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ABSTRACT

Using several millions of daily prices collected over the period 2007-2018 in France, we
investigate how gasoline retail prices respond to a common shock on marginal cost (i.e. the
wholesale gasoline price quoted on the Rotterdam market). We find that the pass-through is
complete: a 1% change in Rotterdam price translates to a change in retail price of 0.8%, in
line with the share of the wholesale gasoline in total costs. The adjustment is gradual: the full
pass through takes about 3 weeks. In a broad class of sticky price models, the ratio of the
kurtosis over the frequency of price changes is shown to be a sufficient statistic for the
cumulative impulse response of prices (CIRP) to a nominal shock. We provide evidence that
the sufficient statistic prediction holds when we look at how gasoline prices respond to a
common cost shock. Relating, at the gas station level, the CIRP to moments of the price
change distribution, we find that the CIRP correlates with the ratio of kurtosis over
frequency, but also with both frequency and kurtosis taken separately. The sign and the
magnitude of the correlations are fully in line with theoretical predictions. We also show that
other moments do not correlate with CIRP as robustly as the frequency and the kurtosis.
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NON-TECHNICAL SUMMARY

Price rigidity is a key ingredient in standard macro models to generate short term real effects
of monetary policy. A recent theoretical literature has shown that in a very broad class of
sticky-price models, the cumulated responses of output to a monetary shock is proportional
to the ratio of two moments of the observed price change distribution: the kurtosis of non-
zero price changes (i.e. a measure of “fat tails” of the distribution) and the frequency of price
changes. This ratio is what we call a sufficient statistic for real effects of a monetary shock.
The intuition behind this result is the following: when prices adjust very frequently, prices
will respond quickly to the cost shock and the cumulative response of output will be smaller.
For a given frequency of price changes, the size of price changes also matters: if firms
adjusting their prices are the ones whose prices are the furthest away from the price that
would have prevailed under price flexibility, the price response will be quicker and the
cumulative real effects smaller. The kurtosis of price changes is shown to capture this “price
selection effect” accelerating the price response to a shock. However, empirical evidence
testing this sufficient statistic proposition is quite scarce. In this paper, we provide new
empirical evidence supporting this prediction, focusing on the cumulated response of prices
(CIRP). To do so, we use a dataset covering daily gasoline prices collected in about 10,000
gas stations in France between 2007 and 2018.

Gasoline offers a clean case study for testing the sufficient statistic prediction for at least two
reasons: first, we can relate individual prices to observed variations in one of the main
component of their costs (i.e. the wholesale gasoline traded on the Rotterdam market) and
we are able to derive precise estimates of the price response to a cost shock at the gas station
level; second, kurtosis often raises measurement issues because this statistic is quite sensitive
to outliers and product heteregoneity. In our dataset, for each gas station, we observe several
hundreds of price changes for a homogenous good, which helps us to obtain quite precise
measures of kurtosis at the gas station level. We then rely on variation of kurtosis and
frequency of price changes across gas stations to test the sufficient statistic prediction.
First, we document that gasoline prices are sticky (relative to the high frequency of shocks):
(i) while oil prices vary every day, the typical duration between two gasoline price changes is
4 opening days, (ii) the distribution of gasoline price changes does not mirror the distribution
of wholesale price changes: the former displays a two-peak distribution with few small price
changes whereas the latter is close to a normal distribution centered around 0; (iii) relating
prices to observed cost, we find persistent gaps between actual prices and prices that gas
stations would charge if they passed changes in marginal cost into their prices every day;
moreover, the probability of changing prices is an increasing function of this gap.

We then estimate the reaction of gasoline prices to a marginal cost shock at both the
aggregate and gas station levels. A 1% change in Rotterdam wholesale diesel price translates
into a change in retail price of 0.8%, in line with the share of the wholesale gasoline in total
costs and a full pass-through of costs to prices. The adjustment is gradual: the pass through
takes about 3 weeks. We also find that shocks on the markup (proxied by the average local
price changes) are transmitted immediately, with a much smaller pass-through (20%) that
gradually fades out to become insignificant after 20 days. We do not find any evidence of
asymmetric price reactions to negative or positive shocks.

To test the sufficient statistic prediction, we relate the cumulative impulse response function
of prices to marginal cost to the ratio of kurtosis over frequency calculated at the gas station
level using two different empirical exercises. The first one is conducted pooling all price
observations together, while the second exercise uses the cross sectional dispersion of both
the cumulated price response and the ratio of the kurtosis to the frequency of price changes
at the gas station level. Both empirical exercises provide robust and consistent evidence that
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this ratio correlates negatively with CIRP as predicted by the sufficient statistic theory (Figure
— left panel). The estimated coefficient relating CIRP and the ratio is also close to -0.167, the
value predicted by the theory. Besides, both the frequency and the kurtosis of price changes
taken separately correlate equally and significantly with CIRP and with the expected sign
(Figure center and right panels). Other moments of the price change distribution do not
show the same robust and significant relationship with CIRP as the one obtained for the
ratio kurtosis over frequency.

Figure: Correlation between the cumulative impuse response of gasoline prices to a cost
shock (CIRP) and key moments of the price change distribution
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Note: correlations are calculated across gas stations; statistics are measured for every gas station in France
based on a dataset of daily gasoline prices in France between 2007 and 2018 collected by the Ministry of
Economy.

Comment les prix a la pompe réagissent-ils
a un choc sur le prix du pétrole ?

RESUME

A partir de plusieurs millions de prix collectés quotidiennementsur la période 2007-2018 en France,
nous étudions comment les prix de détail de l'essence réagissent a un choc commun sur le cott
marginal (i.e. le prix de gros coté sur le marché de Rotterdam). La transmission est complete : une
variation de 1 % du prix de gros se traduit par une variation du prix de détail de 0,8%, en ligne
avec la part de I'essence vendue en gros dans les couts totaux. L'ajustement est progressif : la
transmission complete prend environ 3 semaines. Dans une large classe de modeles a prix rigides,
il a été démontré que le ratio de la kurtosis sur la fréquence des changements des prix est une
statistique suffisante de la réponse cumulée des prix a un choc nominal. En estimant, pour chaque
station, la réaction des prix a un choc sur le prix de gros, et en liant le cumul de leur fonction de
réponse aux moments de leur distribution de changements de prix, nous montrons que la
prédiction théorique est vérifiée : le cumul de la fonction de réponse est corrélé au ratio kurtosis
sur fréquence, mais également a la fréquence et a la kurtosis considérées séparément. Nous
montrons que les autres moments de la distribution ne sont pas aussi fortement corrélés au cumul
de la fonction de réponse que la fréquence et la kurtosis.

Mots-clés : rigidité des prix, prix a la pompe, statistique suffisante.

Les Documents de travail refletent les idées personnelles de leurs auteurs et n'expriment pas
nécessairement la position de la Banque de France. IIs sont disponibles sur publications.banque-france.fr
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1. Introduction

How do prices respond to a marginal cost shock2mlge Alvarez et al. (2016) and Alvarez et al.
(2021a) have theoretically shown that in a gerwaab of sticky price models (nesting in particular
the standard menu cost and the Calvo models),uhmeilated output response to an aggregate
nominal shock can be summarized by a sufficietisgtawhich is the ratio of kurtosis of non-zero
price changes over the frequency of price charidesintuition behind the result is quite simple.
If prices are sticky, they respond slowly to a gigbock (leading to real effects) and the frequency
of price changes will capture the speed of prigestishent. For a given frequency, the size of price
adjustment also matters. If firms adjusting theicgs are the ones whose prices are the furthest
from the price that would have prevailed undereofiexibility, the price response will be larger
and quicker and the cumulated output responsebibmaller. The kurtosis of price changes
captures this price selection effect acceleratiegprice response and reducing the real effeets of

nominal shock.

In this paper, we provide new empirical eviden&tinig this sufficient statistic property using a
unique dataset containing several millions of gasotetail prices collected daily by the
Ministry of Economy and covering the universe oéeh gas stations over the period 2007-
2018.

Gasoline prices offer a very clean case studydstinig the sufficient statistic property for at
least two reasons. First, the kurtosis of the pcicanges distribution is generally measured
quite imprecisely because it is highly sensitiveotdliers and to product heterogeneity. Our
gasoline price data help us to overcome these megasat difficulties. First, gasoline is a very
homogenous product and second, prices contain aimeosieasurement error since they are
reported by stations themselves under the confrifieoMinistry of Economy. Besides, each
gas station has a long time series with severakyaalaily prices, which allows us to compute
a precise measure of kurtosis at the gas statiah, lesing several hundreds of price changes
for every gas station. We then rely on the varratbthis statistic across gas stations to test the
sufficient statistic property. A second reason vgagoline prices are a clean case study for
testing the sufficient statistic is that we can suga quite precisely how gasoline prices respond
to an observed marginal cost shock. To do thislimkedaily gasoline price trajectories with
the price change of wholesale diesel quoted dailthe Rotterdam wholesale market, which is
a large cost component for gas stations. This sieakguably exogenous and displays high-

frequency variation. Since each gas station haktively long time series, we can estimate for



every gas station an accurate measure of the ctiveulapulse response function of gasoline
prices to a marginal cost shock. We can then kessufficient statistic prediction exploiting

the variability of this measure across gas stations

In this paper, we first document that if gasolimegs are updated much more frequently than
other consumption goods, they are still stickyomparison with the high frequency of shocks.
On average, gas stations change their prices oneelg while the marginal cost changes every
day. Second, the distribution of price changesldiygpsome specific patterns. In particular,
there are very few small price changes and thealdlision of price changes is M-shaped, while
the distribution of marginal cost shock is clos@ateormal distribution centered around 0. For
most gas stations, we find that the kurtosis ofghanges ranges between 1 and 6, which
corresponds to the two “extreme” values predictedhe theoretical model of Alvarez et al.
(2021a) (1 in a standard menu cost model and &0 model). We also find that the average
kurtosis across gas stations is about 3, suggestinge moderate degree of price selection.
Since we observe quite precisely a large compouwiethie marginal cost of gasoline at a daily
frequency, we can also compute the generalizedsed@nt hazard function relating the
probability of price changes to the gap betweenratiiaal price and the price that would have
been observed under perfect flexibility. We findttthis function is monotonically increasing
in the absolute value of the price gap. This rasufuite consistent with predictions of random
menu-cost models of price rigidity and Alvarez et(2021a) show that the sufficient statistic

holds when we observe such patterns in the gemedaliazard function.

We then show that gasoline prices do not respomaediately to a marginal cost shock. To do
this, we estimate the average reaction of gasoditadl prices to a change in the wholesale price
of diesel quoted in the international market, usinflexible local projection methodology

(Jorda, 2005). This estimation method is partidylaseful in our case since it imposes a
minimal structure on the dynamics of the respoinsiges not require assuming any constraint
on the long-run pass-through and allows us to esérthe impulse response function of prices
to the cost shock for quite long horizons. We fthéit a 1%-variation in the Rotterdam

wholesale price of diesel is gradually transmitiedjasoline prices within 3 weeks, and that
the long-run pass-through is of 80%, in line wiik share of marginal cost in the total cost of
a gas station. The protracted adjustment of prioethe shock confirms the presence of
significant price stickiness. We also document rejrineterogeneity depending on station
characteristics: stations with lower prices (whaech also more likely to be supermarkets) show

a larger pass-through; conversely, stations usiogeraften psychological prices (ending with



a 0 or a 9) have a lower pass-through. Finally,deenot find any evidence of asymmetric

reactions between positive and negative shocks.

Using this empirical model to derive the cumulaiivgulse response of prices to a cost shock,
we can investigate the sufficient statistic pradict Here we follow closely the empirical
strategy developed by Alvarez et al. (2021b): ussegtoral French data, they relate the
cumulative impulse response of prices (CIRP) tar#ti® kurtosis over frequency. In our case,
the identifying variability will come from variaties across several thousands of gas stations.
We rely on two different empirical exercises. Figsboling all gas stations together, we can
include in our baseline local projection empiricabdel an interaction term between the
common cost shock and the ratio kurtosis over faqy at the gas station level. In a second
exercise, we estimate for each gas station ofamapte the impulse response function of prices
to a marginal cost shock. We then normalize thg-dam pass-through across gas stations so
that we calculate the CIRP at different horizonsan equivalent nominal shock of 1%. We
finally investigate the relationship across gatiata between CIRP and moments of the price
distribution under the restrictions implied by ttreeory and as developed in Alvarez et al.
(2021b).

In both empirical approaches, our results providdence strongly supporting the sufficient

statistic property. As predicted by the theory, @I®P to a positive marginal cost shock is
negatively related to the ratio of kurtosis ovesginency. This result is robust to a variety of
robustness checks and to considering different uneasof the cost shock. We find that the
magnitude of the coefficient associated with there in line with predictions of the model.

The estimated coefficients vary between -0.1 aritb-Bccording to specifications, whereas the
standard predicted value is -0.167. Another findsmghat both frequency and kurtosis are
correlated with the CIRP with the expected sigm @re magnitude of the coefficients is also
fully in line with the theoretical predictions. grestingly, we also obtain that for both frequency
and kurtosis, T-statistics associated with estichateefficients are quite high and similar,

suggesting that both moments contribute as mudheaross-sectional dispersion of CIRP.
Besides, we find that other moments of the prisgrithution do not correlate as robustly as the
frequency and the kurtosis of price changes. Waiolihat T-statistics associated with these
moments are much lower and that depending on #nafggation or the sample we consider the
magnitude and even the sign of the regressionicaaffs associated with other moments can

vary. In the empirical exercise where we pool &k gstations together, interaction terms



corresponding to other moments of the price changjabution are not statistically significant

for long-term horizons (at which the theoreticagtiction is supposed to hold).

We run several robustness exercises using diffeneaisures of shocks, different horizons for
the calculation of long-term pass-through and theRC different samples of gas stations, or
alternative measure of kurtosis taking into acc@asssible heterogeneity. They all confirm that
the sufficient statistic prediction holds: the oatof kurtosis over frequency correlates
significantly with CIRP and both moments taken sefgy are also correlated with equal

importance and significance with CIRP.

Our paper is a contribution to the very recentguatving literature testing the sufficient statistic
prediction of Alvarez et al. (2016, 2021a). Usimgrich sectoral data, Alvarez et al. (2021b)
propose to investigate empirically this predictaord provide an empirical framework for these
tests. We here build on this first contribution daliow closely their empirical framework to
document new empirical evidence focusing on a §ipegeroduct for which we have more
precise information both on the marginal cost aman@ments of the price change distribution.
Contrary to Alvarez et al. (2021b), we do not l@knonetary policy shock but to an observed
marginal cost shock common to all gas stationsudderlined in Alvarez et al. (2021b), the
theory applies to any common shock shifting thegimai costs of all firms the same way; the
wholesale price of diesel here affects all gasastatat the same time. We can then use the
heterogeneity of CIRP across gas stations to testsufficient statistic predictions. Since
gasoline is a quite homogenous product and we tialyeobservations, we are able to compute
higher moments of price changes with less serioegsorement issues than in other empirical
settings. In a related contribution to this literat testing the sufficient statistic, Hong et al.
(2021) on US producer price data find that freqyescthe only moment which is robustly
related to the price response to a monetary shduremas Henkel (2020) documents that
sectoral heterogeneity in the response to a monstawck can be related to cross-sectoral
dispersion in the frequency of price changes. We kephasize that the frequency is not the
only moment which can be related to the cumulatezkpesponse to a marginal cost shock,
the kurtosis also matters as predicted by the #tieal result of Alvarez et al. (2016, 2021a).

Our work is also related to a very large literatioeusing on how gasoline prices respond to
an oil price shock (see Hosken et al. 2008 foramst). In particular, Davis and Hamilton

(2004) or Douglas and Herrera (2010) both investigaice stickiness of gasoline prices in the



United States looking at the determinants of tlubability of price change'sGautier and Le
Saout (2015) have used similar micro data as tles @@ use in this paper on a much shorter
period of time and have investigated how the proitabut also the size of price changes are
related to marginal cost shocks. They have estinstiion-specific models of price rigidity
to derive aggregate implications for the price dygits. They conclude that individual price
responses to a cost shock are consistent with almmbchndom menu cost and that the response
to a shock is gradudlOur contribution to this empirical literature gsgrovide estimates of the
impulse response function of gasoline prices t@st shock using a very flexible empirical
model with a minimal structure (see also Balleat Zorn (2019) and Dedola et al. (2020) for
a similar empirical approach on producer price datgaradi et al. (2019) on consumer scanner
data). In particular, we do not impose any constran the long run response or on the shape
of the price dynamicdMoreover, this method and the long-time dimensibthe data allow

us to estimate the impulse response function aye\sy after the shock and over a long horizon

(relative to the half-life of the impulse response)

The remainder of the paper is as follows. In secBpwe describe the main characteristics of
our dataset and we document that gasoline prieestigky at daily frequency. In section 3, we
present the empirical model we use to estimat@tice response to a marginal cost shock and
we describe the results. In Section 4, we teststifécient statistic theory by relating the
cumulative impulse response of prices to the mosehthe price change distribution and we
document the main empirical results of this tesiSéction 5, we present results of robustness

exercises. Section 6 concludes.

2. Micro dataset and stylized facts on price stickines

In this section, we present our micro dataset aadlecument the main stylized facts on the

relative stickiness of retail gasoline prices.

2.1 Daily micro-data

Our dataset consists of individual prices repoltgall gas stations selling gasoline in France.
Since January®12007, all gas stations selling more than 5G0mma year have to report the

! Carlsson (2017), using Swedish PPI, relates margost to the probability of PPI price changes onual
data for a very large number of manufacturing sscto

2 See also Cardenas et al. (2017) for another erapsindy using these data to investigate price emence.

3 Eckert (2013) has pointed the importance of higlspfiency station-level data whereas Deltas and Fo{@820)
report a large set of methods and data to revievsttengths and weaknesses of usual estimates.

5



prices of their fuels to the Ministry of Economyeey time they update these prices. All prices
collected are then made available for free to comss on a governmental web site
http://www.prix-carburants.gouv.frwe use daily historical data extracted betweendgn®

2007 and December $2018. Overall, our dataset contains about 30 anillprice quotes.
These data cover more than 10,000 stafidPisce quotes contained in this dataset have also
been used by Insee (French National Statisticaituis) since 2017 to calculate the official
monthly consumer price index for gasoline, whicpprts that price information contained in

this dataset can be considered as highly reliable.

The main variables contained in the dataset af@lasvs: (i) an identification number for each
retailer, with detailed information on locationabd name, type of available services (shop,...);
(i) the price of a liter of diesel including alites, and expressed in euros with three decimals
(as posted publicly outside the station); (iii) éxact date (DD/MM/YYYY) of the price update
(see also Appendix A for more details on data dlegnPrices are directly collected at the gas
station since they are reported by the gas statiorer under the administrative control of the
Ministry of Economy. Prices are displayed on a muldeb site and the accuracy of the
information can be easily checked (by customersthrdMinistry of Economy). However,
some prices might be subject to measurement em@mly related to the dates at which gas
stations are closed, sometimes very temporarily.fd¢as on gas stations opening more than
500 days (2 years of opening days) with continymirse observations. We also drop price
observations on the weekends because there istterd®om price change during the weekends
and because there is almost no gas station chartgipgices on Sunday. Overall, our data

sample contains about 15 millions of prices.

Every gas station reports prices for a maximunoof fypes of gasoline: diesel, super unleaded
petrol SP95, super unleaded petrol SP95-E10 aret sueaded petrol SP98. In this paper, we
focus on diesel prices for two reasons. First, awar sample period, diesel has the highest
market share among gasoline products, represeabogt 60% of the value of household

consumption of road fue{according to the HICP weights). Second, dieselgsriare available

4 This obligation is legally binding. A ministerialedree dated December 12, 2006 provides detailsisn t
obligation and states that any failure to complyhwihis obligation is punishable by a fine. Priqgedates are
reported by gas station managers through a spegiticsecured IT platform with a restricted accéhs. French
competition authority (DGCCRF) is in charge of aofling the accuracy of the information provided @gs
stations and run on-site controls. Consumers & ialvited to report to the control authority amadcurate
information reported on the web site where priagespablicly available.

® The data set is not exhaustive in terms of ga®oatasince there is a threshold requirement fotigipation, but
still covers a large majority of gas stations ofiagain France.
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over the whole sample period, which is not the ¢assether types of gasoline products sold in

France over the same peridd.

Our dataset contains prices as they are publisiylayed by gas stations, i.e. in euros with three
decimals and including consumption taxes. Two taxegaid on gasoline prices: TICPExke
Intérieure de Consommation sur les Produits Enéggeés i.e. carbon tax) is a lump sum tax
that can vary over years and possibly across redion2018, this tax was about 0.6 euros in
most regions); Value Added Tax (VAT) whose standateé was 19.6% until January 2014,
and 20% afterwards. VAT applies on the sum of preprrice and carbon tax. In the rest of the
paper, we will use pre-tax prices that can be rex/following the formula:

_ _Par
PBT_—(1+TVA) TICPE (1)

where RBr represents the price before taxes, and fepresents the price all taxes included (as
displayed by gas stations). In our sample, theameeprice after all taxes is about 1.25 euros
whereas the average price before taxes is abobiems. Overall, taxes represent about 55%
of the price after taxes (Table A.1 in the Appenfiixa complete decomposition of gasoline

prices).

Figure A.2 in the Appendix plots the average darige of gasoline in our dataset and compares
it with the “official” gasoline price series (comiga and released by the Ministry of Economy,
using the same data source), as well as with tice pf crude oil (Brent, in euros) and of the
wholesale diesel price quoted on the Rotterdam ebgik euros). As expected, our average
price series and the “official” price series arghty similar and the average retail price co-

moves very closely with crude oil or wholesale diagoprices quoted on international markets.

2.2Are gasoline prices sticky?

We provide two sets of stylized facts consisterthvsome price stickiness of retail gasoline
prices at a daily frequency.

Frequency and size of and price changes

First, retail gasoline prices do not change every cbntrary to oil prices or wholesale diesel
prices quoted on international markets. For eashsggtion of our sample, we have calculated
the frequency of price changes. Table 1 reportsdhelts. The frequency of price change of

& Unleaded petrol SP98 is only available since 288 number of stations selling unleaded petrol R85
been sharply decreasing over the last 10 years sinieaded petrol SP95-E10 has been progressielyaing
SP95 in many stations (and these two types of osbave different prices).

7



the median gas station is 27%, implying a priceation of a little less than 4 opening days.
There is some heterogeneity across gas statioesquarter of gas stations have frequencies
lower than 21% (i.e. price durations longer thasiays) while for one quarter of stations this

frequency is larger than 36% (i.e. price duratisimsrter than 3 days) (Figure 1a and Table 1).

[Table 1]
[Figure 1]

Second, the distribution of price changes dispkys/o-peak distribution with fewer small
price changes while the distribution of daily chesign the wholesale gasoline prices is close
to a normal distribution centered around O (Fig)reThis M-shaped distribution of price
changes is quite in line with the prediction of @m-cost model where small price changes are
quite rare. In a typical menu cost model, thistrebedlow proportion of small price changes can
be explained by the fact that prices are moreyikelbe updated when they are far from the
price that would have prevailed under price fldiipbiThis leads to a selection of prices that will
adjust, and price changes are more likely to bgelaAccording to Alvarez et al. (2021a),
kurtosis of non-zero price changes can capturestgiection effect (a very high selection effect
corresponds to a small kurtosis equal to 1 whigeahsence of selection effect as in the Calvo
setting corresponds to the largest kurtosis oH®wever, in practice, this statistic is usually
hard to measure accurately and empirical measurestosis are often very far from typical
values predicted by theory and so, hard to relatstandard theoretical model predictions.
Interestingly, we find that for a large majority @&s stations of our sample, kurtosis ranges
between 1 and 6, which supports that our gasolifee mlata are reliable to investigate the
sufficient statistic prediction. We find that theeaage kurtosis across gas stations is about 3
but as for the frequency, it is also quite hetenegels across gas stations (Table 1 and Figure 1
— panel b).

[Figure 2]
Overall, price changes are quite infrequent andokis values at the gas-station level suggest

that there is some selection in price changes.

Adjustment hazards

If prices are not perfectly flexible, the pripg_, (set at the date of the last price adjustment)

differs from the current frictionless prigg, and there is a price gaQ; = p;.—; — bis» the

markup deviating from the one that would exist whdimm maximizes its profits. The gap will
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be closed only if firms can adjust their prices,tisatAp;, = Ap;;. Following Alvarez et al.
(20214a), in a general class of sticky-price modeéks,optimal decision to change prices can be
summarized by the general hazard function whichteslthe price gap to the probability of
price adjustment. In a pure time-dependent modda,grobability of price adjustment is the

same whatever the valuexyf can be. In a random menu-cost model, the prolabiliprice

adjustment is expected to increase monotonicaltit wi in absolute values (Caballero and
Engel, 1999, 2007).

[Figure 3]

In practice, the price gap is often hard to measimeep;, cannot be directly observed and the
literature often use the average price of compstias a proxy for this frictionless price (see
for instance Gagnon et al. 2012 or Karadi et aP20&hereas Eichenbaum et al. (2011)
construct a measure of costs relying on data ofitpend sales in different stores. In our case,
we can use a proxy of a large component of margiosil of gas station to approximate more
direclty p;; and the price gap. We have computgd for all gas stations of our sample, as the

difference between the observed ppcat time(t-1) and wholesale price observed at Rotterdam
marketR, at timet.” We have then calculated the probability of pribargye at dateas a
function of this difference. First, on the distriian of x;,, the first and third quartiles of,

are respectively -2.7% and 2.6% whereas more tbé&f & observations are between -7.1%

and 7.3%. Figure 3 plots the probability of priteeges depending on the valuexgf. We
find that for low values o% in absolute value terms (between -2% and 2%)ptbbability of
price changes is quite flat around 20%. WRencreases, the probability of price changes is
higher: forx equal to 5% in absolute value terms, the prolgtoli price changes is close to
0.25. On the bottom panel of Figure 3, we plot s&jgdy the probability of price increases and
decreases depending on the valug. &/e find that the relation between the price gag the
probability of price increases is quite linear wdas the probability of price decreases is a little
less responsive to negative price gaps than tdip®grice gaps. Overall, the main patterns of

the adjustment hazard function are quite typical edndom menu cost model and are very in

" For each gas station, we estimate a simple liregaession between actual retail price and whaeRatterdam
price. We use the estimated coefficient to caleufat each gas stations the difference betweeachel price
and the Rotterdam price multiplied by the estimateeffficient of the linear regression. We have tdemeaned
this difference.



line with the theoretical setting of Alvarez et@021a) where the sufficient statistic prediction

is shown to hold.

3. Assessing the impact of a shock on retail gasolipeices

In this section, we investigate how marginal cbsicks are transmitted to retail gasoline prices.
We present our empirical model based on a starildeadiprojection method, we then estimate

the model on all prices and then for each gasostati our sample. Using these results obtained
at the gas station level, we can compute for egay station an accurate measure of the
cumulated impulse response of prices (CIRP) tosa stwock.

3.1 Empirical model

Our empirical model derives from a standard thecabmodel of price setting. Under imperfect

monopolistic competition and if prices were flexapat every date, firms would set their price

pi; as a markupy;, ) over their marginal costr{(c;;). In log terms, we can write:

Dt = mcie + py (2)

One key determinant of marginal cost is here eadiyervable since a large share of the
production cost of gas stations consists of theledabe price of diesel bought by gas companies
either on international markets or to local refiasrin France. We here use the price of the
wholesale diesel sold on the Rotterdam market@®ey for this wholesale price and so as a
proxy for the marginal cost of diesel retail pri¢Egyure A.2 in Appendixj.We can write the

marginal cost as:

me; = @Ry + ;e (3)

whereg is the share of wholesale die®elin overall marginal cost and,, corresponds other

components of the marginal cost which can inclatb®lir costs or rents for instance.

In a similar set-up, Amiti et al. (2019) show tha¢ can then express price changes as a

combination of a change in the marginal cost aoldaamge in the price of competitors:

Ap;; = aAmcy + ﬁAPt_i +é&: (4)

& There are several arguments supporting this pthiatRotterdam price is the opportunity cost foefinery of

an integrated oil company; production and salesddten different divisions within oil companies, dathe

Rotterdam price can be used as an internal trapsta; finally, a little less than 50% of diesgHirectly imported
from abroad, traded on this international market aot refined in France (see also Asplund et &0Q2 or Faber
and Janssen (2019) for a more detailed discussion).
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whereAp; ! is the average price change of competitors antusaparkup changes, is the
average cost pass-through of the firm whergasneasures the importance of strategic
complementarities in price setting (since it repras the elasticity of prices of firnto its own
competitors). In our case, we observe all gasostatwith their exact geographical position.
This means that we can define competitors as tbsest gas stations using distance in
kilometers and compute average price changes sésimeighbors as a proxy for competitors’
price change3We can then decompose more explicitly the margiosi (combining equations
(3) and (4)):

Ap; = a((pARt + Awit) + ,BAPt_i + &t (5)

This leads us to the following relation that coblkl estimated using our observable variables

(retail gasoline price changes, wholesale pricexgbs and local competitors’ price changes):
Apie =YAR, + BAp;t+vy  (6)

wherey will be equal to the share of wholesale dieseMerall costs times the degree of cost

pass-through (i.e. the share of wholesale dieseital costs).

If prices are sticky, prices charged by gas statiare not always equal g, (i.e. the price
maximizing profits in a flexible price model) artdnill take some time for a shock to be fully
transmitted to retail prices. In that case, we neddke into account for a possible delay in the

price response to shocks.

Our baseline empirical exercise will consist inmaating the previous equation using the local
projection methodology described by Jorda (2005)nyy this methodology, we can compute
the full impulse response function of retail digsetes to shocks in the Rotterdam wholesale
price (see also Balleer and Zorn (2019) and Deeladd (2020) for a similar empirical approach
using producer price data or Karadi et al. (20I®9¥scanner data). Our baseline regression for

a given horizorh days after the shodk as follows:

APit_LHh = pp + OpAR 4 + 5hApt_—i1,t + Ny, + Xni T €igy, (7
whereAp;,_, .., is the before-tax log price difference for diesetween days1 and day+h

in stationi, AR,_, , is the log price difference of Rotterdam wholesgdsoline price between

9 One difference here is that we cannot weight primemarket shares as suggested by Amiti et al.qp8ihce
we do not have any information on the sales ofsftions.
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dayt-1 and dat, Apt_—il,t is the average price change of local competitothefgas station

(we consider here an average of the 10 closesstgtiens of statiom), n,, are time (horizon
specific) controls including the lags of Rotterdpnte changes, average diesel price changes
in France and average local price changes at @athere use controls for five lags to control
for all other common shocks at datether than Rotterdam price shock). More precisilg,
termn,, is specified asy;, = ln(AR—j_1,—j, DPe—j-1,6-j» AP7 14— ;)] j=1,,4 Wherel, is a
linear function whose parameters will be estimgtently with all other parameters of the

regression. Finallyy;, are gas-station- and horizon-specific fixed eHect

We run one OLS regression for each time horizcand at each periagh, our parameters of
interest aréd,,, whichyields the overall variation of diesel prices imecgon to the shock and
&, which captures the reaction of prices to a matupck. Given that Rotterdam prices are
listed only from Monday to Friday, Saturdays and@ys arede factoexcluded from our
analysis (the shock variable being not definedhesé¢ days). On Mondays, the shock variable
is then defined as the log variation between tieemf wholesale gasoline observed on Monday

and the one observed on Friday the week before.

As robustness, we also report results considerdifjezent measure for Rotterdam price shocks

using daily deviations from a 3-week moving-averafjéog Rotterdam prices calculated as
AR, = R, — Y21, %. This measure can help us to define the shockpaie@ deviation from

a recent trend observed by gas statiéns.

3.2 Aggregate Results

We look at aggregate results obtained by poolihgad stations together. We first describe the
average response of retail prices to a cost slibek,we document some heterogeneity of the

price response across gas stations and accordthg sign of the shock.

3.2.1 — Baseline results
Figure 4 plots the impulse response functionssback on Rotterdam wholesale price and to
a shock on the average local price change in caeling case.

Cost shock.We first present results associated with the respda the cost shock (red solid

line, Figure 4). We find a delayed response ofilrdiasel prices to variation in the Rotterdam

10 Other measures of exogenous oil shocks are availathe literature, at a monthly frequency as aueister
and Hamilton (2019) or Kanzig (2021); to our knodde yet, there is no variable of exogenous oil klaaailable

at a daily frequency, which is the relevant frequyeim our study
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wholesale price. It takes approximately 10 opersdag. excluding Saturdays and Sundays)
for a cost shock to be transmitted at 90% intailrpteces and a little more than 20 days for a
full transmission. More specifically, there is alshamo response at dates 0 and 1 and then the
impulse response function increases pretty quickhe long-term (40 open days after the
shock, i.e. about 8 weeks) value of the elastigftyetail prices to the Rotterdam wholesale
price is close to 0.8. This estimated value is isbast with the share of raw materials over total
production in the sector of retail gasoline, whistestimated to be 81% using average price
values of our sample (Table A.1 in the AppenditjisTresult implies a full pass through of the
cost shock to retail prices: in the long term,isteg pass on the entire increase in the commodity
cost in proportion to its share in total costawvéf reason in price level terms, a 1% increase in
the price of imported diesel (for an initial pricEEUR 0.45 in early 2018 — see Figure A.2 in
Appendix) is equivalent to EUR 0.45 cent and ressmitan identical increase over time for the
diesel price excluding taxes (i.e. 0.8% of theiahjprice of diesel, equal to EUR 0.55 in early

2018, this latter price including other costs likensportation costs, labour costs...).
[Figure 4]

We run a robustness exercise where we use a differeasure for the Rotterdam price shock.
Instead of using the log difference in wholesalét&dam prices, we define the shock as the
deviation from a 3-week moving average. In thise¢cdlse impulse response function is very
close to our baseline estimate and a similar lomgpass through of Rotterdam prices to retail
prices. Finally, using the price of crude oil (Breimstead of Rotterdam wholesale price leads
to very similar results (Figure B.5 in Appendixh&impulse response function to the oil price
shows similar patterns: a delayed response toltbeksand a full pass-through after about 3
weeks. The long-term effect is smaller than theglmrm response of prices to Rotterdam (0.7
versus 0.8), and the ratio of the two elasticij@about 0.9) should give the elasticity of

wholesale price to Brent oil prices.

Competitors’ prices and strategic complementaritiesOur second main finding concerns

how gasoline prices react to an exogenous changecies of the closest neighbor gas stations
(blue line - Figure 4). We obtain that retail gaselprices do respond to the average price
change of local competitors. This response decseager time: a 1% change in local price

changes increases retail prices by 0.2% but thactnp close to 0 and non-significant after 3
weeks. This would suggest that in the short rurrkopes of gas stations move in response to
competitors’ prices but these movements are quaiield and in the long run, the pass-through
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is full. This result provides evidence in favor dme limited strategic complementarities
among gas stations. Alvarez et al (2021a) sufftcgtatistic result holds in a model with no
strategic complementarities. Our results show tifate are some strategic complementarities
in our case-study, but that this is a quite limitesue. Controlling for shocks on crude oll
(Brent) rather than Rotterdam wholesale pricerésponse of prices to local price changes is

almost unchanged (Figure B.5 in Appendix).
3.2.2 — Heterogeneity and asymmetry

Heterogeneity.We document some heterogeneity across gas statitims transmission of the
cost shock. We first investigate whether respon§esices depend on their relative position of
the gas station in the price distribution. We halassified all gas stations according to their
most frequent position in the price distributiotoifiour groups (defined using quartiles of the
price change distribution (calculated day by daigry low price”, “low price”, “high price”
and “very high price”. Using our baseline specifica, we run separate regressions on stations
belonging to the four different categories. FigBré& in Appendix plots the impulse response
function for Rotterdam price changes and local agerprice changes for the 4 groups of gas
stations. We find that the main difference in tlesgpthrough of Rotterdam price changes to
retail prices is between stations charging verjlpigces and all other stations. In stations with
very high prices, the long-run pass-through iselus0.70 whereas for the other 3 groups of
gas stations, this long-term pass-through is ab@®@ufThese differences in long run pass through
of Rotterdam prices to retail prices should manelfject differences in the share of Rotterdam
prices in their marginal costs and to a lesseméxitetheir average markups.

In terms of speed of adjustment to the long-rursfthsough, differences seem quite limited
among the four groups of gas stations (Table B.Agpendix). Gas stations in lower prices
categories respond only a little more quickly tigas stations in higher prices categories. In all
groups, more than 90% of the long run responsessreed between 10 and 15 days after the
shock. In the very-low-price category, this thrddhe reached after a little less than 10 days

whereas for very high price stations after 15 days.

In Figure B.2 in Appendix, we plot the impulse respe function for the baseline specification
on two different subgroups of gas stations dependmtheir frequency of prices ending in 0
or 9. In particular, we find that gas stations gsiery frequently psychological prices (i.e. more
than 98% of the time, corresponding to the top Ideai stations with the highest share of

psychological prices) are less reactive to Rott@rgaice changes than others. The long-term
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pass-through of shocks on marginal costs is of T&%hese stations, against 80% for gas
stations with a share of psychological prices lotan average (equal to 51%). This result
might be related to the fact that gas stations wrtbes ending in 0 or 9 tend to have higher

price variations on average (Figure B.3).

Concerning the reaction of gas stations to lociglegr there is some heterogeneity across gas
stations as for the cost shock. Looking at diffeemnbetween high- and low-price stations, we
find that very-high-price gas stations respondeliind slowly to local price changes whereas
very-low-price gas stations respond much more gtyoand more quickly to changes in local
prices. The elasticity of retail prices in very I@nice gas stations with respect to local price
changes is 0.27 whereas it is less than 0.10 ywgh-price gas stations. These differences
are consistent with the fact that markups in very-price gas stations are quite small and these
gas stations have to respond quickly to changesnmpetitors’ prices. However, in the long
run, the markup elasticity is about the same ifall groups converging 20 days after the
shock to a value close to 0.07. Looking at diffeesnin the frequency of price endings, we find
that gas stations using psychological prices l&ss @lso tend to be more reactive to the prices
of local competitors in the short run. This would ¢onsistent with the fact that the use of
psychological prices is related to the markup |®faejas stations.

Asymmetry. Finally, we test whether the price response toglostk is asymmetric. Compared
with our baseline specification, we interact systgoally the shock (and its lags) with a dummy

variable indicating whether the shock is positivenegative.

_p+ - A —i ,
Api,_ypon = OnBRe—1t1ar,_, >0 + O AR 1t 1aR,_, <0 + 61 AD —1,t1Apt—_lLt>0

+ 5EAPt_—i1,t1Apt—_iLt<0 +Up + Ny, T Xni T €y (8)
where 8, (resp.6;,) is the estimated impulse response function a klah response to a
positive (resp. negative) Rotterdam wholesale gasqgirice change between datek andt
ands; (resp.8;) is the estimated impulse response function & ltat response to a positive

(resp. negative) average local price change betwats#-1 andt.

We find that in response to changes in Rotterdasegyr gasoline retail prices react almost
exactly the same to a negative or a positive sficiire B.4 in Appendix). The patterns of the
impulse response functions are highly similar ithbzases: same speed of adjustment and same
long-term pass-through. Overall, we do not find aniglence in favor of asymmetric responses

of gasoline price changes to Rotterdam price chan@a the contrary, we find that the
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responses to local price shocks are somewhat astymonat least during the first two weeks.
Retail gasoline prices respond more to negatival lpgce changes than to positive ones. This
would suggest that gas stations are more liketietvease their prices when other local stations
do so than when local stations increase their prithis asymmetry would be consistent with
a quick reduction in markups when gas stationsrat@ecrease their price in order not to lose

market shares.

3.3 Gas-Station Level Results

We then run the same empirical exercise at thesgd®n level. Here, we take advantage of
tracking prices at a very high frequency and féoray period of time to estimate the impulse
response functiordy, in equation (7)) for every gas station in our sk, ). We report some
moments of the distribution of the long-run effertsTable 2. We find some heterogeneity
across gas stations in the long-run effects. Tleeame pass through is 0.8 and most gas stations
have a long-run pass-through between 0.7 and ®u8. Reterogeneity reflects differences in
the share of raw material in the cost function @ee Gautier and Le Saout (2015) for more

details on the determinants of these differences).
[Table 2]

In order to test the sufficient statistic propemsg calculate for each gas station the cumulated
impulse response to the cost shock. However, agntoaa typical monetary shock which is
expected to have the same long-term effect onpand to have no relative price effect (under
monetary neutrality), the oil price shock will lefddifferent reactions of gas prices in the long
run reflecting the slight differences in the costisture across gas stations. Thus, we first
normalize all firm-level IRF so that for each gé&ation a shock corresponds to a 1%-increase
in prices in the long run. To do this, we calculdie maximum value fof;;, over the horizon

31 to 36 days after the shock to estimate the teng-responsed(; ;) and then we divide all
0;, for h=1 to 30 days byg;;r. This normalization will assume that all gas stasi are hit by a
shock (which might be different from one gas statiw another) but leading to the same long
term effect on prices (1%) for all gas statidh&inally, we calculate the cumulated impulse
response of prices (CIRP) over the period from &y day 30 after the shock. If prices adjust
immediately to the long-run price level and ardyftlexible, the CIRP should be equal to 30.

11 Another interpretation would be to read the longrtieesponse in terms of price levels: if there falhpass-
through of cost to prices in all gas stations (eeghrdless of the share of inputs in the pricejnarease of EUR
1 cent of the marginal cost will lead to an inceeaBEUR 1 cent in all gas stations.
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We compute alternative measures for the CIRP agd#sestation level. The first one defines
long-term pass-through as the maximum valu&fprover the horizon 25 to 31 days after the
shock to estimate the long-term resporgsg-§ and then calculate the CIRP over a period of 24
days. We compute these CIRP estimates for ourihasshock (Rotterdam price changes) but
also the alternative measure of shock (gap betiveecurrent Rotterdam price and the average

of Rotterdam price over the last 3 weeks).

Table 2 provides moments of the distribution of Elfer the different horizons and measures
of shocks. We find that the average CIRP is clts@5 for the horizon 30 months and about
20 for the horizon 24 months. We also find thatehs some heterogeneity across gas stations:
the first quartiles of the CIRP are respectivelysldnd 24 and the third quartiles of the CIRP
are equal to 20 and 26.

4. Testing the Sufficient Statistic Property

In this section, we test the sufficient statistiogerty using two empirical strategies: first, we
use the same empirical framework as the one estdnatderive the aggregate IRF but we add
an interaction term between the common marginat sbheck and the ratio kurtosis over
frequency at the gas station level; in a secondrezapexercise, we will use the CIRP estimated
at the gas station level and correlate them wietrdltio kurtosis over frequency of price changes

also calculated at the gas station level (as irafdz et al. 2021b with sectoral data).

In both empirical approaches, we follow the samatesgy as the one described in Alvarez et
al. (2021b). In a general class of price rigiditgdels nesting both Calvo and fixed menu cost
models, the theoretical prediction of Alvarez ef2dl21a) can be written as:

6 Kur;

CIRP(8) = 8T — 2 Froa

%)

whereCIRP;+ () is the cumulated impulse response function ofgsria sectorto a shock of
size (§) calculated at the horizom, Kur; is the kurtosis of the non-zero price change
distribution in sector and Fregq; is the frequency of price changes. The relationghiguite
intuitive. If prices are fully flexible (i.e. freg@ncy equal to 1 and no selection efféat; = 6),
then prices will adjust to the long-term price levemediately and the cumulated effect will
be equal to the time horizon over which the CIR® lbeen calculated) times the magnitude
of the shocks. For a given level of price selection, a longaceradjustment will lower the

CIRP since prices will take more time to convem@éheir new level. If prices are more rigid,
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the price response is longer and the CIRP will ibaler. For a given frequency of price

adjustment, if the degree of price selection ihl{ige. a low kurtosis), it means that prices that
will adjust are the ones for which the price gaps the largest, price changes will be large and
a shock will be transmitted more quickly to pri¢i#se in a standard Golosov and Lucas (2007)
model). The CIRP will therefore be larger than lie tase with weaker price selection and

higher kurtosis.

An “unconstrained” version of the test could alsgoderived from equation (9) (using a first-
order Taylor expansion around the sample mears ahd F) to investigate separately the
correlation with frequency and kurtosis (Alvareakt 2021b):

SK Kur; 6K Fregq;

— (10)

CIRP;r(68) = CIRP;(6) — —=—= =
(8) = CIRP(8) ~ g=er + 5=

where CIRP;, K andF are the sample means of CIRP, kurtosis and freyuefiprice changes.

These relations are established for the aggregete lpvel of a group of firms facing the same
marginal cost shock (here the wholesale price sh¥kk then run the test of sufficient statistic
following two separate empirical approaches relyangthe heterogeneity across gas stations:
one looking at all data pooled together and intargdhe response to the shock with the ratio
kurtosis over frequency calculated at the gasastdavel and another one relating CIRP and
the ratio kurtosis over frequency both estimatdti@gas station level. As baseline regressions,
we report results restricting our dataset to gasosts for which we have more than 6 years of
continuous price observations, this covers a langgrity of observations of our dataset and
more than 3,000 gas stations. This allows us tonast more precisely both the kurtosis of
price changes and the CIRP at the gas station. I8eetion 5 will provide robustness analysis

for gas stations with shorter uninterrupted prregectories.

4.1 Testing the sufficient statistic property at tle aggregate level

Empirical model. We start our empirical investigation by using #aene baseline empirical
framework as the one used for estimating the agdedRF and described in equation (7). We

add to this empirical model an interaction terrthefcost shockAR,_, ;) with the ratio kurtosis

over frequencygé) defined at the gas station

ADi_y on = GnDRe_1+by, (ARt_Lt X Fl) + APty + up + vpy, +wh + €, (11)

L
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This additional term will capture how the ratioes#t the IRF of prices to a given shock over
the horizorh. Summing this expression over horizons, we are tbfelate the cumulated sum
of price changes between time horizdrsl andH and the interaction term with the ratio

kurtosis over frequency:

H

ZApltm,l DRy ) (MReoye X )an+2nh (12)

=1 h=1
— \'H -1 12

Overall, we can estimate the following equation:
K;
CumAle = AHARt 1,t + BH (ARt 1,t X F ) + thh (13)

whereCumAp;y = Zﬁ:l Apl.t_llt-}-h

According to the predictions of the model, if psaae fully flexible at each horizdnthe price
change §;) in response to a 1%-shockR;_,, = 1) should be equal to 1 and so, when
cumulating price changes oudiperiods A, should be equal tid.*2 Another prediction is that

By = —1/6, which is the core prediction of the sufficierdatsstic theory.

This first equation is a test of the constrainedsiom of the model, as described in
Alvarez et al (2021b) and we can extend this estomdo test an unconstrained version of the

model:
K; F;
CumAle = AHARt 1,t + CH (ARt 1,t X K) + DH <ARt 1,t X F) + thh (14)
In this setting, following Alvarez et al (2021b)etiprediction is tha€y=-Dy, and thatCy is

equal to— % In our case, this term is equal to -1.7.

Results. Table 3 reports the main results of our analyss,both the constrained and the
unconstrained versions of the model. Moreover,epert results using two different definitions
of shocks, either the observed change in Rottergaces or the gap between the current

Rotterdam prices and the moving average over thie3daveeks. Finally, we consider two

12 The control variables are identical to those désctiin equation (7), and we interact the ratio daigt over
frequency (constrained version) or kurtosis anddesncy (unconstrained version) with all the contaniables.
13 We here normalize the shock to be equal to 1 fagaa stations by dividing the cumulating pricerdby the
station-specific estimated long-term reaction af¢gs to a Rotterdam price change.
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horizonsH for the calculations of thEumAp;: 24 days and 30 days. Results for all horizons
between 1 and 30 days (for the baseline shock)plotted on Figures C.1 to C.14 in
Appendix C.

[Table 3]

The upper panel of Table 3 reports results forctrestrained version of the regression. First,
we find that the coefficient related to the Rotterd shock is very close to the horizon
considered (21 for a regression cumulating pri@nges over 24 days after the shock, 27 for a
regression cumulating price changes over 30 dags tife shock). Second, we find that the

coefficient of the shock interacted with the rdtiotosis over frequency is between -0.14 and -
0.15, a value which is very close to the theoréfcadiction of—% ~ —0.167. Moreover, we

cannot reject the hypothesis that our estimatedficiemts are statistically (at a 5% level)
different of the theoretical value of — 0.167. hetdingly, the values of the coefficient are very
stable over the horizons and according to the tfmhock considered. Figure C.2 (Appendix
C) plots the coefficients estimated for all timegihons between 1 and 30 days after the shock
and highlights that the coefficient of the paramefeinterest reaches is minimum value after
about 20 days (i.e. the time needed for the shodetfully transmitted to prices) and remains

then quite the same for longer horizons.

The lower panel of Table 3 reports results foruheonstrained version of the regression. We
find that the coefficient related to the Rotterdsinock is close but slightly lower to those of
the constrained regression (19 for the 24-day bari25 for the 30-day horizon) as expected.
The coefficient of the shock interacted with fregegeis found to be between 1.6 and 1.7, while
the coefficient of the shock interacted with kuisogaries between -1.2 and -1.3. The sign of
these estimated coefficients are in line with tieoty: for a given frequency of price changes,
a larger kurtosis is associated with less pricectiein and a smaller CIRP. For a given kurtosis,
a higher frequency is associated with a quickeparse of prices and so a higher CIRP.
Moreover, in absolute value terms, both coeffigeste quite close and we cannot reject the
hypothesis that they are equal to 1.7 (i.e. thaievaimplied by theory). The coefficient
corresponding to frequency is even exactly equtidedheoretical prediction of 1.7. The lower
value of coefficients for kurtosis is likely to xplained by the fact that kurtosis is more

sensitive to even small measurement errors thafreqeency. Finally, as in the constrained

14 1n the unconstrained version of the model, the @onof the model is not predicted to be equaltany
more but toCIRP;(6) = 6T — % where in our case% is about -1.7.
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version, the coefficients are stable across hoszmml specifications. As highlighted by the full
evolution of coefficients over the time horizonsgiife C.4 in Appendix C), they are quite

stable after about 20 days after the shock.

Placebo testThe sufficient statistic property also predictsttbédner moments of the non-zero
price change distribution should not have an efbecthe CIRP. To test this prediction, we run
placebo regressions where we add in interaction thiie common shock, the average of (non-
zero) price changes, the standard deviation oémi@anges and the skewness of price changes.
In this setting, as we do for the ratio kurtosigiofrequency (constrained case) or frequency
and kurtosis taken separately (unconstrained casenteract the other moments with all the

controls variables included in the regression. plaeebo model could be written as:

CumAp;y (AR¢_1,¢)
K;
= AyAR;_1; + By (ARt_Lt X F) + Ey(ARy_1 e X my) + Fy (AR, ¢ X std;)
i
+ Gy (AR _1¢ X skew;)+w;;  (15)

wherem; is the average price change over the sample piergas station std; is the standard
deviation of price changes over the sample perniaghs stationandskew; is the skewness of

price changes over the sample period in gas station

Table 4 reports results for these placebo regnessio the constrained regression, we find that
the interaction between the shock and the ratitokig over frequency is the only coefficient
to be significant at any considered horizons, wihfficients very much in line with the theory
(between -0.17 and -0.18). The mean and skewnepsicd# changes are not significant at
horizons 24 or 30 days, while standard deviatiosigsificant only at the 24-day horizon but
not at 30-day horizon. Figures C.6 to C.9 in thepé&mdix plot coefficients for all horizons
between 1 and 30 days. They confirm that coeffisiessociated with the interaction terms
between the shock and the mean and between thk ahd¢he skewness of price changes are
not statistically significant for most of the hayizs over which we cumulate price changes. The
interaction term between the shock and the standaxdation of price changes becomes

insignificant at the 5% level for horizons longkamn 28 days.

[Table 4]

In the unconstrained regression, the results andasi(see also Figures C.11 to C.14 for the
complete set of coefficients for all time horizdthéfrom 1 to 30 days)): frequency and kurtosis

are the only coefficients that are statisticallgngiicant, while other moments do not have a
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statistically significant effect. The significancéthe standard deviation becomes even smaller
than in the constrained placebo test (as it isigtificant any more at the 5% level for the 24-
day horizon). The respective coefficients of theckhinteracted with frequency and kurtosis
are slightly larger in absolute values than inriba-placebo regressions (between 2.1 and 2.2
for the shock interacted with frequency, and -bbthe shock interacted with kurtosis), and

they remain very close to values predicted by tieety.

4.2 Testing the sufficient property at a disaggregad level

Empirical model. Our second empirical approach consists of usifRfFCdstimated at the gas
station level (as in section 3.3) and relating thierthe sufficient statistic also calculated at

the gas station level:

Kur
CIRPiH =a -+ ﬂ (Feq) i + & (16)

whereCIRP;; are the estimated cumulated price response targimahcost at the gas station
over the long run horizoH (as described in section 3.3). The main predictaers/ed from

the theory for a positive 1%-shock are as follo@sshould be equal té— %) whereas the

constant should be equalklf the horizon over which the CIRP is calculated.

We can also test the unconstrained version ofntlmdel estimating the following equation:

Kur Freq
CIRPlH=y+ﬂk<T)l+ﬂf< — )i+gi (17)
K F
Compared with the previous expression, the maidigiien is now thag, = —p;. Following

Alvarez et al (2021b), the estimated coefficiemsapsolute values) should be equaBio=

R . .
——. In our case, this term is equal to 157,

Figure 5 represents the scatterplot of CIRP anthefratio of kurtosis over frequency. As

Kur

predicted by the theory, we find a clear negatlepesrelating CIRP and the ratlgfr’e—q. When

looking at the correlation using separately freaquyeor kurtosis (Figure 6), we find as expected
a positive relationship between frequency and CiRkiereas we find a strong negative

relationship between kurtosis and CIRP.

15 A last prediction is that = CIRP;(8) = 6T — 6% In our case, it would imply = a — 1.7.

22



[Figure 5]
[Figure 6]

Results As for the aggregate test, we report results mstg our dataset to gas stations for
which we have more than 6 years of continuous mis®rvations, for two different definitions
of shocks depending on how we measure it, and wsider two horizons for the calculations
of CIRP (24 days and 30 days) (see Section 5 fmrsimess results using gas stations for which
we observe continuously prices for more than 2g/@athout interruption).

Table 5 reports the results of constrained and nstcained versions of the empirical exercise.
In terms of presentation of the results, almostadfficients are significant at 1%-level since
we use a very large sample of individual gas stat{@around 3,000 in our baseline regression),
this can be partly explained by the small degredigibersion of the left-hand side variable
across gas stations. We here report T-statistsrscated with estimated coefficients to provide
more information on the relative precision of ttetireates and on how much each variable

contributes to explain the cross section differerineCIRP.
[Table 5]

In the constrained version of the model, we fintegative coefficient between CIRP and the
ratio of kurtosis over frequency. This coefficienbetween -0.14 to -0.15 and quite robust over
the specifications of the shock or over the diffiérbBorizons we consider. This estimated
coefficient is statistically different from -0.1®01t the size of the coefficient is still quite ind

with the one predicted by the theory. We might expe have still some mismeasurement in

our variables of interest, which would bias dowmisagestimated coefficients.

Looking at the unconstrained version of the modelfind a positive correlation between CIRP
and frequency whereas we find a negative correlddeiween kurtosis and CIRP (lower panel
of Table 5), which is in line with theoretical pretibns. Looking at the magnitude of the
coefficients, we expect both coefficients to beaguabsolute values to 1.7. For the parameters
associated with frequency, estimated coefficierdss/ary close to this value (between 1.67 and
1.78). For kurtosis, we find slightly lower valugean 1.7, but the estimated coefficients are
still quite high (between 1.32 and 1.44) and tlghhialues of T-stats provide strong evidence
in favor of the relevance of kurtosis to explaie tross section dispersion of CIRP across gas

stations.
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Placebo testAs in the aggregate test, we run placebo regressitiere we add the average
of non-zero price changes, the standard deviatigorice changes and the skewness of price

changes. The regression model in the constrainesibvecould be written as:

Kur

CIRPiy=a+ (Feq

) i +ym; + 0Ostd; + uskew; + ¢; (18)

Results are reported in Table 6. In the constravergion of the model, we find that the
coefficient associated with the ratio of kurtosieofrequency has a similar value as in the
baseline regressions, the value is even closé¢s redicted value of -0.167. The T-statistic is
also very close to the one obtained in the baseblgeessions. Other moments have all a
significant effect but the T-statistics associatedhese estimates are much smaller than the
ones obtained for the ratio. For skewness, thenagtis are not significantly different from O in
all specifications. This suggests that the relatgm between CIRP and the ratio is much more
robust than the one with other moments. This algmeasts that in relative terms, the ratio is
much more relevant to explain the cross sectioh@{CIRP than other moments of the price

change distribution.
[Table 6]

When looking at the unconstrained version of thelehowe find very similar evidence: the

coefficients associated with kurtosis and frequeaiy in line with the ones obtained in the
baseline regressions and the T-statistics are @ge the same. For other moments, the
coefficients are significant but the T-stats arecimlower than the ones associated with
frequency or kurtosis. Interestingly, the T-stasaxiated with the coefficient associated with

the kurtosis is also much higher than the onescéstsa with other moments.

5. Robustness analysis at the gas station level

In the robustness analysis, we perform differerpigoal exercises using our second empirical
exercise which rely on the cross section variatianthe gas station level of both CIRP and
ratio kurtosis over frequency. The first robustnegsrcise looks at the full sample of gas
stations and investigate to which extent our baealesults are robust to the inclusion of gas
stations with fewer observations and a shorter tdmeension. We also test whether our
conclusions are sensitive to the definition oftibeézon. We provide results using an alternative
measure of kurtosis taking into account for prodeterogeneity. We also perform regressions

using the change in the price of Brent (crude adg) as a measure of shock instead of the
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Rotterdam price change. Finally, we include resufs misspecified versions of the
unconstrained of the model, to investigate to whaktent not including the frequency (or the

kurtosis) in the regression leads to a significanttted variable bias.

5.1 Number of observations by gas station

In Tables 7 and 8, we report baseline and placebressions for different definitions of our
sample of gas stations. When we consider all gei®ss with more than 2 years of prices (over
the 11 years of our sample), we find a somewhatleneffect of the ratio. The coefficient is
still equal to -0.13. This smaller estimated camdint might be due to a slightly larger
measurement issue for both estimated IRF at thestgéisn level but also for the kurtosis of
price changes. We find that when we restrict timeda to gas stations with more observations,
the coefficient is larger with a maximum at aroufidL4 to -0.15 in absolute values. When
considering the unconstrained model, we find simalanclusions. In particular, we find that
coefficients associated with both frequency anddsis are lower than in the case considering

gas stations with very long trajectories.
[Table 7]

In the placebo test, we obtain similar conclusifmmghe coefficients associated with the ratio
of kurtosis over frequency. For all the samples, ¢befficients are in line with theoretical

predictions, the magnitude of the coefficientsrasefar from the baseline exercise and we find
relatively larger T-stat for the ratio, frequenayt lalso for kurtosis. More interestingly, in these
robustness exercises, we find that kurtosis anguéecy are the only moments for which
coefficients keep the same sign and the same té\sgnificance (here measured by T-stats).
For mean, standard deviation and skewness of phiaages, the coefficients do not have the
same sign depending on the restrictions we impasehe length of station trajectories.

Moreover, the T-statistics decrease when we congjde stations with more observations,
which suggest some issues regarding the robustrigdhe measure of CIRP or price change
statistics. This evidence confirms that kurtosid &erquency are the only moments for which

the sign and the relevance of the correlation @best.

[Table 8]
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5.2 Long-term horizon

In the baseline cross-section regressions, we bansidered two definitions for the measure
of the long-term pass through and the CIRP. Infifls¢ one, we measure the long-run pass
through as the maximum effect over the horizona23( days after the shock and calculate the
CIRP as the sum of IRF over the period 1 to 24 ddigs the shock. In the second one, we use
a window between 31 and 36 days for the long ruizbp and the CIRP is calculated over the
period 1 to 30 days. We consider these two casee $he estimation of the long-run pass
through might depend on the horizon we considerth&t same time, the precision of the

estimation might be smaller at longer horizons.

As a robustness exercise, we here use two othiatdefs. The first one defines the maximum
looking at the pass through over the period 1%4td&ys and calculate CIRP over the period 1
to 18 days. The second uses a window 37 to 40tdaysfine the maximum pass through and

the CIRP is calculated over the period 1 to 36 dRgsults are reported in Tables 9 and 10.
[Table 9]

We find smaller estimated coefficients for the sbéstrand longest horizons but the coefficients
have still the expected sign in the constrained amcbnstrained models and show similar
values for T-statistics. Moreover, in the placeb@reise, we also obtain that the sign of
coefficients associated to other moments is haisbpn particular the mean of price changes),
the T-statistics are quite lower than the ones@atm with frequency and kurtosis and for

skewness, the coefficient is even not significardoame cases.

[Table 10]

5.3 Kurtosis measurement

In this robustness exercise, we use an alternateasure of kurtosis introduced by Alvarez et
al. (2021a) to control for mismeasurement of kustafue to the presence of unobserved
heterogeneity. This issue should be arguably djuiiéed in our case since we observe the price
of a very homogenous product for a given gas stadier time. However, the correction for

unobserved heterogeneity may help to deal withrgib&ential price measurement issues. We
find that kurtosis including this correction fortbegeneity is somewhat lower than our
baseline measure of kurtosis but the correlatiorery high (see Table D.1 and Figure D.2 in

Appendix).
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[Table 11]

In Table 11, we report the results of our baselegressions, we find that in the constrained
version of the model the coefficient on the rati&artosis over frequency is somewhat larger
and closer to the expected value of -0.167, in scases we cannot even reject the equality of
the estimated coefficients with the value predidigdhe model. In the unconstrained version,
results are also in line with the baseline resUlte placebo estimation results are reported in
Table D.3 in Appendix and show the robustness ofimtial findings when we correct for

unobserved heterogeneity in the measurement duttiesis.

5.4 Brent price

We also test the sufficient statistic predictiorssng the change in the price of Brent as a
marginal cost shock instead of the Rotterdam psee Table B.2 for descriptive statistics on

this alternative shock). Oil prices should affe¢tolesale prices listed at Rotterdam and then
retail prices. We here use oil prices converteduros. The IRF are quite similar as the ones
reported for Rotterdam prices except that the toingeffects are on average smaller (see Figure
B.5). This reflects the fact that the share ofrothe total cost of retail gas station is lowearth

the share of Rotterdam prices.
[Table 12]

Table 12 reports the results of OLS regressionsfildethat baseline results are robust to the
use of Brent as a cost shock. Estimated coeffisiarg smaller than in the baseline cases using
Rotterdam prices but they are still in line withetltheory in both the constrained and
unconstrained version of the model. Placebo regnes¢Table D.4 in Appendix) also confirm
the baseline results: the ratio of kurtosis oveqtiency, frequency and also kurtosis have the
expected sign, and they contribute more than ottfmments to explain the dispersion of CIRP
across gas stations.

5.5 Misspecified unconstrained model

To investigate the role of kurtosis and frequenalgeh separately in explaining CIRP
dispersion, we run two regressions where we exahittier frequency of kurtosis. Results are

reported in Table 13.

[Table 13]
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We find that running the model using only frequencykurtosis leads to bias the estimated
coefficient of the moment we include in the regm@ss For instance, if we include only
frequency in the regression, the estimated coefitds lower than in the case where we include
both moments. This suggests an omitted variabls: lsi@mce there is a positive correlation
between frequency and kurtosis and the regressiefiicent of kurtosis on CIRP is negative,
we expect a negative bias. A similar finding isaobed for the regression where we include
only the kurtosis. In both cases, the R? of theaggjons are much lower than in the case where
we include both moments. A similar conclusion appeehen we use the placebo regression,
suggesting that the omitted variable in our fiedtef results (Table D.5 in Appendix) is not the

mean, the standard deviation or the skewness gifrtbe change distribution.

6. Conclusion

In this paper, we propose to test the sufficieatistic theoretical result of Alvarez et al. (2016,
2021a) in the clean case study of gasoline prizasye we can rely on the high frequency of
price collection for a very homogenous good andreitwe can relate price changes to an

observed marginal cost measure. We document sdiretags.

First, gasoline prices are sticky (relative to tigh frequency of shocks) and we document
several patterns of price rigidity. First, retaglsgline price changes are infrequent (the median
gas station adjusts prices on average every 4 nge€iiys) while the main cost of the gas station
changes every day. Second, the distribution oepeltanges differs a lot from the cost shock
distribution. Third, the probability of a price efge monotonically increases with the price gap
(i.e. the gap between the actual price and the piniat would have been observed under flexible
prices). This last pattern of the data is fully sistent with the theoretical set-up of
Alvarez et al. (2021a) in which the sufficient g&ht result is shown to hold. Then, we
document that it takes some time (about 3 weekgjdsoline prices to incorporate a marginal
cost shock. We show that the long term pass thragbnsistent with the share of the cost of
the material input into the total cost (about Ov)jch suggests a full pass through of cost to

prices over a long-run horizon.

Second, we relate the cumulative impulse respamsetibn of prices to marginal cost to the
ratio of kurtosis over frequency using two diffeareampirical exercises. The first one is
conducted pooling all price observations togethbilevthe second exercise uses the cross

sectional dispersion of both the cumulated prispoase and the ratio kurtosis over frequency
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at the gas station level. In both empirical ex&gisve provide robust and consistent evidence
that this ratio correlates negatively with CIRFpesdicted by the sufficient statistic theory. The
estimated coefficient relating CIRP and the ratialso very close to -0.167 which is the value
predicted by the theory. Besides, we show that bimthfrequency and the kurtosis of price
changes taken separately correlate equally andfisagrtly with CIRP and with the expected
sign. We also provide evidence that other momdrttseqprice change distribution do not show
the same robust and significant relationship witRRZas the one obtained for the frequency or
the kurtosis of price changes. Finally, we run salveobustness exercises using different
measures of shocks, different samples of gas sitiifferent definitions of the long run
horizon or for the period over which we calculdte CIRP. In all specifications, the sufficient
statistic prediction holds and the magnitudes a #stimated coefficients are robustly

consistent with the values predicted by the theory.
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Figures and Tables

Figures
Figure 1: Distribution of Frequency and Kurtosis acoss Gas stations

a) Frequency

10

A 2 3 4 5 6
Freq. of price changes

b) Kurtosis

2 4 6 8
Kurtosis of price changes

Note: these figures represent the distributiorhefftequency of price changes (top panel) and tin®&is of price changes
(bottom panel) calculated at the gas station l&sak stations opening more than 500 days (2 yéanseming days)
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Figure 2: Price change distribution of diese(before- and after- tax)
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Note: this figure plots the distribution of diegebn-zero) price changes (included taxes in retbgiam and excluded taxes

in blue histogram) (gas stations opening more @b days (2 years of opening days)). The blackddiie plots the
distribution of changes in the price of the wholestiesel price at Rotterdam over the period 200820
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Figure 3: Adjustment hazard rates

a) Probability of price changes
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Note: these figures are binscatter plots reprasgradjustment hazards calculated as the probabiity price change
conditional on the value of the difference betwpemd p*, for gas stations opening more than 5§8 ¢&years of opening
days). p is the actual pre-tax price for a givetieh on a given day, and p* is the optimal prioethat station and for that
day, estimated by linear regressions of price &walRotterdam wholesale prices on the day ofcemhange at the station
level. Left panel plots the adjustment hazard foprace changes whereas the bottom panel plotadiiestment hazard for

price increases and decreases separately.
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Figure 4: Impulse Reaction Function of Prices to &ost Shock — Baseline Estimation
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Local price change - Baseline ———-—- Local price change - Alt.

Note: this figure plots the impulse response fuorcof diesel retail prices to a 1% shock in Rotterdeholesale price (red
line), a 1% shock on average local price (defiretha average price changes of the 10 closestatams) (blue line), for gas
stations opening more than 500 days (2 years oingedays). Grey areas correspond to the 95% cemdiel intervals.
Regressions control for up to 5 lags of shocks oelRtdam wholesale price and average local pricejedisas up to 5 lags of
the average diesel retail price change and incitatéon fixed effects. Standard errors are cludtesedate.
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Figure 5: Cumulative Impulse Response of Prices @ Cost Shock vs Ratio Kur/Freqg(gas
station level)
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Note: this figure represents the binned scatteigfitite CIRP with respect to the ratio kurtosis dvequency both calculated
at the gas station level (the sample is restritdaghs stations with more than 6 years of openaysd
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Figure 6: Cumulative Impulse Response of Prices @ Cost Shock vs Kurtosis and
Frequency of Price Changeggas station level)

Kurtosis

Note: these figures represent the binned scattsrpfathe CIRP with respect to the frequency ofeibanges (in blue, top
panel) both calculated at the gas station leval,afrthe CIRP with respect to the kurtosis of pgbanges (in green, bottom
panel) both calculated at the gas station level ggmple is restricted to gas stations with maasa thyears of opening days).
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Tables

Table 1: Descriptive Statistics on Diesel Price Cimges

Average P10 P25 P50 P75 P90
Frequency of price changes 0.30 0.18 0.21 0.27 0.36 0.48
Distribution of non-zero price
changes
Average of price changes (in %) 0.01 -0.15 -0.05 010. 0.09 0.18
Average of price increases (in %) 1.85 1.02 140 761. 221 2.75
Average of price decreases (in %) -1.95 -2.97 -2.36 -1.84 -1.40  -0.99
Standard Deviation (in %) 2.32 1.26 1.67 2.16 2.793.53
Skewness -0.12 -0.45 -0.28 -0.11 0.05 0.21
Kurtosis 3.31 2.12 2.56 3.14 3.83 4.70

Note: in this table, statistics (frequency of prateanges and moments of the (non-zero) price chdisgigoution) are first
calculated at the gas station level using the abkiltime dimension for each gas station. Thencaleulate average and
percentiles of the distribution of gas-station fregcies and moments of the price change distrib(ti@ keep all gas stations
opening more than 500 days (2 years of opening)fays

Table 2: Descriptive Statistics on Long term Pasditough and Cumulated Impulse
Response of Prices (CIRP)

Average P10 P25 P50 P75 P90
Long term pass through
Horizon 25-30 days
Baseline 0.79 0.67 0.75 0.80 0.84 0.88
Moving Average Shock 0.82 0.73 0.79 0.83 0.87 0.90
Horizon 31-36 days
Baseline 0.80 0.68 0.76 0.81 0.85 0.88
Moving Average Shock 0.82 0.72 0.79 0.83 0.87 0.90
Cumulative Impulse Response
Horizon 24 days
Baseline 19.45 17.54  18.49 19.46 20.38 21.24
Moving Average Shock 19.64 17.76  18.69 19.67 20.621.40
Horizon 30 days
Baseline 24.85 22.64 2381 24.94 25.93 26.84
Moving Average Shock 25.35 23.17 24.30 25.49 26.477.31

Note: we first calculate the long term pass throagth cumulative impulse response of prices by edtitg the local projection

regression at the gas station level, for gas statipening more than 500 days (2 years of operdagg)dThen, we report the
average and the percentiles of the distributioestimated pass through and CIRP across gas stdtmmg:term pass-through
is evaluated as the maximum of long term effecer ¢lve horizon period between t+25 and t+30 or t¢lverhorizon period

between t+31 and t+36.
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Table 3: Pooled regressions linking cumulated pricehanges to the interaction variable
“shock x ratio Kur/Freq”

Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Constrained regression
Shock x Ratio (Kur./Freq.) -0.139 -0.144 -0.143 -0.147
(-4.72) (-4.61) (-3.42) (-3.36)
Shock 21.00 21.43 26.69 27.19
(15.57) (14.92) (13.52) (12.93)
R2 0.339 0.337 0.291 0.287
Unconstrained regression
Shock x Frequency 1.664 1.701 1.693 1.730
(5.72) (5.61) (4.27) (4.20)
Shock x Kurtosis -1.217 -1.273 -1.272 -1.325
(-2.83) (-2.79) (-2.06) (-2.03)
Shock 19.03 19.43 24.71 25.17
(15.95) (15.24) (13.80) (13.19)
R2 0.340 0.338 0.291 0.288

Note: in this table, we report the results of tegression of the cumulative price change on thie Katrtosis over frequency
interacted with the cost shock (equation 13) (tapgd) and of the regression of the cumulative peitgnge on the rescaled
kurtosis and frequency both interacted with thet sh®ck (equation 14) (bottom panel). We consider horizons for the
calculation of the cumulative price change (24 dayshe first 2 columns, and 30 days for the Basblumns). We consider
two measures of the shock: the observed changetier@am prices (baseline) or the gap betweenutrernt Rotterdam price
and the moving average on the last 3-weeks. Ea@ghssion controls for up to 5 lags of the shockckh on markup (with up
to 5 lags of this variable) and the average prienge over the sample of stations (with up to § lafthis variable). Each
control variable is interacted with either the adturtosis over frequency, or the rescaled kurtasi frequency. T-statistics
of the estimates are reported in parentheses.drhpls is restricted to gas stations with more thgears of opening days.
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Table 4: PLACEBO - Pooled regressions linking cumaited price changes to the
interaction variable “shock x ratio Kur/Freq”

Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Constrained regression
Shock x Ratio (Kur./Freq.) -0.176 -0.183 -0.173 -0.180
(-5.72) (-5.62) (-3.95) (-3.91)
Shock x Mean 121.7 266.7 209.7 370.1
(0.24) (0.45) (0.25) (0.43)
Shock x Standard Deviation 35.40 35.80 27.68 28.54
(2.39) (2.44) (1.41) (1.47)
Shock x Skewness -0.176 -0.220 -0.159 -0.203
(-0.79) (-0.95) (-0.53) (-0.64)
Shock 20.60 21.03 26.38 26.86
(15.44) (14.70) (13.40) (12.74)
R2 0.340 0.338 0.292 0.288
Unconstrained regression
Shock x Frequency 2.153 2.222 2.093 2.171
(6.00) (6.05) (4.30) (4.36)
Shock x Kurtosis -1.463 -1.518 -1.467 -1.52
(-3.90) (-3.77) (-2.71) (-2.64)
Shock x Mean 164.39 309.08 251.76 412.28
(0.29) (0.53) (0.31) (0.59)
Shock x Standard Deviation 33.78 33.99 25.54 26.30
(1.79) (0.53) (1.00) (1.02)
Shock x Skewness -0.176 -0.219 -0.174 -0.214
(-0.73) (-0.87) (-0.52) (-0.61)
Shock 18.01 18.34 23.89 24.27
(14.45) (13.68) (12.73) (12.07)
R2 0.343 0.341 0.294 0.290

Note: in this table, we report the results of tegression of the cumulative price change over bari on the ratio kurtosis over frequency interactethwie
cost shock and other moments interacted with tls¢ slsock (mean, standard deviation, skewness) fiequib) in the top panel and of the regressiotthef
cumulative price change on the rescaled kurtosisfl@guency and other moments (all moments intecaatith the cost shock) in the bottom panel. Wesiter
two horizons for the calculation of the cumulatpréce change (24 days for the first 2 columns, 2ddays for the last 2 columns) and two measuréseashock:
the observed change in Rotterdam prices (basalingje gap between the current Rotterdam pricetlamdnoving average on the last 3-weeks. Each reigres
controls for up to 5 lags of the shock, shocks ankup (with up to 5 lags of this variable) and #werage price change over the sample of statioitls (p to 5
lags of this variable). Each control variable iemcted with either the ratio kurtosis over freme or the rescaled kurtosis and frequency ant eathe other
moments. T-statistics of the estimates are repant@arenthesed.he sample is restricted to gas stations with rtieae 6 years of opening days.
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Table 5: OLS cross-section regressions linking CIRBNd ratio

Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Constrained regression
Ratio (Kur./Freq.) -0.141 -0.144 -0.146 -0.152
(-25.7) (-25.9) (-23.4) (-23.1)
Intercept 21.31 21.52 26.87 27.38
(352.0) (344.2) (379.3) (366.0)
R2 0.205 0.203 0.168 0.165
Unconstrained regression
Frequency 1.670 1.704 1.753 1.782
(24.2) (23.7) (21.1) (20.3)
Kurtosis -1.322 -1.347 -1.351 -1.442
(-16.0) (-16.2) (-14.3) (-14.6)
Intercept 19.42 19.57 24.87 25.37
(199.5) (198.1) (219.2) (212.2)
R2 0.190 0.186 0.158 0.152

Note: in this table, we report the results of tbgression of the CIRP on the ratio kurtosis oveydency (equation (16)) (top
panel) and of the regression of the CIRP on theateddurtosis and frequency (equation (17)) (botfmel). We consider
two horizons for the calculation of the CIRP (24 sl&yr the first 2 columns, and 30 days for the Zasblumns). We consider
two measures of the shock: the observed changetier@am prices (baseline) or the gap betweenutremt Rotterdam price
and the moving average on the last 3-weeks. Tstitsiof the estimates are reported in parenth@sessample is restricted
to gas stations with more than 6 years of openayg.d
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Table 6: PLACEBO - OLS cross-section regressiongiking CIRP and ratio

Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Constrained regression
Ratio (Kur./Freq.) -0.184 -0.190 -0.175 -0.183
(-24.8) (-25.0) (-20.6) (-20.53)
Mean 274.10 377.4 142.2 327.8
(6.60) (8.79) (2.95) (6.48)
Standard Deviation 43.13 44.46 24.67 24.82
(9.33) (9.13) (4.30) (4.10)
Skewness 0.014 -0.024 -0.294 -0.347
(0.12) (-0.27) (-2.14) (-2.43)
Intercept 20.8 21.00 26.60 27.10
(260.7) (252.8) (265.9) (257.8)
R2 0.247 0.256 0.180 0.188
Unconstrained regression
Frequency 2.279 2.359 2.137 2.206
(23.68) (23.6) (19.05) (18.46)
Kurtosis -1.539 -1.572 -1.538 -1.624
(-17.25) (-17.51) (-14.57) (-14.9)
Mean 311.1 416.8 171.7 356.0
(7.17) (9.30) (3.47) (6.85)
Standard Deviation 41.63 42.92 22.62 21.67
(8.54) (8.33) (3.81) (3.43)
Skewness 0.029 -0.002 -0.300 -0.354
(0.25) (-0.02) (-2.10) (-2.38)
Intercept 18.08 18.15 24.12 24.56
(102.1) (98.17) (115.2) (108.9)
R2 0.231 0.239 0.170 0.175

Note: in this table, we report the results of tegression of the CIRP on the ratio kurtosis ovegemcy and other moments
(mean, standard deviation, skewness) in the toplgaquation (18)) and of the regression of the CbRRhe rescaled kurtosis
and frequency and other moments (mean, standardtidey skewness) in the bottom panel. We congiderhorizons for the
calculation of the CIRP (24 days for the first 2urohs, and 30 days for the last 2 columns). We denswo measures of the
shock: the observed change in Rotterdam price®l{ba¥ or the gap between the current Rotterdacemind the moving
average on the last 3-weeks. T-statistics of thienates are reported in parentheses. The sampéstiscted to gas stations
with more than 6 years of opening days.
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Table 7: OLS cross-section regressions - robustnelsg duration of price trajectories

>2years >4years >6years >8years
Constrained regression
Ratio (Kur./Freq.) -0.127 -0.139 -0.146 -0.148
(-22.7) (-19.9) (-23.4) (-20.51)
Intercept 26.28 26.64 26.87 26.83
(374.7.0) (332.3) (379.3) (342.3)
R2 0.051 0.099 0.168 0.205
Number of gas stations 10,106 4,893 3,116 1,931
Unconstrained regression
Frequency 1.415 1.601 1.544 1.637
(18.24) (19.54) (21.09) (21.15)
Kurtosis -1.273 -1.399 -1.268 -1.005
(-14.62) (-13.93) (-14.26) (-9.85)
Intercept 24.61 24.79 24.87 24.40
(227.8) (203.9) (219.2) (182.8)
R2 0.044 0.100 0.158 0.206
Number of gas stations 10,106 4,893 3,116 1,931

Note: in this table, we report the results of tegression of the CIRP (for the baseline shock ateat 80 days) on the ratio
kurtosis over frequency (top panel) (equation (B of the regression of the CIRP on the rescaletb$is and frequency
(equation (17)) (bottom panel). We consider differéefinitions of the sample of gas stations: gasans with more than 2
years of price observations (first column), 4 ygaexond column), 6 years (third column) and 8 yéourth column). T-
statistics of the estimates are reported in paeseth
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Table 8: PLACEBO - OLS cross section regressionsking CIRP and ratio

>2years >4years >6years >8years
Constrained regression
Ratio (Kur./Freq.) -0.089 -0.127 -0.175 -0.173
(-13.44) (-14.58) (-20.60) (-16.91)
Mean 423.8 524.6 142.2 -510.2
(18.57) (11.86) (2.95) (-5.79)
Standard Deviation -48.59 -22.48 24.67 31.24
(-13.07) (-4.67) (4.30) (4.32)
Skewness -0.830 -0.543 -0.294 -0.076
(-7.59) (-3.82) (-2.14) (-0.52)
Intercept 26.78 26.86 26.60 26.45
(317.8) (285.3) (265.9) (229.8)
R2 0.125 0.160 0.180 0.237
Unconstrained regression
Frequency 0.736 1.530 1.881 1.947
(7.42) (14.63) (19.05) (18.08)
Kurtosis -1.041 -1.282 -1.443 -1.134
(-11.89) (-12.02) (-14.57) (-10.67)
Mean 421.2 533.9 171.7 -528.6
(18.37) (12.04) (3.47) (-5.65)
Standard Deviation -56.23 -20.76 22.62 33.40
(-14.02) (-4.20) (3.81) (4.43)
Skewness -0.847 -0.591 -0.300 0.008
(-7.69) (-4.13) (-2.10) (0.051)
Intercept 26.19 25.06 24.12 23.49
(147.6) (128.4) (115.2) (92.40)
R2 0.122 0.162 0.170 0.240

Note: in this table, we report the results of tegression of the CIRP (for the baseline shock atett 80 days) on the ratio
kurtosis over frequency and other moments (meandsrd deviation, skewness) in the top panel (&muéi8)) and of the
regression of the CIRP on the rescaled kurtosidragdiency and other moments (mean, standard dawvjakewness) in the
bottom panel. We consider different definitionstloé sample of gas stations: gas stations with rtteae 2 years of price
observations (first column), 4 years (second colyr@ryears (third column) and 8 years (fourth calinT-statistics of the
estimates are reported in parentheses.
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Table 9: OLS cross section regressions linking CIRBnd ratio — Long term horizon and
CIRP

CIRP horizon 18 days 24 days 30 days 36 days

Long term definition 19-24 days 25-30days 31-3¢sda37-40 days

Constrained regression

Ratio (Kur./Freq.) -0.114 -0.141 -0.146 -0.102
(-24.1) (-25.7) (-23.41) (-15.08)

Intercept 14.85 21.31 26.87 30.57
(290.3) (352.0) (379.3) (396.4)

R2 0.195 0.205 0.168 0.068

Unconstrained regression

Frequency 1.425 1.670 1.753 1.339
(24.12) (24.20) (21.09) (14.74)

Kurtosis -0.881 -1.322 -1.351 -0.684
(-12.66) (-15.97) (-14.26) (-6.25)

Intercept 13.06 19.42 24.87 28.79
(159.1) (199.5) (219.2) (211.7)

R2 0.182 0.186 0.158 0.066

Note: in this table, we report the results of tbgression of the CIRP on the ratio kurtosis oveydesncy (equation (16)) (top
panel) and of the regression of the CIRP on theateddurtosis and frequency (equation (17)) (botf@mel). We consider
four horizons for the calculation of the CIRP and iing-term pass through 18 days (first column)d&ys (second column),
30 days (third column), 36 days (fourth columni kbng-term horizon then corresponds to the maxiranrthe five following
days. T-statistics of the estimates are reportgientheses. The sample is restricted to gasrssatiith more than 6 years of
opening days.
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Table 10: Placebo OLS cross section regressionsking CIRP and ratio — Long term
horizon and CIRP

CIRP horizon 18 days 24 days 30 days 36 days
Long term definition 19-24 days 25-30days 31-3¢sda37-40 days
Constrained regression
Ratio (Kur./Freq.) -0.154 -0.184 -0.175 -0.135
(-24.62) (-24.78) (-20.60) (-15.66)
Mean -181.4 274.1 142.2 -678.8
(-5.122) (6.60) (2.95) (-10.10)
Standard Deviation 46.60 43.13 24.67 44.72
(12.45) (9.33) (4.30) (7.67)
Skewness 0.106 0.014 -0.294 0.116
(1.154) (0.121) (-2.14) (0.761)
Intercept 14.33 20.81 26.60 30.09
(224.3) (260.7) (265.9) (286.4)
R2 0.251 0.247 0.180 0.133
Unconstrained regression
Frequency 1.971 2.279 2.137 1.737
(24.28) (23.68) (19.05) (14.57)
Kurtosis -1.125 -1.539 -1.538 -0.942
(-15.37) (-17.25) (-14.57) (-8.32)
Mean -137.8 311.1 171.7 -637.9
(-3.72) (-7.17) (3.47) (-9.25)
Standard Deviation 46.79 41.63 22.62 44.83
(11.57) (8.54) (3.81) (7.30)
Skewness 0.164 0.029 -0.300 0.183
(1.711) (0.251) (-2.103) (1.151)
Intercept 11.78 18.08 24.12 27.81
(79.35) (102.1) (115.2) (118.9)
R2 0.235 0.231 0.170 0.127

Note: in this table, we report the results of tegression of the CIRP on the ratio kurtosis ovegudesmcy and other moments
(mean, standard deviation, skewness) in the toplgaquation (18)) and of the regression of the CdRFhe rescaled kurtosis
and frequency and other moments (mean, standaratidey skewness) in the bottom panel. We condmlarhorizons for the
calculation of the CIRP and the long-term pass thindl8 days (first column), 24 days (second colud@yays (third column),
36 days (fourth column); the long-term horizon tlenresponds to the maximum on the five followiraysl T-statistics of
the estimates are reported in parentheses. Thdes@énpstricted to gas stations with more thae#&ry of opening days.
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Table 11: OLS cross section regressions linking CIRand ratio — kurtosis corrected for
heterogeneity

Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Constrained regression
Ratio (Kur./Freq.) -0.152 -0.156 -0.159 -0.167
(-23.4) (-23.7) (-21.10) (-21.38)
Intercept 21.10 21.31 26.67 27.19
(362.9) (355.9) (385.5) (375.7)
R2 0.171 0.170 0.144 0.145
Unconstrained regression
Frequency 1.514 1.545 1.599 1.623
(22.06) (21.70) (19.45) (18.79)
Kurtosis -1.031 -1.059 -1.099 -1.224
(-12.33) (-12.65) (-11.42) (-12.31)
Intercept 19.28 19.44 24.77 25.31
(183.3) (181.8) (202.4) (197.3)
R2 0.161 0.159 0.138 0.135

Note: in this table, we report the results of tbgression of the CIRP on the ratio kurtosis oveydesncy (equation (16)) (top
panel) and of the regression of the CIRP on theateddurtosis and frequency (equation (17)) (botfmel). We consider

two horizons for the calculation of the CIRP (24 sl&yr the first 2 columns, and 30 days for the Zasblumns). We consider
two measures of the shock: the observed changetier@am prices (baseline) or the gap betweenutrertt Rotterdam price

and the moving average on the last 3-weeks. Tstitatiof the estimates are reported in parenth&sesneasure of the kurtosis
that we use here is the alternative introducedltarkz et al. (2021a) to control for unobservectageneity (we use 15 lags
for the covariance term). The sample is restritbeghs stations with more than 6 years of openaysd
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Table 12: OLS cross section regressions linking CIRand ratio — Brent oil price

CIRP horizon 14 days 18 days 24 days 30 days
Long term definition 15-19 days 19-24 days 25-3@sda31-36 days
Constrained regression
Ratio (Kur./Freq.) -0.084 -0.092 -0.118 -0.073
(-20.23) (-19.87) (-22.46) (-12.09)
Intercept 14.51 14.11 20.19 24.04
(317.5) (276.9) (348.7) (360.3)
R2 0.145 0.142 0.165 0.053
Unconstrained regression
Frequency 1.043 1.126 1.285 0.879
(19.69) (19.25) (19.27) (11.50)
Kurtosis -0.614 -0.751 -1.224 -0.689
(-10.38) (-11.31) (-16.17) (-7.98)
Intercept 13.16 12.73 18.85 23.05
(185.4) (158.9) (208.0) (216.7)
R2 0.130 0.129 0.147 0.051

Note: in this table, we report the results of tbgression of the CIRP on the ratio kurtosis oveydesncy (equation (16)) (top
panel) and of the regression of the CIRP on theateddurtosis and frequency (equation (17)) (botf@mel). We consider
two horizons for the calculation of the CIRP (24 sl&yr the first 2 columns, and 30 days for the Zasblumns). We consider
two measures of the shock: the observed changetier@am prices (baseline) or the gap betweenutremt Rotterdam price
and the moving average on the last 3-weeks. Tsitatiof the estimates are reported in parenth@esCIRP is computed
with respect to a cost shock measured by the Bilgmitice. T-statistics of the estimates are repbiteparentheses. The sample
is restricted to gas stations with more than 6/eaopening days.
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Table 13: OLS cross section regressions linking CIRand Kurtosis, Frequency —
Misspecified models

Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Frequency 1.390 1.418 1.467 1.476
(19.63) (19.35) (17.40) (16.64)
Intercept 18.38 18.51 23.80 24.23
(240.0) (234.7) (265.4) (255.3)
R2 0.115 0.112 0.098 0.090
Kurtosis -0.864 -0.880 -0.870 -0.953
(-10.48) (-10.64) (-9.13) (-9.61)
Intercept 20.63 20.81 26.14 26.66
(243.0) (242.4) (264.9) (257.7)
R2 0.034 0.033 0.027 0.029

Note: in this table, we report the results of thgression of the CIRP on the rescaled frequencyp@opl) and of the regression
of the CIRP on the rescaled kurtosis (equation W& consider two horizons for the calculation of @i&P (24 days for the

first 2 columns, and 30 days for the last 2 columw consider two measures of the shock: the ebdarhange in Rotterdam
prices (baseline) or the gap between the currerieRiatm price and the moving average on the last@s: T-statistics of the
estimates are reported in parentheses. The sasmglgtricted to gas stations with more than 6ye&opening days.
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Online Appendix — Not Intended to Be Published

Appendix A - Gasoline micro price data

The dataset we used is provided in a systematic(thagugh XML files). on a website hosted

by the French Governmetftin this section, we describe the data transfownatie operated.

First of all, the data have been put into a paatkt. The dataset contain only the date of price
changes and the new price at the price change Tatget panel series, we assume that a price
tag remains similar until the next price changerded. When several changes are observed

within a single day, we have kept the latest oleeya.

Another issue is that we do not observe whethasastation is closed or not in a given day and
no price change for a very long period of time daanbicate that the gas station is closed. Since
the dataset does not contain any information onntijfies sold by a gas station, the

identification of a closed gas station is inferfesim price changes. We adopt the following

approach: we consider a station as closed aftaraing that a price tag lasts for more than a
given number of days. Our baseline threshold isl®&g. Therefore, after a period of 30 days
with the same price, the price series for thatggason is interrupted. If another price change

occurs after 30 days, we assign another identdiére station and start a new station trajectory.

Figure A.1: Number of estimated open retailers of esel
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We have tested three different thresholds: 15,@D4b days. As indicated in Figure Al: the

shorter the time span, the more fluctuations wenigsin the number of open stations, and the

lower the estimated number of open stations. Howeiwsng one or the other threshold does

not change substantially the patterns of the agdedgrice series.

We also exclude top high or low price levels oriat@ons (the latter often corresponding to

measurement issues in the reporting. which is sutesgly corrected, thus leading to outliers

in the price variations). We have dropped 1% ofi@ubbservations.

Figure A.2: Diesel, Brent and Rotterdam wholesaleasoline, weekly level (2007-2018)
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Note: the figure plots the weekly average of aflséil prices of our sample (unweighted and exclutiirgs, red solid line),
the average diesel price released by the Minidtiroonomy (excluding taxes, black dashed line) vihelesale diesel price
on Rotterdam markets (Reutéenfije sold line) and the price of crude oil (Breniras, Bloomberghlue dashed line).
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Table A.1: Diesel price decomposition

Price incl. Other  Price excl. Rotterdam Other
VAT :
taxes taxes taxes price costs
In euros 1.25 0.21 0.48 0.56 0.46 0.10
% of price incl. taxes - 17.1 394 46.1 37.5 8.5
% of price excl. taxes - - - - 81.3 18.5

Note: calculations based on average values ovefutheample. The first row reports average valaégrice levels, taxes,

wholesale prices as observed over our sample péef@iter costs” is calculated as the differenceMeen “price excluding

taxes” and the wholesale Rotterdam price. The semmmds calculated as the ratio of the averageepricluding taxes (1.25

euros) and VAT, other taxes... The third row is cllted as the ratio between the average price exgudxes and wholesale

Rotterdam price and the ratio between price exctuttines and “other costs”.

Table A.2: Distribution of the marginal cost shock

In % Average P25 P50 P75 SD. Kurtosis
Rotterdam price change 0.00 -0.99 0.00 1.00 0.19 30 6.
Rotterdam price gap -0.02 231 008 252 043 4.82
with its moving average

Brent price changes -0.15 -1.09 -0.22 1.12 0.21 45.8

Note: in this table, we report descriptive statstover the full sample on the different shockscamsider.

Figure A.3 Size of price changes depending on theipe gap
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Note: this figure is a binscatter plot representimg size of non-zero price changes conditionahervalue of the difference
between p and p*, for gas stations opening more 8 days (2 years of opening days). p is theahgie-tax price for a
given station on a given day, and p* is the optiprate for that station and for that day, estimatgdinear regressions of

price levels on Rotterdam wholesale prices on tlyeofla price change at the station level.
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Appendix B - Heterogeneity and asymmetry

Figure B.1: Impulse Reaction Function of Prices t@ Cost Shock— Position in the Price
Distribution
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Time (in days)

Rotterdam - Very low prices Low prices
Highprices = =======e- Very high prices
Local Prices - Very low prices — Low prices
High prices ===------ Very high prices

Note: this figure plots the impulse response fuorddiof diesel retail prices to a 1% shock in Ro#terdvholesale price (red
lines), and to a 1% shock on average local priedir(dd as the average price changes of the 10stlgss stations) (blue
lines), estimated separately for stations with vewy prices (solid), low prices (large dash), hgites (small dash) and very
high prices (dotted), for gas stations opening ntba& 500 days (2 years of opening days). Regressiontrol for up to 5
lags of shocks on Rotterdam wholesale price andhgedocal price, as well as up to 5 lags of theane diesel retail price
change and include station fixed effects. Standemats are clustered by date.
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Table B.1: Duration (in open days) before a full tansmission of a marginal cost and

markup shock

Very low pr High prices Very high
prices prices prices
Marginal cost
t 0.00 0.00 0.00 0.00
t+3 0.34 0.29 0.25 0.26
t+5 0.55 0.50 0.45 0.43
t+10 0.77 0.74 0.70 0.63
t+15 0.79 0.77 0.75 0.66
t+20 0.80 0.78 0.76 0.66
Max. value 0.82 0.80 0.78 0.68
Markups
t 0.26 0.24 0.16 0.06
t+3 0.19 0.18 0.15 0.12
t+5 0.15 0.14 0.13 0.11
t+10 0.11 0.11 0.08 0.10
t+15 0.09 0.08 0.07 0.08
t+20 0.07 0.07 0.06 0.06
Max. value 0.26 0.22 0.17 0.12

Note : this table represents the values of the IRffetax diesel price change, for shocks on matginsts and on markups,
on the day of the shock (t), 3 days after (t+3)ags after (t+5), 10 days after (t+10), 15 daysrdft+15) the shock, for gas
stations opening more than 500 days (2 years afingalays). It also highlights the maximum valugiaed up until 40 days

after the shock. Markup shocks are defined asvbheage price variation in the 10 closest statidhg marginal cost shock is
defined as day-to-day log price variation of Rotéendwholesale prices. Regressions are estimatedaselyaior each group

of price levels, and control simultaneously for giaal cost and markup shocks, as well as up tg&d@such shocks, as well
as up to 5 lags of the average diesel retail mti@nge over the sample and include station fixétesf

54



Figure B.2: Impulse Reaction Function of Prices t@ Cost Shock — Role of the
Frequency of Psychological Prices
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— Local Prices - Psych. Prices > 98% Psych. Prices <561%

Note: this figure plots the impulse response furdiof diesel retail prices to a 1% shock in Ro#terdvholesale price (red
lines), and to a 1% shock on average local priedir(dd as the average price changes of the 10stlgss stations) (blue
lines), estimated separately for stations using esychological prices than average, equal to 5d&shed) and more
psychological prices than the top decile, equ&ia® (solid), for gas stations opening more thand#® (2 years of opening
days). Regressions control for up to 5 lags of sk@ckRotterdam wholesale price and average locze pais well as up to 5
lags of the average diesel retail price changeraridde station fixed effects. Standard errorsciustered by date.
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Figure B.3: Price variations (in tens of Euros cers), for stations with more or less
psychological price changes than the average

a) Share of psychological price changes above averdiddo)
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b) Share of psychological price changes below aee(a=51%)
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Note: this figure represents the distribution ofa@lhbte price variations on the estimating sampkindjuishing stations with

above-average share of psychological prices anbrssawith below-average share of psychologicatgsi(defined as tax-

included price-trajectories with a third digit i@ 9), for gas stations opening more than 500 ¢&y®ars of opening days).
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Figure B.4: Impulse Reaction Function of diesel retil prices to positive and negative
shocks on wholesale gasoline prices
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Note: this figure plots the impulse response fuorcof diesel retail prices to a 1% shock in Rotterdeholesale price (red
line), and to a 1% shock on average local pricér(dé as the average price changes of the 10 ¢lgasstations) (blue lines),
differentiating between positive and negative sisodoth for Rotterdam wholesale prices and averaca prices), for gas
stations opening more than 500 days (2 years ofingelays). Shocks on Rotterdam wholesale pricedefired as deviation
from a 3-weeks moving average of log-Rotterdam wsaiéeprices. Regressions control for up to 5 laghio€ks on Rotterdam
wholesale price and average local price, and irclst@tion fixed effects. Grey areas corresponchéod5% confidence

intervals.
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Figure B.5: Impulse Reaction Function of Diesel Reil Prices to Shocks on Wholesale

Gasoline Prices and Brent Prices
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Note: this figure plots the impulse response fuorctf diesel retail prices to a 1% shock in Rottendvholesale price (solid
red line) or in Brent crude oil price (dashed ret)i and to a 1% shock on average local pricer(ddfas the average price
changes of the 10 closest gas stations) (blue)jifi@sgas stations opening more than 500 dayse@syof opening days).
Regressions control for up to 5 lags of shocks omelRtam wholesale price and average local pricejefisas up to 5 lags of
the average diesel retail price change and indtat@n fixed effects. Grey areas correspond t®8% confidence intervals,

with standard errors are clustered by date.
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Appendix C — Estimated Coefficients over the Horizo - Pooled regressions
linking cumulated price changes to the interactiorvariable “shock x ratio
Kur/Freq”
“Baseline” shock — Coefficients of the constraimeddel
Figure C.1 — ShockA) Figure C.2 — Shock interacted with the ratio
kurtosis over frequencyBg;)
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Note: these figures plot the estimated coefficiefitsquation (13) where we relate the cumulatecEprhanges over horizon
H to the shock (coefficiemy — left panel) and to the shock interacted with Kd&efficientB, — right panel). The x axis
gives the horizon H at which we estimate the coiffits. Gray shaded areas give the 95% confideneessals. The sample
is restricted to gas stations with more than 6yeaopening days.

Baseline shock — Coefficients of the unconstramedel

Figure C.3 — ShockAy) Figure C.4 — Shock interacted with frequency and
kurtosis Cy and Dy)
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Note: these figures plot the estimated coefficiefitsquation (14) where we relate the cumulatecEprhanges over horizon

F.
H to the shock (coefficiemy — left panel), to the shock interacted vxrilg:'l"n(coeﬁicientCH —red line, right panel) and the

K.
shock interacted withK;L (coefficientDy — red line, right panel). The x axis gives theitmm H at which we estimate the

coefficients. Gray shaded areas give the 95% cenfid intervals. The sample is restricted to gamegawith more than 6
years of opening days.
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Baseline shock — Coefficients of the placebo test diorizon H (constrained model)
Figure C.6 — Shock interacted with the ratio
kurtosis over frequencyB(;)
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Figure C.8 — Shock interacted with standard

deviation €y)
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Note: these figures plot the estimated coefficiefiesquation (15) where we relate the cumulatecEprhanges over horizon
H to the shock (coefficiemt — top left panel), to the shock interacted witl K¢oefficientBy — top right panel) and to
the shock interacted with other moments. The x gixiss the horizon H at which we estimate the ¢cieffits. Gray shaded
areas give the 95% confidence intervals. The sampkstricted to gas stations with more than 6s/efopening days.
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Baseline shock — Coefficients of the placebo test diorizon H (unconstrained model)

Figure C.10 — Shock(y)
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Figure C.12 - Shock interacted with me&p} Figure C.13 — Shock interacted with standard
deviation €y)
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Figure C.14 — Shock interacted with skewness
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Note: these figures plot the estimated coefficiefitsquation (15) where we relate the cumulatecEprhanges over horizon

F.
H to the shock (coefficiem — top left panel), to the shock interacted w#l’(coeﬁicientCH — red line, top right panel),

K.
the shock interacted Wiﬂ% (coefficientDy — red line, top right panel) and the shock intesdavith other moments (other

panels). The x axis gives the horizon H at whichesemate the coefficients. Gray shaded areasth&®5% confidence
intervals. The sample is restricted to gas statwitts more than 6 years of opening days.
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Appendix C — Robustness Analysis

Figure D.1: Impulse Reaction Function of Prices t@ Cost Shock — Robustness
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Note: this figure plots the impulse response fuorcof diesel retail prices to a 1% shock in Rotterdeholesale price (red
line), a 1% shock on average local price (definetha average price changes of the 10 closestatans) (blue line). Grey
areas correspond to the 95% confidence intervatgreRsions control for up to 5 lags of shocks ortdkdam wholesale price
and average local price, as well as up to 5 lagh®faverage diesel retail price change and incttdton fixed effects.
Standard errors are clustered by date. “All” cquogsl to the sample restricted to gas stationsmitte than 2 years of opening
days while “Long traj.” correspond to the samplgtrieted to gas stations with more than 6 yeagpehing days.
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Figure D.2: Distribution of Kurtosis Across Gas Staéions — including or not correction
for unobserved heterogeneity
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Note: this figure plots in grey the distribution thfe kurtosis and in white the distribution of tberrected kurtosis for
unobserved heterogeneity (we allow 15 lags focthariance term in the corrected measure of kigi{@dvarez et al.,2021a)).

Table D.1: Distribution of kurtosis after correction for unobserved heterogeneity

Average P25 P50 P75 Correlation
Kurtosis (no correction) 3.31 2.56 3.15 3.83 1
Kurtosis incl correction (10 lags) 2.80 2.20 2.66 .19 0.87
Kurtosis incl correction (15 lags) 2.85 2.23 271 .273 0.89
Kurtosis incl correction (20 lags) 2.90 2.25 2.74 .323 0.90

Note: we first calculate for every gas stationkbeosis of non-zero price changes and then wert@pthis table the average
and the percentiles of the distribution of kurtasier gas stations. The first line correspond$i¢ocase using raw price data
without any correction, the second line reportsiltesvhere we allow 10 lags for the covariance terhe corrected measure
of kurtosis (Alvarez et al. 2021a), the second tiggorts results taking into account 15 lags ferdbrrection and the last line
allows for 20 lags.
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Table D.2: OLS cross section regressions linking &P and ratio — Log specifications

Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Constrained regression
Ratio (Kur./Freq.) -0.0825 -0.0835 -0.0657 -0.0670
(-26.00) (-25.86) (-22.62) (-22.19)
Intercept 3.175 3.186 3.382 3.402
(434.1) (426.0) (498.6) (481.7)
R2 0.201 0.198 0.160 0.155
Unconstrained regression
Frequency 0.088 0.089 0.071 0.071
(24.4) (24.1) (21.0) (20.2)
Kurtosis -0.072 -0.073 -0.057 -0.059
(-15.97) (-16.17) (-14.02) (-14.12)
Intercept 3.169 3.180 3.377 3.398
(418.8) (413.7) (486.4) (469.2)
R2 0.204 0.201 0.163 0.157

Note: in this table, we report the results of tegression of the log of CIRP on the log of the rtidosis over frequency (top
panel) and of the regression of the log of the GdRRhe log of kurtosis and the log of frequencytitmm panel). We consider
two horizons for the calculation of the CIRP (24 sléyr the first 2 columns, and 30 days for the Zasblumns). We consider
two measures of the shock: the observed changetier®@am prices (baseline) or the gap betweenutrerat Rotterdam price
and the moving average on the last 3-weeks. Tstitatiof the estimates are reported in parenth@sessample is restricted

to gas stations with more than 6 years of openayg.d
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Table D.3: Placebo - OLS cross section regressiolirsking CIRP and ratio — kurtosis
corrected for unobserved heterogeneity

Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Constrained regression
Ratio (Kur./Freq.) -0.204 -0.212 -0.193 -0.206
(-21.18) (-21.17) (-16.98) (-17.33)
Mean 262.1 364.6 129.6 314.4
(6.45) (8.30) (2.67) (6.19)
Standard Deviation 44.88 46.54 25.84 27.24
(8.20) (7.92) (3.82) (3.81)
Skewness 0.172 0.139 -0.137 -0.189
(1.56) (1.25) (-1.10) (-1.36)
Intercept 20.58 20.76 26.38 26.87
(248.2) (238.8) (255.4) (247.0)
R2 0.212 0.221 0.154 0.166
Unconstrained regression
Frequency 2.094 2171 1.954 2.028
(20.87) (20.72) (16.87) (16.40)
Kurtosis -1.253 -1.285 -1.268 -1.384
(-13.81) (-14.03) (-11.60) (-12.37)
Mean 310.3 415.3 168.8 351.0
(7.01) (9.12) (3.38) (6.76)
Standard Deviation 42.52 43.86 23.58 23.40
(7.85) (7.59) (3.60) (3.36)
Skewness 0.197 0.169 -0.133 -0.189
(1.73) (1.46) (-0.95) (-1.31)
Intercept 17.98 18.05 24.03 24.48
(96.39) (92.58) (110.2) (104.2)
R2 0.202 0.210 0.148 0.156

Note: in this table, we report the results of tegression of the CIRP on the ratio kurtosis ovegudesmcy and other moments
(mean, standard deviation, skewness) in the topl@ard of the regression of the CIRP on the resdaledsis and frequency
and other moments (mean, standard deviation, skssyire the bottom panel. The kurtosis that we cdmgsicorrected for
heterogeneity (Alvarez et al., 2021a).We considerhiorizons for the calculation of the CIRP (24 dfyghe first 2 columns,
and 30 days for the last 2 columns). We considemwasures of the shock: the observed change iarRath prices (baseline)
or the gap between the current Rotterdam price lamanoving average on the last 3-weeks. T-statisfitke estimates are
reported in parentheses. The sample is restriotgdg stations with more than 6 years of openiyg.da
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Table D.4: Placebo OLS cross section regressionsKing CIRP and ratio — Brent oil
price

CIRP period 14 days 18 days 24 days 30 days
Long term definition 15-19 days 19-24 days 25-3@sda31-36 days
Constrained regression
Ratio (Kur./Freq.) -0.135 -0.118 -0.147 -0.087
(-25.76) (-19.98) (-20.70) (-11.09)
Mean -213.4 -241.6 329.1 -159.2
(-7.45) (-7.12) (8.14) (-3.29)
Standard Deviation 44.13 33.63 28.24 17.90
(13.38) (10.21) (6.66) (3.60)
Skewness 0.024 0.222 0.012 0.037
(0.329) (2.42) (0.106) (0.283)
Intercept 10.52 13.73 19.86 23.84
(190.0) (223.1) (267.4) (266.4)
R2 0.272 0.187 0.202 0.062
Unconstrained regression
Frequency 1.700 1.448 1.662 1.054
(25.25) (18.84) (18.34) (9.91)
Kurtosis -0.979 -0.894 -1.336 -0.788
(-16.25) (-12.81) (-15.86) (-8.36)
Mean -176.1 -213.8 343.5 -146.3
(-5.84) (-6.05) (8.21) (-2.97)
Standard Deviation 43.60 32.08 22.82 16.55
(12.18) (9.02) (5.20) (3.07)
Skewness 0.079 0.261 0.001 0.028
(1.028) (2.74) (0.010) (0.210)
Intercept 8.332 11.92 18.03 22.64
(67.85) (88.03) (114.9) (114.5)
R2 0.249 0.169 0.178 0.058

Note: in this table, we report the results of tegression of the CIRP on the ratio kurtosis ovegudesmcy and other moments
(mean, standard deviation, skewness) in the topl@ard of the regression of the CIRP on the resdaledsis and frequency
and other moments (mean, standard deviation, skssyimethe bottom panel. We consider four horiZzonshe calculation of
the CIRP and the long-term pass through 18 daya @alumn), 24 days (second column), 30 days (tbdildmn), 36 days
(fourth column); the long-term horizon then cor@ss to the maximum on the five following days. TI&P is computed
with respect to a cost shock measured by the Bilgmitice. T-statistics of the estimates are repbiteparentheses. The sample
is restricted to gas stations with more than 6sye&opening days.
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Table D.5: Placebo - OLS cross section regressiditiking CIRP and ratio — Mis-specified

models
Long-term 24 days 30 days
Moving Moving
Baseline Average Baseline  Average
Shock Shock
Frequency 1.665 1.733 1.524 1.559
(18.00) (18.08) (14.20) (13.61)
Mean 355.3 462.0 215.8 402.6
(7.80) (9.83) (4.20) (7.43)
Standard Deviation 21.37 22.23 2.39 0.292
(4.55) (4.49) (0.42) (0.048)
Skewness 0.533 0.513 0.204 0.178
(4.380) (4.179) (1.40) (1.18)
Intercept 17.64 17.70 23.68 24.10
(98.26) (94.37) (111.3) (105.4)
R2 0.144 0.153 0.104 0.108
Kurtosis -0.715 -0.719 -0.765 -0.826
(-8.43) (-8.48) (-7.78) (-8.14)
Mean 218.0 320.4 84.6 266.0
(4.46) (6.36) (1.61) (4.83)
Standard Deviation -22.97 -23.95 -37.97 -40.69
(-6.27) (-6.37) (-8.43) (-8.77)
Skewness 0.405 0.387 0.0522 0.009
(3.22) (3.03) (0.350) (0.061)
Intercept 20.99 21.16 26.85 27.38
(182.8) (181.0) (196.0) (189.9)
R2 0.059 0.064 0.054 0.063

Note: in this table, we report the results of thgression of the CIRP on the rescaled frequencyoimet moments (mean,
standard deviation, skewness) in the top panelbétide regression of the CIRP on the rescaled kisrensd other moments
(mean, standard deviation, skewness) in the bopimmel. We consider two horizons for the calculatibthe CIRP (24 days
for the first 2 columns, and 30 days for the lasbRimns). We consider two measures of the shdekobserved change in
Rotterdam prices (baseline) or the gap betweenuhert Rotterdam price and the moving average erast 3-weeks. T-
statistics of the estimates are reported in paeseth The sample is restricted to gas stationsmétle than 6 years of opening

days.

67



