. Section II presents some motivating evidence. Section

III outlines the general methodology employed in this paper. Section IV presents the main

results. Section V analyzes the time series variation in GDP growth distribution. Section

VI discusses out-of-sample results. Section VII conducts robustness checks. Section VIII

concludes.

II. Motivating Evidence

In this section I present some evidence that motivates the analysis of the paper.

Figure 1 plots the real GDP growth rate of the euro area, along with the Composite

Indicator of Systemic Stress (CISS) developed by Kremer, Lo Duca, and Holló (2012) from

the first quarter of 1999 to the fourth quarter of 2019. The CISS is a weekly index maintained

by the ECB. It includes 15 raw, mainly market-based financial stress measures that are

split equally into five categories: the financial intermediaries sector, money markets, equity

markets, bond markets and foreign exchange markets.1

The connection of the financial variable to the real variable seems very unstable. Indeed,

during financial stress events (i.e., the global financial crisis and the European sovereign

debt) there is a close connection between sharp reductions in output and violent systemic

risk. By contrast, other periods show that movements in financial stress have very little effect

on the economy. This nonlinear relationship between financial sector and real economy has

been the inspiration for macro-finance theorists to depart from log-linearized models (e.g.,

Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997; Bernanke, Gertler, and Gilchrist,

1999) to study global dynamics of the system characterized by “normal” and “crisis” states,

which are determined by financial constraints in the intermediation sector (e.g., He and Kr-

ishnamurthy, 2012, 2013; Adrian and Boyarchenko, 2012; Brunnermeier and Sannikov, 2014;

Maggiori, 2017). From an empirical perspective, Hubrich and Tetlow (2015) and Lhuissier

(2017) employ Markov-switching structural vector autoregressions to better understand how

1On the ECB - statistical Data Warehouse, the code series for the real GDP series and CISS index are

MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.EUR.LR.N and CISS.D.U2.Z0Z.4F.EC.SS CI.IDX, respectively. I

perform a first log difference transformation to GDP series to compute the growth rates.

https://sdw.ecb.europa.eu/quickview.do;jsessionid=6F00195FD7BE5513E8157E4A6A535771?SERIES_KEY=320.MNA.Q.Y.I8.W2.S1.S1.B.B1GQ._Z._Z._Z.EUR.LR.N&start=&end=&submitOptions.x=0&submitOptions.y=0&trans=N
https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=290.CISS.D.U2.Z0Z.4F.EC.SS_CI.IDX
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Figure 1. Output growth and CISS.
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disruptions in financial intermediation sector manifest themselves and what their effects are

on the rest of the economy.2

This first fact motivates an analysis which is based on the use of nonlinear technique to

better understanding the relationship between the financial sector and the real economy.

Figure 2 shows the fitted distribution3 of real GDP growth in the euro area conditional

on its location in the “distress” or in the “non-distress” period. I define distress periods

as the highest one-third of realizations of the CISS index and I require that the distress or

non-distress periods minimally cover two quarterly periods. I classify two distress periods:

the third quarter of 2001 to the fourth quarter of 2002 and the third quarter of 2007 to

the fourth quarter of 2012. Clearly, the last financial distress period is associated with the

2Using a Markov-switching business cycle model, Lhuissier and Tripier (2021) point to worsening credit-

market conditions during distress periods.
3I fit a skew-normal distribution, introduced by Azzalini (1985, 1986), to the quarter-over-quarter real

GDP growth rates in the euro area.
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recent global financial crisis and the sovereign debt crisis, which typically followed in several

European countries. Interestingly, the first financial distress period prevailed during periods

marked by the 9/11 terrorist attacks, Dot-com bubble, and corporate scandals.

Figure 2. Density function of real GDP growth.
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Note: The density functions are computed by fitting the skew-normal distribution to the real

GDP growth rates of the euro area. ”Distress periods” are defined as the highest one-third

realizations of the CISS.

As can be seen there is a remarkable difference in the shape of the density function across

the distress and non-distress periods. While in non-distress periods, GDP growth appears

to be Gaussian and lying almost exclusively within the positive region, it exhibits smaller

expected values, larger variance and negative skewness in distress periods. Interestingly, one

is more likely to see GDP falling than rising during distress periods, this is in any case certain;

in fact, distress periods are associated with positive GDP growth as well. By contrast, there

is a very small probability of observing a negative growth rate during what is considered to

be non-distress periods.

This second fact suggests an analysis which is based on an empirical characterization of

variations in risk to growth that goes beyond what can be achieved through the typical

Gaussian assumption.
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Finally, it is important to note that these simple descriptive statistics do not allow us to

know the role of financial conditions in shaping the GDP distribution. The objective of the

next sections is to better understand the predictive power of financial conditions for moments

that go well beyond the mean.

III. The Methodology

This section presents the general methodology employed in this paper. Section III.1 dis-

cusses the baseline statistical model, while Section III.2 describes the Gibbs-sampler proce-

dure that will be used for Bayesian inference.

III.1. A Markov-switching skew-normal model. I employ a statistical model in which

the observation at time t, yt, is generated as follows:

p(yt|Yt−1, zt, st, θ) = skew-normal(yt|µslocationt
, σ2

sscalet
, αsshapet

), t = 1, . . . , T, (1)

where Yt = [y1, . . . , yt] contains the information set available at time t − 1, θ is a vector

of parameters, zt is a vector of lagged conditioning variables, st =
{
slocationt , sscalet , sshapet

}
contains the variables that follow Markov processes, skew-normal(Y |ξ, ω2, α) denotes the

skew-normal distribution of Y with location parameter ξ, scale parameter ω2, and shape

parameter α, and T is the sample size.

The skew-normal family was introduced by Azzalini (1985, 1986) as the extension of the

normal family from a symmetric form to an asymmetric form. It is a distribution that has

an additional parameter: a shape parameter α ∈ R, which allow for possible deviation from

symmetry. Formally, the distribution of Y is as follows:

p(Y |ξ, ω2, α) =
2

ω
ϕ

(
Y − ξ

ω

)
Φ

(
α
Y − ξ

ω

)
, (2)

where ϕ(.) and Φ(.) denote the standard normal density function and cumulative distribution

function, respectively. If the shape parameter is equal to zero, then the density of Y is a

normal distribution with mean ξ, and standard deviation σ.

The discrete and unobserved variable skt that governs the parameter k ∈ {location, scale, shape}
is an exogenous two-states first-order Markov process with the following time-varying tran-

sition matrix Qk
t

Qk
t =

[
qk1,1(zt) qk1,2(zt)

qk2,1(zt) qk2,2(zt)

]
, (3)

where qki,j(zt) = Pr(skt = i|skt−1 = j, zt) denote the transition probabilities that skt is equal

to i given that skt−1 is equal to j, with i, j ∈ {1, 2}, qki,j ≥ 0 and
∑2

j=1 q
k
i,j = 1. With the
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introduction of three-independent Markov-switching processes, the overall transition matrix

Qt becomes

Qt = Qlocation
t ⊗Qscale

t ⊗Qshape
t . (4)

This brings the total number of regimes to H = 8 (= 23). It is important to note that each

type of parameter (location, scale, and shape) can change over time according to Markov

processes, of which the transition probabilities may be potentially influenced by the lagged

conditioning variables. However, the times of changes for a specific parameter are stochasti-

cally independent of the times of changes for another one since there is no reason to believe

that all parameters of the distribution change at the same time.

I use an univariate probit model to measure the evolution of the unobservable regime skt

as follows:

Pr[skt = 1] = Pr[s∗,kt ≥ 0], (5)

where s∗,kt is a latent variable defined as:

s∗,kt = γk0 + γk1s
k
t−1 + γkz,1(1− skt−1)zt + γkz,2s

k
t−1zt + ukt , (6)

where ukt has the following distribution:

p(ukt ) = normal(ukt |0, 1), (7)

where normal(x|µ,Σ) denotes the normal distribution of x with mean µ and variance Σ. The

parameters γkz,1 and γkz,2 determine how conditioning variables affect the transition probabil-

ities of regimes. Thus, the transition probabilities qk1,1(zt) and q
k
2,2(zt) are given by:

qk1,1(zt) = Pr(skt = 0|skt−1 = 0, zt]

= Pr[s∗,kt < 0|skt−1 = 0, zt]

= Pr[ukt < −γk0 − γkz,1zt]

= Φ(−γk0 − γkz,1zt). (8)

qk2,2(zt) = Pr[skt = 1|skt−1 = 1, zt]

= Pr[s∗,kt ≥ 0|skt−1 = 1, zt]

= Pr[ukt ≥ −γk0 − γk1 − γkz,2zt]

= 1− Φ(−γk0 − γk1 − γkz,2zt). (9)

with Φ(.) represents the cumulative distribution function for ukt . When γkz,1 = 0 and γkz,2 = 0,

we have fixed transition probabilities, and the lagged conditioning variable becomes obsolete.

The persistence of each regime is gauged by the transition probabilities. As a consequence, the
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persistence of each business cycle regime depends on the previous business cycle regime, skt−1,

and on the lagged conditioning variable zt. In other words, variations in zt can potentially

affect the expected duration of how long a regime will last.

For a skew-normal model with fixed parameters the likelihood can be easily evaluated and

then combined with a prior distribution for the parameters. When dealing with a Markov-

switching skew-normal model, it can be evaluated according to the Hamilton (1989)’s filter.

Please refer to appendix A for a description of the evaluation of the likelihood. Since the

posterior density function is very non-Gaussian, it is essential to find the posterior mode via

an optimization routine. The estimate of the mode not only represents the most likely value

(and thus the posterior estimate), but also serves as a crucial starting point for initializing

different chains of MCMC draws.

The strategy to find the posterior mode is to generate a sufficient number of draws from

the prior distribution of each parameter. Each set of points is then used as starting points to

the CSMINWEL program, the optimization routine developed by Christopher A. Sims. Starting

the optimization process at different values allows me to correctly cover the parameter space

and avoid getting stuck in a “local” peak. Note, however, that I do not need to use a more

complicated method for finding the mode like the blockwise optimization method developed

by Sims, Waggoner, and Zha (2008). The authors employ a class of richly parameterized

multivariate Markov-switching models in which the parameters are break into several sub-

blocks, and then apply a standard hill-climbing quasi-Newton optimization routine to each

block, while keeping the other subblocks constant, in order to maximize the posterior density.

The size of the Markov-switching univariate model remains relatively small and allows me to

employ a more standard technique.

Then, a Gibbs sampler procedure begins with setting parameters at the peak of the pos-

terior density function. The MCMC sampling sequence involves a 6-block Gibbs sampler, in

which I can generate in a flexible and straightforward manner alternatively draws from full

conditional posterior distributions. The next section provides the details of the algorithm.

III.2. Gibbs Sampler Procedure. In the existing statistical literature, efficient posterior

simulation algorithms have been applied to finite mixtures of skew-normal distributions. See,

for example, Lin, Lee, Yen, and Chung (2007) and Frühwirth-Schnatter and Pyne (2010).

My work differs from this literature along several dimensions. I assume that regime shifts

evolve according to a Markov chain. Finite mixture models seems to be less suited for time

series analysis as they consider unrealistically rapid switching regimes. By contrast, Markov-

switching models can be seen as an extension of mixture models with a general solution to the

problem of state persistence. Second, the MCMC algorithm developed in this paper is able to
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directly generate draws of the shape parameters from a closed-form full conditional posterior

distribution, and thus avoiding to employ a Random-walk Metropolis-hasting (RWMH) algo-

rithm. Third, the method is able to deal with independently switches between the location,

the scale and the shape parameters over time, while Frühwirth-Schnatter and Pyne (2010)

allow only switches in a synchronized manner. Overall, the MCMC approach can be seen as

an extension of Albert and Chib (1993).4

A MCMC simulation method is employed to approximate the joint posterior density

p(θ,ΞT , ST |YT ), where θ = (µ, σ, α, γ), St = [s1, . . . , st], and Ξt = [ξ1, . . . , ξt] for t ≥ 1.

Define µ = (µ1, µ2)
′, σ = (σ1, σ2)

′, α = (α1, α2)
′ and γ = (γlocation, γscale, γshape), where

γk = (γk0 , γ
k
1 , γ

k
z,1, γ

k
z,2)

′. Here, a key to Bayesian estimation of a Markov-switching skew-

normal model is to apply a stochastic representation of equation (1) as follows:

yt = µslocationt
+ δsshapet

ξt +
√

1− δ2
sshapet

νt, t = 1, . . . , T (10)

where δ = α√
1+α2 , ξt and νt are random variables at time t defined, respectively, as follows:

truncated-normal(ξt|0, σ2
sscalet

)ξt>0 and normal(νt|0, σ2
sscalet

), (11)

with truncated-normal(x|µ,Σ)x>0 denotes the truncated normal distribution of x with mean

µ and variance Σ and truncated to positive values.

Because I consider a Bayesian approach to model (10) and (11), I now explicit the prior.

The prior on the set of parameters θ is given by:

p(µυ) = normal(µυ|µ̄1, µ̄2), (12)

p(1/σ2
υ) = gamma(1/σ2

υ|σ̄1, σ̄2), (13)

p(αυ) = normal(αυ|ᾱ1, ᾱ2), (14)

p(γk) = normal(γk|γ̄k1 , γ̄k2 ), (15)

where υ ∈ {1, 2}, µ̄1, µ̄2, σ̄1, σ̄2, ᾱ1, ᾱ2, γ̄
k
1 , and γ̄

k
2 are the hyperparameters, and gamma(x|x̄1, x̄2)

denotes the gamma distribution with hyperparameters x̄1 and x̄2. As can be seen, I directly

specify informative priors for the shape parameter αυ rather than for δυ, the transformed

shape parameters. When specifying priors for δυ, instead of αυ, there is no closed form for

the posterior distribution of δυ, and one must impose a non-informative prior (i.e., uniform

distribution on a bounded interval between −1.00 and 1.00), and use a RWMH algorithm.

The new representation in (10) and (11) leads me to exploit the idea of Gibbs-sampling.

Let θ̸=x contain the model’s parameters, except for x, S∗
t = [s∗1, . . . , s

∗
t ], and Zt = [z1, . . . , zt].

4Albert and Chib (1993) develop a Gibbs sampling for univariate models subject to Markov mean and

variance shifts.



11

The MCMC sampling scheme at the (n)st iteration, for n = 1, . . . , N1 + N2, consists of

sampling from the following conditional posterior distributions

(1) p
(
S
(n)
T |YT , θ(n−1)

)
;

(2) p
(
S
∗(n)
T , γ(n)|ST , ZT

)
;

(3) p
(
Ξ
(n)
T |YT , S(n)

T , θ(n−1)
)
;

(4) p
(
µ
(n)
υ |YT , S(n)

T ,Ξ
(n)
T , θ

(n−1)
̸=µ

)
;

(5) p
(
1/σ2

υ
(n)|YT , S(n)

T ,Ξ
(n)
T , θ

(n)
̸=σ

)
;

(6) p
(
α
(n)
υ |YT , S(n)

T ,Ξ
(n)
T , θ

(n)
̸=α

)
.

A few items deserve discussion. First, simulation from the conditional posterior density

p
(
S
(n)
T |YT , θ(n−1)

)
, given ZT and θ, is standard and in closed form. Second, simulation from

the conditional posterior density p
(
S
∗(n)
T , γ(n)|S(n)

T , ZT

)
is a two-step procedure. Simulation

of S
∗(n)
T are based on equation (6) by generating ut from an appropriate truncated standard

normal distribution. Then, conditional on S
∗(n)
T , S

(n)
T , ZT , simulation of γ is available in closed

form and follows a normal distribution using equation (6), which represents a simple linear

regression model. Once values for γ
(n)
0 , γ

(n)
1 , γ

(n)
z,1 , γ

(n)
z,2 are generated, one can easily compute

the transition probabilities qk1,1 and qk2,2 using the normal cumulative density function in

equations (8) and (9), respectively. Fourth, simulation from the conditional posterior density

p
(
Ξ
(n)
T |YT , S(n)

T , θ(n−1)
)
, given Yt, St and θ, is available in closed form due to the stochastic

representation of the Markov-switching model through normal and truncated-normal vari-

ables. Fifth, simulations from the conditional posterior densities p
(
µ
(n)
υ |YT , S(n)

T ,Ξ
(n)
T , θ

(n−1)
̸=µ

)
and p

(
1/σ2

υ
(n)|YT , S(n)

T ,Ξ
(n)
T , θ

(n)
̸=σ

)
reduces to Bayesian inference for Markov-switching mod-

els with known allocations, ST . Finally, simulation from the conditional posterior density

p
(
α
(n)
υ |YT , S(n)

T ,Ξ
(n)
T , θ

(n)
̸=α

)
is in closed form, and follows an unified skew-normal distribution

introduced by Arellano-Valle and Azzalini (2006). Overall, the Gibbs sampling procedure is

appealing as one can generate in a flexible and straightforward manner alternatively draws

from full conditional posterior distributions, which are all in closed form. Appendix B pro-

vides the computational details for each conditional posterior distribution.

The sampler begins with setting parameters at the peak of the posterior density function. I

collect N1+N2 draws of the MCMC sequence and keep only the last N2 values. The only com-

putational complication involves the simulation from the posterior distribution of α, which

requires to sample from a truncated multivariate normal distribution. I use the minimax

tilting method proposed by Botev (2017) for exact independently and identically distributed



12

data simulation from the truncated multivariate normal distribution.5 The method is an

excellent algorithm designed for extremely fast simulation.

IV. Empirical Results

In this section, I use the model presented in the previous section to assess whether economic

and financial conditions provide timely warning signals of downside risk in economic activity.

Toward this aim, I consider (quarter-on-quarter) GDP growth as variable of interest, yt, and

the lagged GDP growth and CISS index as conditioning variables, zt. The overall sample

period is the first quarter of 1999 to the fourth quarter of 2019. Section IV.1 presents

the specification for inference. Section IV.2 reports the main results. Finally, Section IV.3

performs model comparison.

IV.1. Specification for inference. The priors are defined on the left-hand side of Table 1.

A few of them deserve further discussion. Regarding the parameters governing the distribu-

tion, for µυ I choose a normal prior with the mean 0.00 and the standard deviation 2.00. The

prior for the scale parameter, 1/σ2
υ, follows a gamma distribution, with hyperparameters σ̄1

and σ̄2 equal to one. This prior is thus very dispersed and covers a large parameter space.

The prior for the shape parameter, αυ, has a normal density with the mean 0.00 and the

standard deviation 4.00. It may be worth noting that I impose the exact same prior across

regimes, so that the differences in parameters between regimes result more from data (i.e.,

the likelihood) rather than priors.

A little more explanation is required for the prior on the parameters determining transition

probabilities. The priors for the intercepts of the transition probabilities, γk0 and γk1 , are

allowed to differ across Markov processes. Their values are chosen to reflect a prior belief

when conditioning variables assume values close to the sample mean (zt = 0) or when the

slope coefficient is zero. Regarding the process slocation, γlocation0 and γlocation1 are both given

normal priors centered on −0.70 and 2.20, respectively, with tight standard deviations 0.10.

This is consistent with a prior duration of 4 and 14 quarters for low and high GDP growth

regimes, respectively. Regarding the process sscale, the prior for γscale0 and γscale1 are centered

on −0.60, and 2.30, respectively, with tight standard deviations 0.10. This implies a prior

duration of 3.5 and 20 quarters, for high and low volatility GDP growth regimes, respectively.

Regarding the process sshape, the prior for γshape0 and γshape1 are centered on −1.00, and 2.00,

respectively, with tight standard deviations 0.10, implying a prior duration for each regime of

about 6 quarters. In the robustness section, I show that other values for standard deviation

do not alter the posterior estimates.

5The Matlab function is available at https://fr.mathworks.com/matlabcentral/fileexchange/53792-

truncated-multivariate-normal-generator.

https://fr.mathworks.com/matlabcentral/fileexchange/53792-truncated-multivariate-normal-generator
https://fr.mathworks.com/matlabcentral/fileexchange/53792-truncated-multivariate-normal-generator
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Table 1. Prior and Posterior Distributions.

Prior Posterior

Coefficient Density para(1) para(2) Mean Median [16; 84] [5; 95]

Skew-normal parameters

µ(slocation = 1) N 0.00 2.00 0.0023 −0.0184 −0.1412 0.1631 −0.2244 0.2683

µ(slocation = 2) N 0.00 2.00 0.5548 0.5591 0.5181 0.5947 0.4735 0.6237

1/σ2(sscale = 1) G 1.00 1.00 0.3975 0.3546 0.1694 0.6199 0.0915 0.8588

1/σ2(sscale = 2) G 1.00 1.00 8.3972 8.2792 6.7501 10.0198 5.8756 11.2963

α(sshape = 1) N 0.00 4.00 −4.5595 −4.2092 −6.6372 −2.5223 −8.5680 −1.7908

α(sshape = 2) N 0.00 4.00 3.9976 3.6019 1.7675 6.2632 0.8921 8.4470

Transition probability parameters, slocation

γlocation
0 N −0.70 0.10 −0.6818 −0.6811 −0.7778 −0.5849 −0.8390 −0.5247

γlocation
1 N 2.20 0.10 2.2182 2.2185 2.1234 2.3146 2.0559 2.3773

γlocation
gdp,1 N 0.00 2.00 −0.2135 −0.2798 −1.1643 0.8072 −1.8767 1.6764

γlocation
ciss,1 N 0.00 2.00 −0.9005 −0.8814 −2.8555 1.0178 −4.0274 2.2459

γlocation
gdp,2 N 0.00 2.00 0.7729 0.7172 −0.7047 2.2596 −1.4481 3.3044

γlocation
ciss,2 N 0.00 2.00 −1.6524 −1.6951 −3.4728 0.1557 −4.5842 1.4387

Transition probability parameters, sscale

γscale
0 N −0.60 0.10 −0.5527 −0.5539 −0.6452 −0.4596 −0.7076 −0.3944

γscale
1 N 2.30 0.10 2.3405 2.3404 2.2452 2.4351 2.1866 2.4964

γscale
gdp,1 N 0.00 2.00 0.6217 0.3599 −0.6669 1.9868 −1.1373 3.1425

γscale
ciss,1 N 0.00 2.00 0.0928 0.1694 −1.9228 2.0685 −3.3316 3.3073

γscale
gdp,2 N 0.00 2.00 0.7596 0.7725 −0.1492 1.6494 −0.7938 2.3090

γscale
ciss,2 N 0.00 2.00 −0.9188 −0.9179 −2.5372 0.7158 −3.6515 1.6711

Transition probability parameters, sshape

γshape
0 N −1.00 0.10 −1.0229 −1.0217 −1.1162 −0.9284 −1.1744 −0.8672

γshape
1 N 2.00 0.10 1.9918 1.9927 1.8932 2.0894 1.8316 2.1550

γshape
gdp,1 N 0.00 2.00 1.9169 1.8196 0.6251 3.2171 −0.0014 4.1702

γshape
ciss,1 N 0.00 2.00 0.1757 0.1821 −1.4747 1.8064 −2.5686 2.8250

γshape
gdp,2 N 0.00 2.00 −0.0364 −0.1945 −1.0303 0.8760 −1.5683 2.1912

γshape
ciss,2 N 0.00 2.00 −0.6103 −0.6446 −2.5147 1.2730 −3.7037 2.5457

Note: N stands for Normal, and G for Gamma distributions. The 16 percent and 84 percent de-

marcate the bounds of the 68 percent probability interval, while the 5 percent and 95 percent

demarcate the bounds of the 90 percent probability interval. Para(1) and Para(2) correspond

to the means and standard deviations for Normal Distributions, and to the hyperparameters for

Gamma Distributions.
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Finally, the slope coefficients, γkz,1 and γkz,2, are constrained to be equal across Markov

processes. I impose a prior centered on zero and with a standard deviation 2.00. This is

meant to reflect that the researcher is skeptical of the leading properties of conditioning

variables but does not rule it out at all.

I estimate and simulate the model with Markov shifts using the maximization and MCMC

procedures developed in the previous section. In particular, the results shown in this paper

are based on N1+N2 = 55, 000 draws from the Gibbs-sampling procedure. I discard the first

N1 = 5, 000 draws as burn-in, and keep every 10-th draw in order to achieve an approximately

independent sample.

IV.2. Model estimates. On the right-hand side of Table 1, I report the posterior mean,

and median with the 68 and 90 percent probability interval for each parameter of the esti-

mated model. The first finding that is evident is the remarkable difference in the estimated

parameters across regimes. For example, the median value of the location parameter in the

first regime is about −0.02, while its value in the second regime is positive (0.56). Regarding

the scale parameter, its value appears to be more than four times higher in the first regime.

The shape parameter appears to be negative in the first regime, but positive in the second

one (α1=-4.21 and α2=3.60 at the median). Another interesting aspect is that, for each

parameter, the 68% and 90% probability intervals do not overlap between regimes. This is a

signal that those parameters are well identified in the model and that a two-state specification

is necessary to capture nonlinearities in the GDP growth.

The estimated elasticities of transition probabilities, γkz,1 and γ
k
z,2, are a way to understand

the relevance of changes in economic and financial conditions on the probabilities of switching

regimes, and thus ultimately on the conditional distribution of GDP growth. Except for the

case of γshapegdp,2 , the posterior median estimates of all elasticities are poorly estimated since their

90% probability intervals are very large and lie within both negative and positive regions.

The posterior distribution of the elasticity γshapegdp,2 has most of its mass on the positive side,

suggesting that good economic conditions tend to anticipate positively skewed distributions.

Regarding the posterior distribution of γlocationciss,2 , although the posterior 90% probability in-

terval does include zero, the corresponding 68% almost do not, and this could be interpreted

as supporting the idea that financial conditions are empirically relevant to predict the GDP

growth distribution, and more exactly its location. Looking at the posterior distributions

of γshapeciss,. , there is no evidence that financial conditions help to anticipate skewness, which is

mainly driven by the time-varying shape parameter (see below). These estimates however do

not provide a formal evaluation of both economic and financial conditions to predict GDP

growth, and in particular, its tail risks. This is the objective of next sections.
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Another interesting feature is that the parameters which describe transition parameters,

γk0 and γk1 , are relatively better identified although the data are not able to steer much away

the posterior medians of these parameters from their prior values. For example, for γlocation0

and γlocation1 , we have −0.68 and 2.22 as posterior medians while the corresponding prior

medians are 0.70 and 2.20. As a robustness check (see Section VII), I examine other degrees

of tightness and show that they deliver similar estimates.

Figure 3 reports the (filtered) probabilities — evaluated at the mode — of being in the

first regime at each period and for each Markov process.6 One can see from the figure

that the euro area economy has been characterized by numerous switches between regimes

over time. Looking at the process governing the location parameter (Panel A), Regime 1

coincides remarkably well with the recessions dates declared by the CEPR’s Business Cycle

Dating Committee. This result is definitively in line with Hamilton (1989). Regarding the

Figure 3. Regime probabilities.

Panel A. location parameter

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

years

0

0.2

0.4

0.6

0.8

1

P
ro

b.

Panel B. scale parameter

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

years

Panel C. shape parameter

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

years

Note: Sample period: 1999.Q2 — 2019.Q4. Probabilities of being in Regime 1 produced from

the baseline model. The location (Panel A), scale (Panel B) and shape (Panel C) parameters

of the skew-normal distribution are allowed to change according to two-state independent

Markov-switching processes. The yellow areas denote the CEPR recessions.

process governing the scale parameter (Panel B), one can see from the figure that the low-

scale regime has been predominantly prevailed throughout the sample, with the exception

of the Great Recession period. While nearing 0 during the early 2000s, the probability of

the high-scale regime rapidly rises in the beginning of 2008. This regime covers largely

the Great Recession of 2008-2009, but then it has never been in place again. This finding

corroborates with Lhuissier (2017, 2018), who estimates richly parameterized multivariate

6Results are similar when reporting the smoothed probabilities in the sense of Kim (1994); i.e., full sample

information is used in getting the regime probabilities at each date.
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Table 2. Estimated transition matrices (when zt = 0)

Location Scale Shape

slot = 1 slot = 2 ssct = 1 ssct = 2 ssht = 1 ssht = 2

slot = 1 0.7521
[0.7207;0.7817]

0.0621
[0.0476;0.0801]

ssct = 1 0.7102
[0.6772;0.7407]

0.0370
[0.0277;0.0484]

ssht = 1 0.8465
[0.8234;0.8679]

0.1667
[0.1351;0.2017]

slot = 2 0.2479
[0.2183;0.2793]

0.9379
[0.9199;0.9524]

ssct = 2 0.2898
[0.2593;0.3228]

0.9630
[0.9516;0.9723]

ssht = 2 0.1535
[0.1321;0.1766]

0.8333
[0.7983;0.8649]

Note: Posterior medians and [16th , 84th] percentiles are reported.

models for the euro area economy with regime changes in shock variances over time and

associates the Great Recession to a high-volatility regime. Finally, regarding the process

governing the shape parameter, Panel C suggests that the euro area economy has been

characterized by numerous switches between the negative- and positive-shape regimes over

time. In particular, the negative-shape regime has been sporadically prevailed in the early

2000s, and predominantly in 2008-2009, 2012-2015, and 2018-2019. Interestingly, although

the shape parameter is not the only source of potential asymmetry in the distribution due

to mixing probabilities, it appears that downside risks dominate a large part of the sample.

The analysis of the next section will corroborate this finding.

Overall, the results show clearly that location, scale, and shape parameters do not switch

at the same time, strengthening the specification of independent Markov-switching processes

made in the baseline model. I perform a more formal check in the robustness section.

Table 2 reports the posterior transition probabilities, Qk, at the sample mean for condition-

ing variables (zt = 0). Regarding the posterior probabilities of transition matrix (Qlocation)

that governs time variation in the location parameter, it is apparent that the persistence of

staying in each state is relatively high. The 90% probability intervals for qlocation11 are 0.72

and 0.78, and those for qlocation22 are 0.92 and 0.95, indicating that the first regime is much

less persistent (an average duration of 4 quarters at the median) than the second regime (an

average duration of 14 quarters at the median). Posterior means and medians are concen-

trated in tight ranges, reinforcing the estimated parameters. The pattern is similar for the

transition matrix Qscale, where the posterior duration of the first regime is shortened with

respect to the second one. This is not very surprising since the regime prevailed only during

the Great Recession period, as shown in Panel B of Figure 3. Finally, the transition matrix

Qshape reveals an average duration of about 6 quarters for each regime, implying recurrent

downside and upside risks in the euro area economy.

IV.3. Information Critera for alternative specifications. I employ the Watanabe-

Akaike Information Criterion (WAIC), introduced by Watanabe (2010), for purposes of model

comparison. WAIC evaluates the predictive accuracy for a fitted model by computing the log
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Table 3. Information criteria

WAIC standard errors

MS skew-normal model with GDP and CISS 34.2688 7.2745

MS skew-normal model with GDP 35.0700 7.4293

MS skew-normal model 33.6708 7.6450

MS Gaussian model 44.0676 7.6903

Note: Watanabe-Akaike information criteria (WAIC). WAIC =

−log(lpd) + p, where log(lpd) is the log pointwise predictive den-

sity, i.e.,
∑T

t=1 log
(

1
S

∑S
s=1 p(yi|θs)

)
with S is the number of MCMC

iteration, and p is the estimated effective number of parameters,

i.e.,
∑T

t=1 V
S
s=1(log(p(yi|θs)), with V represent the sample variance.

The standard error se(elpd) =
√

(T ∗ V T
t=1elpd, t), where elpd, t =

log
(

1
S

∑S
s=1 p(yi|θs)

)
−
(
V S
s=1logp(yi|θs)

)
.

pointwise predictive density corrected from the effective number of parameters to adjust for

overfitting. WAIC offers two main advantages. First, it is fully Bayesian in that it is based on

the usual posterior simulations of the parameters. Second, it is invariant to parametrization.

To compare the information content of the baseline model (“MS7 skew-normal model with

GDP and CISS”), I consider alternative Markov-switching specifications: MS skew-normal

model with time-varying transition probabilities conditional only on GDP (“MS skew-normal

model with GDP”); MS skew-normal with fixed time-varying probabilities (“MS skew-normal

model”); and a standard Markov-switching Gaussian model with fixed time-varying proba-

bilities (“MS Gaussian model”).8 Table 3 reports the value and the standard deviation of

WAIC for each model. There are a number of best-fit models, all of them are MS skew-normal

models, which delivers very similar fit. The WAICs for these models are higher by at least 10

on a log scale than that for the MS Gaussian model. Clearly, the inclusion of time-varying

asymmetry in GDP growth is supported by the data. However, MS skew-normal models

that incorporate additional information from economic and financial sectors does not help to

improve the fit of the model.

7“MS” stands for Markov-switching.
8The MS Gaussian model is characterized by two independent Markov-switching processes; one governing

the location parameter and one governing the scale parameter. Although not reported, the times of location

and scale changes are very similar to those produced from MS skew-normal models.
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V. Time variation in GDP growth distribution

In this section I explore the time-series evolution in the higher order moments, tail risks

and predictive densities implied by the baseline model that incorporates both economic and

financial variables. For comparison purposes, I also consider alternative Markov-switching

models. All exercises are based on in-sample experiments.9 Section V.1 studies time variation

in the conditional first fourth moments. Section V.2 focuses on tail risks, and Section V.3

reports predictive densities to assess whether financial conditions provide a timely warning

in the early stages of the 2008–09 recession.

V.1. Time variation in euro area moments. The previous section demonstrated that all

parameters of the skew-normal distribution are time-varying, thus indicating that the GDP

growth of the euro area is clearly not normally distributed. However, the analysis does not al-

low to directly inspect higher order moments of the distribution due to the complex nature of

the Markov mixture distribution (e.g., Timmermann, 2000; Perez-Quiros and Timmermann,

2001). For completeness, this section studies the evolution of the mean, variance, skewness,

and kurtosis, with a particular emphasize on the skewness moment in order to provide an

accurate characterization of the downside risk to GDP growth in the euro area.10 Deriving

the first four centered, conditional moments of the Markov-switching model is not straightfor-

ward. Timmermann (2000) characterizes the moments of the basic Markov switching model

for the cases where the error term follows a t-distribution or a normal distribution. I extend

the approach for the case where the error term is a skew-normal distribution. Appendix C

provides the computational details of the first four moments.

Figure 4 presents the time-varying moments of the distribution of GDP growth, drawn from

the models under consideration. For visibility purposes, I report the median and probability

bands for the baseline model that incorporates both financial and economic conditions, while

I only report medians for the remaining models. As can be seen from all models, there is a

clear cyclical pattern in the mean which declines toward the end of expansions and rise during

the end of the recession periods. Note however that the simple MS Gaussian model is not

able to produce larger fluctuations during the Great Recession with respect to other models.

Turning to the second moment, GDP growth generates clear counterfactual patterns, with a

9I consider in-sample experiments. I do not need to resort to simulation, since the one-step-ahead Markov-

switching skew-normal density is available in closed form.
10This moment is increasingly used to characterize risk. A growing number of theoretical and empirical

studies have emphasized the importance of non-Gaussian shocks in macroeconomic models. Notable examples

include Rietz (1988), Barro (2009), Barro and Ursúa (2012), Gabaix (2012), and Gourio (2012). They have

suggested that rare disasters — rising from an asymmetric distribution of shocks — are a key driver of

business cycle fluctuations, such as the Great Recession.
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peak occurring during the Great Recession. Note however that when I introduce the shape

parameter in the Markov-switching specification, variance appears to be much less important.

Figure 4. Moments.
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Note: Sample period: 1999.Q2 — 2019.Q4. Historical path of first four moments — mean,

variance, skewness, and kurtosis — of euro area GDP growth for four models (at the median):

MS skew-normal with GDP + CISS (baseline model), MS skew-normal with GDP, MS skew-

normal, MS Gaussian. The blue areas denote the 68% and 90% error bands for the baseline

model. The yellow areas denote the CEPR recessions.

Regarding higher order moments, the coefficient of skewness follows a pronounced cyclical

path with negative conditional skewness in the early recession stage. The source of asymmetry

is not only due to time variation in the shape parameter, but also from the mixture feature
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of the model. More broadly, negative skewness matches well the frequent occurrence of low

values of GDP growth. The difference between the second and third moment is also clear,

meaning that volatility is an insufficient measure of risk. The sample value of the skewness

coefficient is −0.22, which results from large swings between positive and negative skews for

all time periods. Interestingly, the skewness tends to decrease in anticipations of recessions,

a feature that is also observable for the U.S. economy (e.g., De Polis, Delle Monache, and

Petrella, 2020). To sum up, the skewness is procyclical and the time-varying business cycle

asymmetry is very much in evidence. Interestingly, the simple MS Gaussian model is not able

to produce reasonnable and realistic pattern in skewness, which tends to increase prior and

during recession phases. Finally, the coefficient of excess kurtosis has a tendancy to rapidly

decline prior and during the Great Recession, meaning that the distribution was relatively

flat. For the rest of the sample, it remains relatively stable, with short-lived oscillations.

Regarding the posterior uncertainty around moments, the mean appears to be much more

precisely estimated than the variance, skewness, and kurtosis. The historical path of kurtosis

is even more imprecisely estimated. As can be seen from the figure, the implied uncertainty

about the fourth moment is extremely large, with values ranging between 2 and 140 for

almost all time periods. Interestingly, both models that do no incorporate financial conditions

produce similar patterns and the median moments lie within the bands of the baseline model,

meaning that there is no informational advantage in providing financial variables within the

model.

V.2. Time variation in tail risk. I now investigate inferences about the left tail of the

growth distribution. As metrics for the downside risks I use the expected shortfall, which

can be readily obtained within my framework. Let ESα
t+h be the expected growth level for

yt+h < V aRα
t+h, with V aR denotes the Value at Risk, and corresponding to the (100α)th per-

centile of the h-step ahead predictive distribution. Specifically, ESα
t+h = α−1

∫ α

0
V aRa

t+h|tda

The expected shortfall equals expected growth conditional on growth falling below the fifth

percentile of its conditional distribution. It therefore characterizes the severity of a recession

should it materialize.

Panel A of Figure 5 shows the 5% expected shortfall for the four estimated models. Clearly,

all models report similar patterns; they capture partially the build-up of downside risks ahead

recessions. For example, the prediction of the ES falls to about −0.50% in the first quarter

of the Great Recession (2008.Q1), and then decreases to reach a minimum of 4% in the early

2009. We see that ES varies substantially over time and is reasonably precisely estimated.

The inclusion of financial-specific information in time-varying transition probabilities does

not alter distributional forecasts, beyond the information contained in the real indicator.
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Figure 5. Expected Shortfall and Probability of Recession.
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the probability of recession for four models (at the median): MS skew-normal with GDP +

CISS (baseline model), MS skew-normal with GDP, MS skew-normal, MS Gaussian. The

blue areas denote the 68% and 90% error bands for the baseline model. The yellow areas

denote the CEPR recessions.

Inference about the left tail of the growth distribution can also be investigated through the

probability of a recession (that is, negative growth in the following quarter), as shown in Panel

B of Figure 5. The recession probability varies substantially over time with great uncertainty.

The MS skew-normal models produce a similar assessment of recession risk, with peaks

matching the CEPR recession dates. The probability increase ahead of recessions, though

in a modestly way, and not sufficiently to warn against an imminent economic downturn.

At the late recession stage, the probability sharply declines and is below 10% just a quarter

after the end of recessions as dated by the CEPR. Finally, the assessment of recession risk

appears to be less precisely estimated for the MS Gaussian model.

V.3. Predictive densities around the Great Recession. The Great Recession hit the

world economy unexpectedly. Sharp recessions in many parts of the world was triggered

by capital losses after the Lehman Brothers event. It has been very difficult for traditional

forecasting models to produce accurate forecasts for the evolution of GDP growth. This

provides an interesting study case for the analysis of this paper. In this section, I ask whether
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the model that includes financial conditions would have produced more accurate in-sample

forecasts.

Figure 6. Predictive Densities.

-6 -4 -2 0 2
Real GDP growth rates

0

0.5

1

1.5

de
ns

ity
 fu

nc
tio

n

2007-Q3

MS skew-normal with GDP + CISS
MS skew-normal with GDP
MS skew-normal
MS Gaussian
Realized data

-2 -1 0 1 2
Real GDP growth rates

0

0.5

1

1.5

de
ns

ity
 fu

nc
tio

n

2007-Q4

-2 -1 0 1 2
Real GDP growth rates

0

0.5

1

de
ns

ity
 fu

nc
tio

n

2008-Q1

-2 -1 0 1 2
Real GDP growth rates

0

0.5

1

1.5

de
ns

ity
 fu

nc
tio

n

2008-Q2

-6 -4 -2 0 2
Real GDP growth rates

0

0.1

0.2

0.3

0.4

de
ns

ity
 fu

nc
tio

n

2008Q3

-6 -4 -2 0 2
Real GDP growth rates

0

0.1

0.2

0.3

0.4

de
ns

ity
 fu

nc
tio

n

2008Q4

Note: Predictive densities in the period of the Great Recession for four models (at the

median): MS skew-normal with GDP + CISS (baseline model), MS skew-normal with GDP,

MS skew-normal, MS Gaussian.

To provide a full characterization of risks of GDP growth around the Great Recession, I

construct means of the predictive densities of GDP growth. Since I consider one-step ahead

forecasts, I do not need to resort to simulation because the one-step-ahead Markov-switching

skew-normal density is available in closed form.11 Insights into how much the conditional

11More specifically, this means computing

p(yt|Yt−1, θ) =

H∑
i=1

Pr[st = i]
2

σi
ϕ

(
yt − µi

σi

)
Φ

(
αi

yt − µi

σi

)
. (16)
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density of GDP growth varies quarter to quarter can be gained in Figure 6, which plots the

sequence of quarterly densities during the Great Recession period 2007.Q3 to 2008.Q4.

MS skew normal models appear to better predict outcomes than MS Gaussian model, as

they assign higher probability mass to economic downturn. At the end of the crisis, these

models generate lowers conditional mean, higher conditional volatility and lower (negative)

conditional skewness, which tends to attach higher likelihood to economic downturn. Nev-

erthless, all models seem to do poorly in capturing the shift in GDP growth for the last

quarters of 2008. The results also reveal that the information content of financial conditions

does not provide valuable additional information to predict GDP growth during the Great

Recession. This is clearly in line with Plagborg-Møller, Reichlin, Ricco, and Hasenzagl (2020)

which report that financial variables seems to have little informational advantage to predict

the Great Recession in the U.S. economy.

In the next section, through a variety of forecast metrics, I provide a more systematic

evaluation of the distributional forecast accuracy by performing out-of-sample forecasting

exercises.

VI. Out-of-Sample Forecasting

In this section, I evaluate the out-of-sample performances of MS skew-normal models

using a variety of forecast metrics, for one-quarter ahead prediction. The main objective is

to assess whether conditioning on financial predictors leads to forecast improvements. Since I

am studying macroeconomic downside risks, particular attention is paid on tail risk metrics.

I conduct out-of-sample backtesting exercises by using the proposed methodology in real

time, with the caveat that I use final revised data only. The out-of-sample forcasting pro-

cedure is straightforward. I produce predictive distributions recursively, starting with the

estimation sample that ranges from the 1999.Q2 to 2010.Q2. More precisely, using data from

1999.Q2 to 2010.Q2, I estimate the predictive distribution for 2010.Q3 (one quarter ahead).

I then iterate the same procedure, expanding the estimation sample, one quarter at a time,

until the end of the sample (2019.Q4). At each iteration, I repeat the estimation steps of Sec-

tion III, maximizing the posterior distribution, running the Gibbs sampler, and computing

forecast metrics. The online Appendix D presents the technical details.

I consider three types of metrics: point, density and tail risk. I assess the point forecast,

defined as the median of the predictive distributions, via the traditional mean square fore-

cast error (MSFE). Density forecasts accuracy is evaluated via the predictive log-score. To

compute the score with models, I use a kernel-smoothed estimate of the density of the draws

from the predictive distribution based on linear diffusion processes as in Botev, Grotowski,
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and Kroese (2010).12 Regarding the accuracy of the tail risk forecasts, I consider three mea-

sures of the lower tail quantile estimate at the 5 percent quantile along the lines of Carriero,

Clark, and Marcellino (2020) and De Polis, Delle Monache, and Petrella (2020). The quantile

is estimated as the associated percentile of the simulated predictive distribution. The first

accuracy measure is a simple coverage measure for the interval forecast: the frequency with

which real-time outcomes for GDP growth fall below the 5 percent quantile of the forecast

distribution. The second is the quantile score, also known as the tick loss function (e.g.,

Giacomini and Komunjer, 2005).13 The third is the joint value at risk-expected shortfall

(VaR-ES) score from Fissler, Ziegel, and Gneiting (2015).14

Table 4 reports the predictive performance of models under consideration. To facilitate

comparisons, except in the case of the coverage rates, the results are reported as relative to

those for the MS Gaussian model. In particular, I report MSFE as a ratio of the MS Gaussian

model’s MSFE, and the quantile score as a ratio of the corresponding MS Gaussian model’s

score. A ratio below one means the model of interest is more accurate. I report the log

predictive and VaR-ES scores as differences with respect to the MS Gaussian model, so that

a differential above zero means the model of interest is more accurate. To gauge statistical

significance, I estimate Diebold and Mariano (1995)-West (1996) t-tests for equality of the

average loss (with loss defined here as squared error, log-score, quantile score, VaR-ES score).

I also compute t-tests for the empirical coverage rate equaling the nominal rate of 5%. In the

table, differences in accuracy that are statistically different from zero are denoted by “*”,

corresponding to significance levels of 5%. Significance of the test follows from Giacomini

and White (2006)’s critical values.

In terms of point forecasting and density forecasts, all MS skew-normal models are broadly

similar in accuracy. For point forecast, they generate lower MSFE values than the MS

12The Matlab function is available at https://fr.mathworks.com/matlabcentral/fileexchange/14034-kernel-

density-estimator.
13The quantile score is computed as

QSα,t+h = (yt+h −Qα,t+h)
(
α− 1(yt+h≤Qα,t+h) ),

where yt+h is the actual outcome for GDP growth, Qα,t+h is the forecast quantile at quantile α = 0.05, and

the indicator function 1(yt+h≤Qα,t+h) has a value of 1 if the outcome is at or below the forecast quantile and

0 otherwise.
14The joint VAR-ES score is computed as

Sα,t+h =Qα,t+h

(
1(yt+h≤Qα,t+h) − α

)
− yt+h1(yt+h≤Qα,t+h)

+
eESα,t+h

1 + eESα,t+h

[
ESα,t+h −Qα,t+h + α−1

(
Qα,t+h − yt+h1(yt+h≤Qα,t+h)

)]
+ ln

2

1 + eESα,t+h
,

where ESα,t+h denotes the expected shortfall forecast at quantile α.

https://fr.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
https://fr.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
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Table 4. Accuracy of out-of-sample forecasts of GDP growth

(a) (b) (c)

Model MSFE Log-Score Tail risk scores

5% coverage Quantile VaR-ES

MS skew-normal with GDP and CISS 0.7621
(0.0973)

0.0755
(0.3449)

0.0295
(0.3101)

1.2448
(0.1179)

0.0414
(0.3929)

MS skew-normal with GDP 0.7691
(0.1048)

0.0814
(0.2916)

0.0274
(0.2629)

1.2662
(0.0930)

0.0541
(0.2652)

MS skew-normal 0.8887
(0.3356)

0.0943
(0.1943)

0.0214
(0.0506)

0.9803
(0.8393)

0.0076
(0.8026)

Note: The table reports average forecast metrics relative to the MS Gaussian model, except in the

case of the 5 percent coverage rates. I use ratios for the MSFE, Quantile, and differences for Log-

Score and VaR-ES. Ratios smaller than 1, and positive values of the log-score differences indicate

that the model performs better than MS Gaussian benchmark. Values in parentheses report the p-

values of the Diebold and Mariano (1995)-West (1996) test statistic for equal predictive accuracy.

“*” denotes significance at the 5% level. Significance of the test follows from Giacomini and White

(2006)’s critical values.

Gaussian model although none of the test statistics is significant at 5% level. For density

forecast, all models tend to predict better the overall density. Clearly, there is substantial gain

in the forecasting accuracy of the models featuring time-varying asymmetric distributions.

However, for both metrics, the inclusion of financial-specific information does not improve

the forecasting performance of the model.

Before turning to the tail risk scores, I provide an analysis of the calibration of the predictive

distribution by looking at the properties of the probability integral transforms (PITs), which

measures the percentage of observations that are below any given quantile α. Results are

presented in Figure 7. Following Rossi and Sekhposyan (2019), I report confidence bands

around the 45-degree line to account for sample uncertainty. For all models, the empirical

distribution of the PITs lies within the confidence bands for any given quantile, suggesting

that all models generate robust predictive distributions. Furthermore, PITs for the model

conditional on both economic and financial conditions do not do better than others.

I then turn to the main focus of the paper, namely the assessment of tail risk predictions.

To do so, I look at the following metrics: 5% coverage rates, quantile score, and VaR-ES score

results, as show in the last column of Table 4. As to the 5% coverage measure, all models

produce coverage rates reasonably close to the nominal rates, and none of the departures

from 5 percent coverage appear to be statistically significant. Regarding quantile and VaR-

ES scores, they deliver opposite results. The introduction of Markov shifts in the shape

parameter outperforms (underperforms) the forecast accuracy of the model with respect
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Figure 7. Probability Integral Transforms (PITs).
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Note: Calibration of the predictive distribution by means of the probability integral trans-

forms (PITs). The closer the empirical cumulative distribution of the PITs is to the 45

degrees line, the better the model is calibrated. Critical values are obtained as in Rossi and

Sekhposyan (2019) to acccount for sample uncertainty.

to the benchmark MS Gaussian model in the case of the VaR-ES (Quantile) score. Note

however that none of them are economically significant. Finally, looking at the three metrics,

there is no significant gain in tail risk predictions in the model that include financial-specific

information.

As an illustration, I now zoom in on the sovereign debt crisis, placing particular focus

on the ability of models to anticipate the build up in downside risk ahead of the crisis.

Figure 8 shows the sequence of quarterly predictive densities of GDP growth around this

period. All models seem to do poorly in capturing the shift in economic conditions. This

is even worst when considering the MS Gaussian model. While the MS Gaussian model

performs particularly pooly, the three MS skew-normal models yield very similar predictive

distributions.

I have run a similar exercise with the Covid-19 crisis, as reported in the online Appendix

F. Using the same real-time estimation approach, I compute here the predictive distribution

of GDP for the first quarter of 2020. Clearly, financial variables do not provide useful timely

information about the COVID-19 downturn. A caveat of the analysis is the use of quarterly

data, while financial variables are often available at higher frequency. Considering a real-

time nowcasting exercise with high-frequency data might be more accurate to predict the

COVID-19 downturn, as shown in Ferrara, Mogliani, and Sahuc (forthcoming).
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Figure 8. Predictive densities around the sovereign debt crisis.
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Note: One-period ahead predictive densities around the sovereign debt crisis for four models

(at the median): MS skew-normal with GDP + CISS (baseline model), MS skew-normal

with GDP, MS skew-normal, MS Gaussian.

VII. Robustness

I study a number of other relevant specifications in order to assess the robustness of results.

Section VII.1 examines how the main results change when I modify the tightness of the prior.

Section VII.2 studies models in which location, scale, and shape parameters switch at the

same time. Finally, Section VII.3 compares in-sample forecasts to out-of-sample forecasts.

All of these exercises reinforce the findings in the previous sections. These results of this

section are available in the online appendix E.

VII.1. Prior sensitivity. In the baseline specification, I showed that the posterior means

of the transition probability parameters, γ0 and γ1, are very close to their prior means. This

may be not very surprising given that I impose relatively tight normal priors (i.e., standard

deviations are equal to 0.10). In this section, other degrees of tightness for the priors were

examined to determine if they deliver different outcomes. Specifically, I examined two level

of standard deviations: 0.25 and 0.50. As shown in the online Appendix E.1, changes in the
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prior tightness do not affect posterior distributions; prior means and posterior means remain

relatively close. Furthermore, the evolution of conditional first fourth moments and tail risks

produced with these alternative prior tightness remains remarkably similar to those produced

from the baseline specification.

VII.2. Synchronized vs independent chains. The results so far assume that the times

of changes for a specific parameter are stochastically independent of the times of changes

for another one. In this section, I relax this assumption and assume that location, scale,

and shape parameters switch at the same time. Say it differently, there is only one Markov-

switching process (also called “chain”) governing all parameters of the model. I compare the

fit of synchronized-chain models with that of independent-chains models.

In the online Appendix E.2, I display the value and the standard deviation of WAIC for

each independent-chains model relative to their synchronized-chains counterparts. Clearly,

all independent-chains models outperform synchronized-chains models since the estimated

differences in their expected predictive accuracy are all negative. This is more clearly appre-

ciated when taking into account the uncertainty (in terms of standard errors) of WAIC.

Overall, I conclude that independent-chains models are a better description of GDP growth

than synchronized-chains models. These results are in line with Sims (2001) and Lhuissier

and Zabelina (2015) showing that that making the transitions of variance and coefficient

regimes independent delivers the best fit.

VII.3. In-sample vs out-of-sample forecasts. I study the robustness of the results shown

so far by comparing the in-sample results with their out-of-sample counterparts. Results

for this exercise are presented in the online Appendix E.3. In particular, I report selected

percentiles computed from the baseline model that incorporates both economic and financial

information using the full sample (in-sample) and recursively (out-of-sample). I show that the

in-sample and out-of-sample estimates of the conditional distribution of future GDP growth

are very remarkably similar, except for the period around the sovereign debt crisis. Indeed,

the lower percentiles of GDP growth produced from out-of-sample estimates tend to decline

much than those produced from in-sample estimates.

Furthermore, an evaluation of the distributional forecast accuracy (point, density and

tail risk) in the in-sample experiments reveals that once again, the model incorporating the

financial variable seems to have no advantage over other models under consideration, thus

confirming the out-of-sample results.
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VIII. Conclusion

The main goal in this paper was to examine the potential role of financial conditions in

estimating the moments of the conditional distribution of GDP growth of the euro area and

in predicting tail risks. To do so, I developed a regime-switching skew-normal model with

time-varying transition probabilities. I relied on Bayesian methods to estimate the model and

developed a Gibbs sampler which leads to alternatively draws from full conditional posterior

distributions.

Model estimates provided evidence in support of a procyclical skewness in the GDP growth

of the euro area. The skewness tends to decline ahead and during recessions, a feature that is

also observable for the U.S. economy. However, the inclusion of financial-specific information

in time-varying probabilities helps poorly to predict different features of the GDP growth

distribution, including conditional skewness. Furthermore, through out-of-sample forecasting

exercises, I showed that financial conditions cannot be seen as a warning signal of downside

risks in GDP growth.

Extending Markov-switching skew-normal models to a multivariate framework would seem

to be a natural next step. Another area of future work would be to relax the assumption of

exogeneity of regime switching (i.e., the development of economic and financial conditions

are exogenous to the model) in order to better understand the sources of changes in the

conditional distribution of GDP growth. As such, the works by Kim, Piger, and Startz (2008)

and Chang, Choi, and Park (2017) on endogenous Markov-switching univariate models could

then be used in this direction. All in all, I believe those extensions certainly represent an

interesting avenue for future research and would be suited to a variety of economic problems.
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Appendix A. The Posterior

The conditional likelihood at time t is given by

p(yt|Yt−1, st, θ), (17)

which is generated by

p(yt|Yt−1, st, θ) =
2

σsscalet

ϕ

(
yt − µslocationt

σsscalet

)
Φ

(
αsshapet

yt − µslocationt

σ
sscalet

)
. (18)

Given (17), it follows that the overall likelihood of YT is

p(YT |θ) =
T∏
t=1

[∑
st∈H

p(yt|Yt−1, st, θ)Pr(st, θ)

]
. (19)

The object inside the brackets of the likelihood in (19) can be interpreted as a weighted

average of the conditional densities at time t given st. It can be evaluated recursively by

updating Pr(st, θ) according to the Hamilton (1989)’s filter. Interestingly, the inclusion of

the additional shape parameter does not require to modify the original filter.

To form the posterior density, p(θ|YT ), I combine the overall likelihood function p(YT |θ)
with the prior p(θ):

p(θ|YT ) ∝ p(YT |θ)p(θ), (20)

The posterior density p(θ|YT ) is not of standard form, but I show that it is possible to use the

idea of Gibbs-sampling by sampling alternatively from conditional posterior distributions.

For computational reasons, I employ a logarithm transformation in equation (20) to obtain

the log-posterior function as follows

log {p(θ|YT )} ∝ log {p(YT |θ)}+ log {p(θ)} , (21)

where the conditional log-likelihood at time t, given st, is as follows

log {p(yt|Yt−1, st, θ)} =constant− log
{
σsscalet

}
−

(yt − µslocationt
)2

2σ2
sscalet

+ log

{
Φ

(
αsshapet

yt − µslocationt

σsscalet

)}
.
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Appendix B. Gibbs Sampler Procedure

Given the likelihood function and the prior density function, the objective is to obtain the

conditional posterior density function by sampling alternately from the following conditional

posterior distributions

(1) p
(
S
(n)
T |YT , ZT , θ

(n−1)
)
;

(2) p
(
S
∗(n)
T , γ(n)|S(n)

T ,Ξ
(n−1)
T

)
;

(3) p
(
Ξ
(n)
T |YT , S(n)

T , θ(n−1)
)
;

(4) p
(
µ
(n)
υ |YT , S(n)

T ,Ξ
(n)
T , θ

(n−1)
̸=µ

)
;

(5) p
(
σ
(n)
υ |YT , S(n)

T ,Ξ
(n)
T , θ

(n)
̸=σ

)
;

(6) p
(
α
(n)
υ |YT , S(n)

T ,Ξ
(n)
T , θ

(n)
̸=α

)
.

I now discuss each of these conditional density functions.

B.1. Conditional posterior densities, p
(
S
(n)
T |YT , θ(i−1)

)
. Following Filardo and Gordon

(1998), the procedure for generating ST is adapted from Albert and Chib (1993) approach

for the fixed transition probability model. Because of the time-varying nature of transition

probabilities, it is not anymore possible to generate ST using the Carter and Kohn (1994)’s

multi-move Gibbs-sampling procedure that allows to simulate ST as a block. We need to

modify the Albert and Chib (1993)’s single-move Gibbs-sampling procedure.

The full conditional distribution is

p(s
(n)
t |YT , Zt, θ

(n−1)) ∝ p(st|st−1, zt)p(st+1|st, zt+1)
T∏
t=1

p(yt|Yt−1, St) (22)

Drawing S
(n)
T from the full conditional distribution based on this equation is as follows. I

begin with a draw from p(sT |YT , θ) obtained with the Hamilton (1989) basic filter, and then

iterate recursively backward to draw sT−1, sT−2, . . . , 1 using (22).

B.2. Conditional posterior densities, p
(
S
∗(n)
T , γk(n)|ST , S

∗
T ,ΞT

)
. Given values of γk and

the inequality constraint in (5), values of S∗
T can be simulated from the appropriate truncated

standard normal distributions.

Conditional on ST , S
∗
T , and Zt, one can easily generate draws for γk using equation (6),

which represents a simple linear regression model. Suppose that W k = [1 ZT Sk
T−1]. The

conditional posterior distribution is then

p(γk(n)|Sk
T , S

k*
T , ZT ) = normal(mk

γ,M
k
γ ), (23)

where Mk
γ = (γ̄−1

2 +W k′W k)−1, and mk
γ =Mk

γ (γ̄
−1
2 γ̄1 +W k′Sk*

T ).
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B.3. Conditional posterior densities, p
(
Ξ
(n)
T |YT , S(n)

T , θ(i−1)
)
. Here, the nice property of

such a model is that the full conditional distribution of Ξt given Yt, S
(n)
T , and θ(n) is available

in closed form.

For t = 1, 2, ..., T , I generate Ξ
(n)
T according to

p
(
Ξ
(n)
T |YT , S(n)

T , θ(i−1)
)
=

T∏
t=1

p
(
ξ
(n)
t |Yt, S(n)

t , θ(i−1)
)
, (24)

where

p
(
ξ
(n)
t |Yt, S(n)

t , θ(i−1)
)
= truncated-normal

(
ξ
(n)
t |δ(n)st (yt − µ(n)

st ), σ2
st(1− δ(n)st

2)
)
ξ
(n)
t >0

. (25)

B.4. Conditional posterior densities, p
(
µ
(n)
υ |YT , S(n)

T ,Ξ
(n)
T , θ

(i−1)
̸=µ

)
. If we let y∗t =

yt−δstξt√
1−δ2st

,

and x∗t =
xt√
1−δ2st

, we obtain an homoskedastic model as follows

y∗t = ϕx∗t + νt, (26)

where νt follows a standard normal distribution. Then, simulation from the full conditional

distribution of ϕ(n), given YT , S
(n)
T , Ξ

(n)
T and θ

(i−1)
̸=ϕ , becomes straightforward, given a conjugate

prior distribution. The posterior is defined as

p
(
ϕ(n)|YT , S(n)

T ,Ξ
(n)
T , θ

(i−1)
̸=ϕ

)
= normal

(
m(n)

µ ,M (n)
µ

)
, (27)

where

m(n)
µ =

(
µ̄−1
2 +X ′X

)−1 (
µ̄−1
2 µ̄1 +X ′y∗t

)
, (28)

M (n)
µ =

(
µ̄−1
2 +X ′X

)−1
, (29)

and µ̄1 and µ̄2 are known hyperparameters of the prior distribution — the mean and the

variance, respectively — and X = [x∗1, . . . , x
∗
T ]

′.

B.5. Conditional posterior densities, p
(

1

σ2
υ
(n) |YT , S

(n)
T ,Ξ

(n)
T , θ

(n)
̸=σ

)
. Given Yt, ST , ΞT , θ,

and ST , the scale parameter 1
σ2 can be drawn using the following gamma distribution

p

(
1

σ2
υ
(n)

|YT , S(n)
T ,Ξ

(n)
T , θ

(n)
̸=σ

)
= gamma(α̃, β̃), (30)

where

α̃ = ᾱ + Tυ,

β̃ = β̄ +
1

2
(
1− δ2st

(n)
) ∑

t∈{t:st=υ}

((
yt − µ(n)

st

)2 − 2
(
yt − µ(n)

st

)
δ(n)st ξ

(n)
t + ξ2t

(n)
)
,
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with Tυ is the number of elements in {t : sscalet = υ} for υ = 1, 2, and ᾱ and β̄ are the

hyperparameters.

B.6. Conditional posterior densities, p
(
α
(n)
υ |YT , S(n)

T , θ
(n)
̸=α

)
. Let ȳt =

yt−µst

σst
and Y T =

[ȳ1, . . . , ȳT ]
′. Consider the following derivation for the full conditional distribution of αυ,

given YT , S
(n)
T , and θ

(n)
̸=α:

p(α(n)
υ |YT , S(n)

T , θ
(n)
̸=α) ∝ ϕ

(
αυ − α0

ψ0

) T∏
t=1

Φ (αυȳt)

∝ ϕ

(
αυ − α0

ψ0

)
ΦT

(
αυY T ; IT

)
∝ ϕ

(
αυ − α0

ψ0

)
ΦT

(
Y Tα0 + Y T (αυ − α0); IT

)
∝ SUN1,T

(
α(n)
υ |α0,∆1(k)α0/ψ0, ψ0, 1,∆1,Γ1

)
where SUNd,m(x|ξ, τ, ω,Ω,∆,Γ) refers to the unified skew-normal (SUN) distribution intro-

duced by Arellano-Valle and Azzalini (2006) as follows

ϕd (z − ξ;ωΩω)
Φm (γ +∆Ω−1ω−1(z − ξ); Γ−∆Ω−1∆′)

Φm(γ; Γ)−1
, (31)

with Φd is the cumulative density function of d-variate Gaussian distribution with variance-

covariance matrix Σ, Ω, Γ, and Ω∗ = ((Γ,∆)′, (∆′,Ω)′) are correlations matrices, and ω is a

d × d diagonal matrix; ∆1 = [ζt]t=1,...,T with ζt = ψ0ȳ
2
t (ψ

2
0 ȳ

2
t + 1)−1/2; Γ1 = I − diag(∆1)

2 +

∆1∆
2
1; and where diag(V ) is a diagonal matrix, the elements of which coincide with those of

vector V .15

To simulate draws from the SUN distribution, one can use its stochastic representation.

Let U0 and U1,−γ have the following distribution

U0 = normal
(
U0|0,Ψ∆

)
, and U1,−γ = truncated-normal(U1|0,Γ)−γ. (32)

Then, it can be show the SUN distribution can be generated as follows

ξ + ω
(
U0 +∆Γ−1U1,−γ

)
. (33)

Once we obtain αυ, we can directly transform it to recover δυ = αυ√
(1+α2

υ)
.

15Canale, Pagui, and Scarpa (2016) demonstrates that informative priors (i.e., normal or skew-normal

distribution) for the shape parameter of a constant skew-normal model lead to closed-form full conditional

distributions.
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Appendix C. The Moments

Deriving the first four centered, conditional moments of the Markov-switching model is not

straightforward. Recall that pi,t = Pr(st = i|Yt−1, θ) is the probability of being in regime i,

with i ∈ {1, . . . , H}, at time t given information t− 1. Proposition 1 in Timmermann (2000)

characterizes the moments of the basic Markov switching model from the law of iterated

expectations as follows

E[(yt − µ̃t)
n|Yt−1, θ] = E [E[(yt − µ̃t)

n|Yt−1, θ, St]] (34)

=
H∑
i=1

E[(µi + σiεt − µ̃t)
n|Yt−1, θ] (35)

Initially, Timmermann (2000) develops the expressions for the cases where εt follows a t-

distribution or a normal distribution. I extend the approach for the case where εt is a

skew-normal distribution. It implies

E[(yt − µ̃t)
n|Yt−1, θ] =

H∑
i=1

pi,t

n∑
j=0

Cn
j σ

j
iE(ε

j
t)(µi − µ̃t)

n−j, (36)

with Cn
j = n!

(n−j)!j!
. More specifically, the centered moments are as follows

E[(yt − µ̃t)
n|Yt−1, θ] =

H∑
i=1

pi,t

n∑
j=0

Cn
j σ

j
i ai,j(µi − µ̃t)

n−j, (37)

where

ai,j =
(αi

√
2)n√

παn
i

Cn
j

(
1

αi

√
2

)j

Γ

(
n− j − 1

2

)
bj, (38)

with Γ(.) is the gamma distribution and bj = E(V j) =

0, if j odd

2j/2Γ
(
j+1
2

)
/
√
π if j even

While the first and second moments, E[yt|Yt−1, θ] = µ̃t and E[(yt − µ̃t)
2|Yt−1, θ] are not

transformed, I characterize the third (n = 3) and fourth (n = 4) moments with their cor-

responding standardized moments, defined respectively as the coefficient of skewness (
√
b1)

and the coefficient of excess kurtosis (b2) as follows√
b1 ≡

E[(yt − µt)
3]

(E[(yt − µt)2])
3/2
, b2 ≡

E[(yt − µt)
4]− 3 (E[(yt − µt)

2])
2

(E[(yt − µt)2])
2 . (39)
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Appendix D. Forecasting

I focus on the skew-normal model with Markov-switching. I generate draws from the

posterior predictive density using the following decomposition

p(YT+1:T+h|YT ) =
∫
(θ,ST )

[∫
ST+1:T+h

p(YT+1:T+h|ST+1:T+h)

× p(ST+1:T+h|θ, ST , YT )d(ST+1:T+h)

]
× p(θ, ST |YT )d(θ, ST ). (40)

I use the sequence t1 : t2 to indicate from t1 to t2.The decomposition shows how the predic-

tive density reflects about parameters and regimes at the forecast origin, p(θ, ST |YT ), and
uncertainty about future regimes. Motivated by this decomposition, I generate draws from

the predictive density taking into account the hidden Markov regimes st.

Algorithm 1 Predictive Density Draws.

For j = 1, 2, . . . , nsim,

(1) Draw
(
θ(j), S

(j)
T

)
from the posterior distribution (θ, ST |YT ).

(2) Draw p
(
ST+1:T+h|θ(j), S(j)

T

)
as follows:

(a) Compute the transition matrix Q
(j)
T using the information zT .

(b) Draw the sequence of unobservable regimes S
(j)
T+1:T+h from the transition matrix

Q
(j)
T .

(3) Compute the sequence Y
(j)
T+1:T+h by drawing from the following distribution

skew-normal
(
Y

(j)
T+1:T+h|µ

(j)

s
(j)
t

location
, σ2(j)

s
(j)
t

scale
, α

(j)

s
(j)
t

shape

)
, t = T + 1, . . . , H. (41)

Algorithm 1 produces nsim trajectories Y
(j)
T+1:T+h from the predictive distribution of Y

(j)
T+1:T+h

given YT . In Step 1, I consider the Gibbs sampling to obtain the empirical joint posterior

density
(
θ(j), S

(j)
T

)
. I generate N1 +N2 = 55, 000 draws, the first N1 = 5, 000 are discarded

as burn-in and of the remaining N2 = 50, 000 draws, one of every 10 draws is retained to

get 5, 000 draws of parameters and sequences of regimes. In Step 2, it is crucial to generate

future paths of the unobservable state st to iterate forward GDP growth. In Step 3, I draw

from the skew-normal distribution conditional on the sequence of regimes.

When computing moments of the one-step-ahead out-of-sample forecast distribution in

Section VI, I proceed as follows. For each parameter draws, and for each point in time, I

simulate 1, 000 one-quarter-ahead paths following Steps 2 and 3. I then compute various

moments of the distribution of GDP growth.

vii



Appendix E. Robustness

E.1. Prior Sensitivity. Tables 5 and 6 report prior and posterior distributions for alterna-

tive prior specifications for γ0 and γ1. Figures 9 and 10 report the resulting moments and

downside risks, respectively.

Table 5. Prior and Posterior Distributions.

Prior Posterior

Coefficient Density para(1) para(2) Mean Median [16; 84] [5; 95]

Skew-normal parameters

µ(slocation = 1) N 0.00 2.00 −0.0116 −0.0242 −0.1413 0.1440 −0.2256 0.2513

µ(slocation = 2) N 0.00 2.00 0.5593 0.5614 0.5204 0.6005 0.4766 0.6355

1/σ2(sscale = 1) G 1.00 1.00 0.3741 0.3249 0.1541 0.5943 0.0812 0.8225

1/σ2(sscale = 2) G 1.00 1.00 8.3036 8.2076 6.7056 9.9305 5.7691 11.1105

α(sshape = 1) N 0.00 4.00 −4.3589 −3.9792 −6.3566 −2.3740 −8.3341 −1.6837

α(sshape = 2) N 0.00 4.00 4.0179 3.6447 1.7155 6.3593 0.8358 8.5257

Transition probability parameters, slocation

γlocation
0 N −0.70 0.25 −0.6288 −0.6254 −0.8508 −0.4085 −0.9992 −0.2641

γlocation
1 N 2.20 0.25 2.2894 2.2892 2.0545 2.5192 1.9046 2.6835

γlocation
gdp,1 N 0.00 2.00 −0.0752 −0.1297 −1.0581 0.9319 −1.7182 1.7651

γlocation
ciss,1 N 0.00 2.00 −0.9616 −0.9414 −2.8181 0.9084 −4.0988 2.1228

γlocation
gdp,2 N 0.00 2.00 0.7672 0.6727 −0.7859 2.3478 −1.5868 3.4765

γlocation
ciss,2 N 0.00 2.00 −1.7466 −1.8004 −3.5314 0.0525 −4.6956 1.2996

Transition probability parameters, sscale

γscale
0 N −0.60 0.25 −0.4128 −0.4177 −0.6248 −0.1955 −0.7595 −0.0520

γscale
1 N 2.30 0.25 2.4562 2.4553 2.2330 2.6784 2.0941 2.8295

γscale
gdp,1 N 0.00 2.00 0.6350 0.3624 −0.6216 1.9694 −1.1005 3.1836

γscale
ciss,1 N 0.00 2.00 0.0972 0.1216 −1.8962 2.1174 −3.2999 3.3016

γscale
gdp,2 N 0.00 2.00 0.9071 0.9591 −0.1106 1.8769 −0.8836 2.5869

γscale
ciss,2 N 0.00 2.00 −0.9818 −0.9699 −2.6365 0.7056 −3.7608 1.7166

Transition probability parameters, sshape

γshape
0 N −1.00 0.25 −1.1020 −1.1055 −1.2959 −0.9044 −1.4209 −0.7737

γshape
1 N 2.00 0.25 1.9673 1.9710 1.7313 2.2009 1.5748 2.3551

γshape
gdp,1 N 0.00 2.00 1.8965 1.7639 0.5720 3.2478 −0.0774 4.3174

γshape
ciss,1 N 0.00 2.00 0.1348 0.1687 −1.4995 1.7720 −2.5902 2.7670

γshape
gdp,2 N 0.00 2.00 0.1313 −0.0287 −0.9119 1.1112 −1.4895 2.2875

γshape
ciss,2 N 0.00 2.00 −0.6572 −0.6584 −2.5898 1.2279 −3.8008 2.5754

Note: N stands for Normal, and G for Gamma distributions. Para(1) and Para(2) correspond

to the means and standard deviations for Normal Distributions, and to the hyperparameters for

Gamma Distributions.
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Table 6. Prior and Posterior Distributions.

Prior Posterior

Coefficient Density para(1) para(2) Mean Median [16; 84] [5; 95]

Skew-normal parameters

µ(slocation = 1) N 0.00 2.00 −0.0407 −0.0511 −0.1557 0.1124 −0.2477 0.2177

µ(slocation = 2) N 0.00 2.00 0.5683 0.5659 0.5277 0.6063 0.4922 0.6462

1/σ2(sscale = 1) G 1.00 1.00 0.3673 0.3141 0.1487 0.5787 0.0883 0.8254

1/σ2(sscale = 2) G 1.00 1.00 8.2657 8.1739 6.5953 9.9024 5.6683 11.1517

α(sshape = 1) N 0.00 4.00 −4.2302 −3.8225 −6.2348 −2.2763 −8.2749 −1.5506

α(sshape = 2) N 0.00 4.00 3.9009 3.5195 1.5985 6.3115 0.6850 8.6000

Transition probability parameters, slocation

γlocation
0 N −0.70 0.50 −0.5800 −0.5900 −0.9824 −0.1654 −1.2414 0.0967

γlocation
1 N 2.20 0.50 2.4183 2.4199 2.0002 2.8398 1.7325 3.1313

γlocation
gdp,1 N 0.00 2.00 −0.0388 −0.1156 −1.1160 1.1316 −1.8076 2.0182

γlocation
ciss,1 N 0.00 2.00 −0.8820 −0.8674 −2.7658 1.0120 −4.0182 2.2061

γlocation
gdp,2 N 0.00 2.00 0.8404 0.7608 −0.8890 2.5586 −1.7665 3.7225

γlocation
ciss,2 N 0.00 2.00 −1.8136 −1.8664 −3.6475 −0.0059 −4.7483 1.3444

Transition probability parameters, sscale

γscale
0 N −0.60 0.50 −0.2161 −0.2109 −0.6217 0.1791 −0.8713 0.4518

γscale
1 N 2.30 0.50 2.5998 2.6025 2.1881 3.0124 1.9097 3.2775

γscale
gdp,1 N 0.00 2.00 0.7986 0.6330 −0.5325 2.1906 −1.0305 3.1877

γscale
ciss,1 N 0.00 2.00 0.0739 0.1239 −1.9737 2.1226 −3.3342 3.2735

γscale
gdp,2 N 0.00 2.00 1.1572 1.2290 −0.0029 2.3240 −1.0013 3.0327

γscale
ciss,2 N 0.00 2.00 −1.0282 −1.0216 −2.8197 0.7516 −3.8923 1.8724

Transition probability parameters, sshape

γshape
0 N −1.00 0.50 −1.1913 −1.1813 −1.4633 −0.9172 −1.6920 −0.7368

γshape
1 N 2.00 0.50 1.9336 1.9264 1.5324 2.3329 1.2592 2.6272

γshape
gdp,1 N 0.00 2.00 2.1071 2.0008 0.6756 3.5685 −0.0085 4.5995

γshape
ciss,1 N 0.00 2.00 0.1423 0.1446 −1.4712 1.7950 −2.5636 2.8152

γshape
gdp,2 N 0.00 2.00 0.2123 0.1197 −0.9167 1.3099 −1.5703 2.3501

γshape
ciss,2 N 0.00 2.00 −0.7061 −0.7152 −2.6479 1.1942 −3.7954 2.5175

Note: N stands for Normal, and G for Gamma distributions. Para(1) and Para(2) correspond

to the means and standard deviations for Normal Distributions, and to the hyperparameters for

Gamma Distributions.
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Figure 9. Moments with alternative prior specifications.
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Panel B. Variance
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Panel C. Skewness coefficient
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Panel D. Kurtosis coefficient
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Note: Sample period: 1999.Q2 — 2019.Q4. Historical path of first four moments — mean,

variance, skewness, and kurtosis — of euro area GDP growth. The yellow areas denote the

CEPR recessions.
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Figure 10. Expected shortfall and probability of recession with alternative

prior specifications.
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Panel B. Probability of recession
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Note: Sample period: 1999.Q2 — 2019.Q4. Evolution of the 5% expected shortfall and the

probability of recession. The yellow areas denote the CEPR recessions.
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E.2. Independent-chains model vs synchronized-chains model. Table 7 compares the

independent-chains model and the synchronized-chains model using an information criteria.

Figure 11 shows the probabilities of being in Regime 1 under the synchronized-chains models.

Table 7. Information criteria

Difference relative to synchronized-chains model

Independent-chains model WAIC standard errors

MS skew-normal with GDP + CISS −11.1786 4.4467

MS skew-normal with GDP −11.5745 4.5779

MS skew-normal −14.4201 5.3460

Note: Watanabe-Akaike information criteria (WAIC). WAIC = −log(lpd)+p, where

log(lpd) is the log pointwise predictive density, i.e.,
∑T

t=1 log
(

1
S

∑S
s=1 p(yi|θs)

)
with S is the number of MCMC iteration, and p is the estimated effective

number of parameters, i.e.,
∑T

t=1 V
S
s=1(log(p(yi|θs)), with V represent the sam-

ple variance. The standard error se(elpd) =
√

(T ∗ V T
t=1elpd, t), where elpd, t =

log
(

1
S

∑S
s=1 p(yi|θs)

)
−
(
V S
s=1logp(yi|θs)

)
. For model comparison between A and B,

the standard error is se(elpd
A − elpd

B
) =

√
T ∗ V T

t=1(elpd, t
A − elpd, t

B
). Negative

values of WAIC differences indicate that the independent-chains model performs

better than the synchronized-chains model.

Figure 11. Regime probabilities.
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Panel B. MS skn with GDP
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Panel C. MS skn
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Note: Sample period: 1999.Q2 — 2019.Q4. Probabilities of being in Regime 1 produced

from the synchronized models: MS skew-normal with GDP and CISS (Panel A), MS skew-

normal with GDP (Panel B) and MS skew-normal (Panel C). The location, scale, and shape

parameters follow the same two-state Markov-switching process. The yellow areas denote

the CEPR recessions.
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E.3. In-sample vs out-of-sample forecasts. Figure 12 compares out-of-sample and in-

sample predictive densities for GDP growth one quarter ahead using the baseline model (MS

skew-normal with GDP and CISS). Table 8 reports the accuracy of in-sample forecasts of

GDP growth using three forecast metrics : MSFE, log-score, and tail-risk scores. For the

latter, I consider three basic measures: (1) the percentage of outcomes falling below the 5

percent quantile of the forecast distribution; (2) the quantile score; and (3) the joint value

at risk-expected shortfall (VaR-ES) score.

Figure 12. Out-of-sample vs in-sample predictions
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Note: Sample period: 1999.Q2 — 2019.Q4. The figure compares out-of-sample and in-

sample predictive densities for GDP growth one quarter ahead.
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Table 8. Accuracy of in-sample forecasts of GDP growth

Model MSFE Log-Score Tail risk scores

5% coverage Quantile VaR-ES

MS skew-normal with GDP and CISS 0.5373∗
(0.0001)

0.4268∗
(0.0000)

0.0068∗
(0.0000)

0.7757∗
(0.0014)

−0.0997∗
(0.0003)

MS skew-normal with GDP 0.5443∗
(0.0001)

0.4148∗
(0.0000)

0.0067∗
(0.0000)

0.7730∗
(0.0010)

−0.0989∗
(0.0002)

MS skew-normal 0.4935∗
(0.0000)

0.4605∗
(0.0000)

0.0049∗
(0.0000)

0.6848∗
(0.0000)

−0.1197∗
(0.0000)

Note: The table reports average forecast metrics relative to the MS Gaussian model, except in the

case of the 5 percent coverage rates. I use ratios for the MSFE, Quantile, and differences for Log-Score

and VaR-ES. Ratios smaller than 1, and positive values of the log-score differences indicate that the

model performs better than the MS Gaussian benchmark. Values in parentheses report the p-values

of the Diebold and Mariano (1995)-West (1996) test statistic for equal predictive accuracy. “*” de-

notes significance at the 5% level. Significance of the test follows from Giacomini and White (2006)’s

critical values.
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Appendix F. Covid-19 Crisis

Figure 13 shows the predictive densities of GDP growth for the first quarter of 2020.

Figure 13. Predictive Densities of GDP Growth in the COVID-19 Crisis

-4 -3 -2 -1 0 1 2

Real GDP growth rates

0

0.5

1

1.5

de
ns

ity
 fu

nc
tio

n

MS skew-normal with GDP + CISS
MS skew-normal with GDP
MS skew-normal
MS Gaussian
Realized data

Note: Predictive densities produced from the models under consideration: MS skew-normal

with GDP + CISS (baseline model), MS skew-normal with GDP, MS skew-normal, and MS

Gaussian.
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